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The Calderon problem

Consider the following system in the unit ball

(P1)

{
−div (γ(x)∇u(x)) = 0, x ∈ Ω,
u = f , x ∈ ∂Ω.

Given γ ∈ L∞(Ω) we define the Dirichlet to Neumann map (DtN)
as

Λγ : H1/2(∂Ω) → H−1/2(∂Ω)

f → γ ∂u
∂n

∣∣
∂Ω

The reconstruction problem: Can we find γ from Λγ?

In other words, can we invert the following map?

γ → Φ(γ) = Λγ
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Equivalent potential problem

(P2)

{
−∆u(x) + q(x) u(x) = 0, x ∈ Ω,
u = f , x ∈ ∂Ω.

Given q ∈ L∞(Ω) we define the Dirichlet to Neumann map (DtN)
as

Λq : H1/2(∂Ω) → H−1/2(∂Ω)

f → ∂u
∂n

The reconstruction problem: Can we find q from Λq?
Remark. For smooth γ, (P1) is equivalent to (P2) with

q =
∆γ1/2

γ1/2
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Is the problem well-posed?

Uniqueness: Does Λγ = Φ(γ) determines γ?

J. Sylvester and G. Uhlmann (1987). Dimensión d ≥ 3 and
smooth γ.

A. Nachman (1996). Dimension d = 2 and γ ∈ C 2.

M. Lassas, L. Päivärinta and G. Uhlmann (2003). Dimension
d ≥ 3 and γ Lipschitz.

K. Astala and L. Päivärinta (2006). Dimension d = 2 and
γ ∈ L∞.

Stability:

G. Alessandrini (1988) proved logarithmic stability for d ≥ 3.

Mandache (2001) proved the optimality of this log-stability
result for d ≥ 2.
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Ill-posed problem

Close DtN may be associated with very different q, but also one
can be outside the domain of Λ [Siltanen and Mueller 2012]

C. Castro+, F. Macià, C. Meroño and D. Sánchez-Mendoza +Univ. Politécnica de MadridThe Born approximation in the reconstruction of the Calderon inverse problem



Reconstruction methods

NOSER (Cheney, Isaacson and Newell, 1990). A suitable
choice of a basis gives the finite dimensional system

γ ∼ γN = (γi )1≤i≤N , Λγ ∼ ΛM
γ = (Λγ)1≤i ,j≤M = ΦM(γ)

Now we can approximate γ∗ by minimizing the least square
functional

J(γN) =
1

2
∥ΦM(γN)− ΛM

γ∗∥2 + R

where γ∗ is the unknown conductivity and R is a
regularization term, typically Tikhonov or total variation.
Optimality condition

dJ(γ∗N) =
(
ΦM(γ∗N)− ΛM

γ∗

)
dΦM(γ∗N) = FN(γ∗N) = 0

is solved by a one-step Newton method from the constant
conductivity γ0N = 1:

γ1N = γ0N − [dFN(γ0N)]
−1FN(γ0N)
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Direct. Use the CGO solutions in the unicity results
(Knudsen, Lassas, Mueller and Siltanen, 2009, and Bikowski,
Knudsen and Mueller, 2012).

(Λγ ,Λ1) → ψ(x , ζ)|∂Ω → t(ξ, ζ) → q(x) → γ

where

ψ(x , ζ) = e ix ·ζ −
∫

∂Ω
Gζ(x − y)(Λγ − Λ1)ψ(y , ζ) dS(y),

t(ξ, ζ) =

∫

∂Ω
e−ix ·(ξ+ζ)(Λγ − Λ1)ψ(x , ζ) dS(x).

q̂(ξ) = lim
ζ→∞

t(ξ, ζ).
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Linearization around γ = 1: Born approximation.

(Λγ ,Λ1) → texp(ξ, ζ) → q(x) → γ

where

texp(ξ, ζ) =

∫

∂Ω
e−ix ·(ξ+ζ)(Λγ − Λ1)e

ix ·ζ dS(x).

q̂exp(ξ) = lim
ζ→∞

texp(ξ, ζ).
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Our approach: Direct linearization

Φ : L∞(Ω) → L(H1/2(∂Ω),H−1/2(∂Ω))

γ → Λγ

Take a reference background conductivity σ and look for γBσ s.t.

dΦσ(γ
B
σ − σ) = Λγ − Λσ.
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This can be used to define a reconstruction strategy in two steps:

2

therefore, inducing the factorization of Φ shown in the diagram:

(1.6)

γ Λγ

γBσ

ΦB
σ

Φ

dΦσ

This kind of factorization can be formulated in a general context, and has been applied under
different names to solve a number of ill-posed inverse problems (see the survey [24]). In [13] it is
shown that when γ ∈ W 2,p(Bd) is radial, γB1 exists and determines uniquely γ. Moreover, in this
case, the map (ΦB

1 )
−1 : γB1 7−→ γ is Hölder continuous under suitable a priori assumptions on the

conductivities. In other words: the well-known ill-posedness of the map Φ−1 : Λγ 7−→ γ is due to
the linear part of the factorization: the inversion of dΦσ. We say that the inverse problem allows a
stable factorization if Φ can be factorized into a linear ill-posed map and a non-linear stable map.
In addition to the results in [13] for the conductivity case, this property has also been proved in
[14] for the radial Schrödinger case and an associated inverse spectral problem, and locally in [25]
for the radial fixed energy Schrödinger case.

The objective of this article is twofold. First, we broaden the class of conductivities σ and γ for
which (1.4) can be rigorously solved. For d ≥ 2, we show that γBσ exists as an integrable function,
as soon as Ω is a ball in Euclidean space, γ is radial and σ is

(1.7) σκ,d(x) =

(
cd
Jνd

(
√
κ|x|)

(
√
κ|x|)νd

)2

, νd =
d− 2

2
, cd := Γ(νd + 1)2νd ,

for κ ∈ (−∞, λ2νd,1
), where λνd,1 stands for the first positive zero of the Bessel function Jνd

. 1

The existence of γBσ is proved in ??; in ?? we give a characterization of the Born approximation
as the unique solution of a certain Hausdorff moment problem. This is a generalization to κ ̸= 0
of the results in [13]. This characterization is valid also for non-radial conductivities under the
assumption of the existence of γBσ .

Second, as a byproduct of our analysis of the Born approximation via the moment problem, we
provide a simple and general framework for the numerical inversion of dΦσ. This framework is
robust enough to hold for any choice of σ, or if Neumann-to-Dirichlet data is used instead of the
DtN map. We apply it to a series of numerical experiments that are described below.

The precise moment problem we solve is described as follows. Let (em)m∈N be an orthonormal
basis of L2(∂Ω) such that em ∈ H1/2(∂Ω) for all m ∈ N. Define

mσ
ℓ,m[F ] := ⟨eℓ,dΦσ(F )em⟩L2(∂Ω) , ℓ,m ∈ N, F ∈ L∞(Ω).

By direct computation of the Fréchet derivative dΦσ (see ??), one can prove that

mσ
ℓ,m[F ] =

∫

Ω

F (x)∇uσm · ∇uσℓ dx,

where uσm is the solution of (1.1) with f = em. Since (1.5) implies that

mσ
ℓ,m[γBσ ] = ⟨eℓ,Λγem⟩L2(∂Ω) , ℓ,m ∈ N,

in order to compute γBσ , one needs to solve the generalized moment problem

(1.8)

∫

Ω

γBσ ∇uσm · ∇uσℓ dx = ⟨eℓ,Λγem⟩L2(∂Ω) , ℓ,m ∈ N,

1When κ < 0 note that σκ,d(x) =

(
cd

Iνd (
√

|κ||x|)
(
√

|κ||x|)νd

)2

. Note also that with this normalization, σ0,d = 1.

Main questions:

1 γBσ exists?

2 Can we compute dΦ−1
σ ?

3 Can we compute (ΦB
σ )

−1?
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Existence of γB
σ

Formally
γBσ = σ − dΦ−1

σ (Λσ − Λγ) = dΦ−1
σ (Λγ),

since it can be proved that dΦσ(σ) = Λσ. Note that

γBσ = σ − [dΨσ]
−1Ψ(σ), Ψ(s) = Φ(s)− Φ(γ).

Theorem (CC, Macià, Meroño, Sánchez-Mendoza, 25’)

Suppose that Ω is the unit ball in Rd , that γ ∈ W 2,∞
+ (Ω) is a

radial function, and that κ ∈ (−∞, λ2νd ,1). Then there exists a

radial function γBσκ,d
∈ W 1,1(Ω) such that:

dΦσκ,d
(γBσκ,d

) = Λγ .

Here

σκ,d(x) =

(
cd

Jνd (
√
κ|x |)

(
√
κ|x |)νd

)2

, νd =
d − 2

2
, cd = Γ(νd+1)2νd .
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Figure: Background conductivity.

Idea: Reduce to the potential case where a similar result is known
for background potential q = cte ([T. Daudé, F. Macià, C.
Meroño, and F. Nicoleau, 2025], [F. Macià, C. Meroño, D.
Sánchez-Mendoza, 2025])
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Invert dΦσ, (d = 2)

We want to find γBκ such that

dΦσκ(γ
B
κ ) = Λγ ,

Let (em)m∈N be an orthonormal basis in L2(∂Ω). Define the
matrix,

mκ
ℓ,m[F ] := ⟨eℓ, dΦσκ(F )em⟩H1/2×H−1/2 , F ∈ L∞(D).

Then
mκ

ℓ,m[γ
B] = ⟨eℓ,Λγem⟩H1/2×H−1/2 .
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Theorem (CC, Macià, Meroño, Sánchez-Mendoza, 25’)

For every γ ∈ L∞(D), κ ∈ (−∞, λ20,1), and ℓ,m ∈ Z one has

mκ
ℓ,m[γ] = σκ(1)

∫

D

γ(x)

σκ(x)
Φ(κ, ℓ,m, |x |)dx ,

where Φ(κ, ℓ,m, |x |) is an explicit function that depends on the
Bessel functions.
For κ = 0 we have the simpler formula

m0
ℓ,m[γ] =

∫

D
γ(z)

ℓm

π
zℓ−1zm−1m(dz).
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Inversion algorithm

Find γB ∈ L∞ such that

σκ(1)

∫

D

γB(x)

σκ(x)
Φ(κ, ℓ,m, |x |)dx = ⟨eℓ,Λγem⟩H1/2×H−1/2 .

Galerkin approximation: Introduce the finite dimensional space
V I ,L = span (fi ,j(r , θ))

I ,L
i=1,j=−L where

fi ,j(r , θ)
I√

i − 1/2
χ( i−1

I
, i
I
](r)ej(θ), i = 1, . . . I , j = −L, . . . , L.

I∑

i=1

L∑

j=−L

xi ,jm
κ
ℓ,m[fi ,j ] = ⟨eℓ,Λγem⟩L2(S1) , ℓ,m = 1, . . . , L.
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Iterative algorithm

{
γ0 = γB1 ,
γn = γn−1 + γB1 − (γn−1)

B
1 .

For each iteration n − 1 → n:

γn−1 → Λγn−1 →
〈
eℓ,Λγn−1em

〉
L2(S1) → (γn−1)

B
1 → γn

(The direct problem γn−1 → Λγn−1 is solved with a spectral
method)
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Background conductivity σ = 1

γ γB1 = γ0
n \ p 1 2 ∞
0 0.03895 0.06904 0.33387
1 0.03432 0.05210 0.26982
2 0.03670 0.05064 0.25109
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Background conductivity σ = 1: precision

γ γB1 = γ0
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Background conductivity σ = 1: precision

γ γB1 = γ0
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Convergence in terms of L (I = 50)

L \ p 1 2 ∞
24 0.26730 0.24074 0.91152
29 0.19799 0.20441 0.89030
34 0.12702 0.15496 0.69693
39 0.10260 0.13376 0.67875
44 0.09744 0.13329 0.62283
49 0.08933 0.13038 0.61826

∥∥γ − γB1
∥∥
Lp(D) for the conductivity using different values of L.
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Background conductivity σk
This experiment shows that whenever γ is a small perturbation of
(a multiple of) σκ, then γ

B
σκ

is a much better approximation to γ
than γBσ0

= γB1 .

γ − σ4
J0(2)2

γBσ0
− σ4

J0(2)2

γBσ4
− σ4

J0(2)2
Angular cross section
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Discontinuos conductivity

γ γB1 = γ0

γN Angular cross section
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Noisy data

γ Angular cross section
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