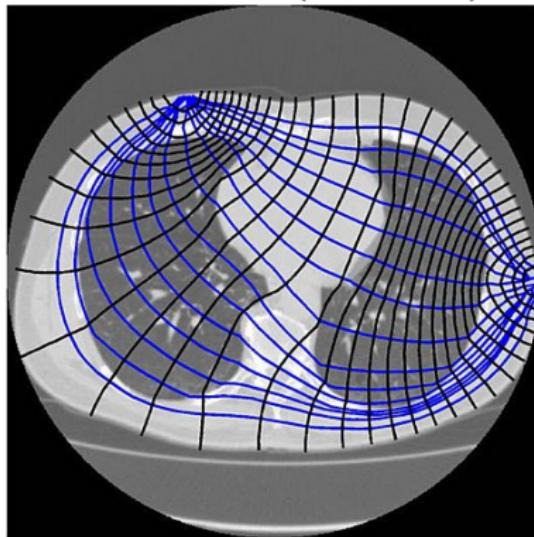


The Born approximation in the reconstruction of the Calderon inverse problem

C. Castro⁺, F. Macià, C. Meroño and D. Sánchez-Mendoza
+Univ. Politécnica de Madrid

December 1, 2025

Electrical Impedance Tomography (wikipedia)



Stream lines (blue) and equipotential lines (black)

The Calderon problem

Consider the following system in the unit ball

$$(P1) \begin{cases} -\operatorname{div}(\gamma(x)\nabla u(x)) = 0, & x \in \Omega, \\ u = f, & x \in \partial\Omega. \end{cases}$$

Given $\gamma \in L^\infty(\Omega)$ we define the Dirichlet to Neumann map (DtN) as

$$\begin{aligned} \Lambda_\gamma : H^{1/2}(\partial\Omega) &\rightarrow H^{-1/2}(\partial\Omega) \\ f &\rightarrow \gamma \frac{\partial u}{\partial n} \Big|_{\partial\Omega} \end{aligned}$$

The reconstruction problem: Can we find γ from Λ_γ ?

In other words, can we invert the following map?

$$\gamma \rightarrow \Phi(\gamma) = \Lambda_\gamma$$

Equivalent potential problem

$$(P2) \begin{cases} -\Delta u(x) + q(x) u(x) = 0, & x \in \Omega, \\ u = f, & x \in \partial\Omega. \end{cases}$$

Given $q \in L^\infty(\Omega)$ we define the Dirichlet to Neumann map (DtN) as

$$\begin{aligned} \Lambda_q : H^{1/2}(\partial\Omega) &\rightarrow H^{-1/2}(\partial\Omega) \\ f &\rightarrow \frac{\partial u}{\partial n} \end{aligned}$$

The reconstruction problem: Can we find q from Λ_q ?

Remark. For smooth γ , (P1) is equivalent to (P2) with

$$q = \frac{\Delta \gamma^{1/2}}{\gamma^{1/2}}$$

Is the problem well-posed?

Uniqueness: Does $\Lambda_\gamma = \Phi(\gamma)$ determines γ ?

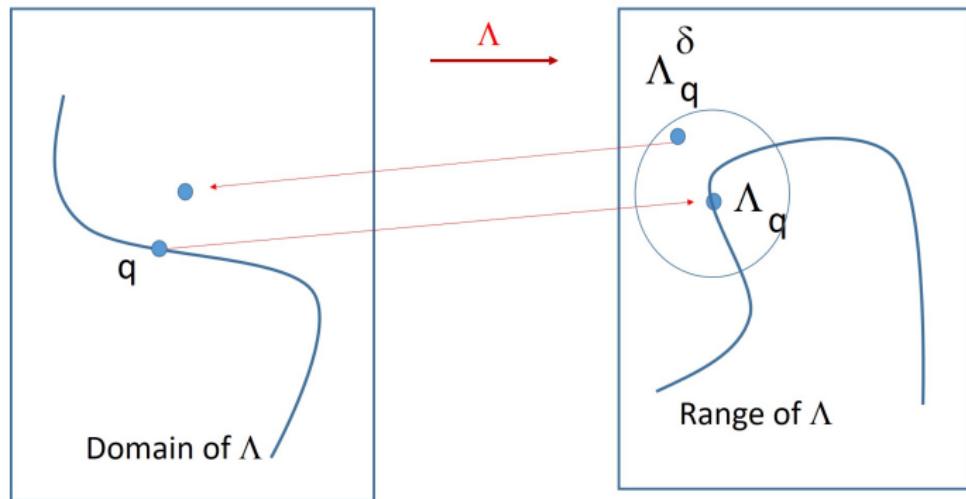
- J. Sylvester and G. Uhlmann (1987). Dimensión $d \geq 3$ and smooth γ .
- A. Nachman (1996). Dimension $d = 2$ and $\gamma \in C^2$.
- M. Lassas, L. Päivärinta and G. Uhlmann (2003). Dimension $d \geq 3$ and γ Lipschitz.
- K. Astala and L. Päivärinta (2006). Dimension $d = 2$ and $\gamma \in L^\infty$.

Stability:

- G. Alessandrini (1988) proved logarithmic stability for $d \geq 3$.
- Mandache (2001) proved the optimality of this log-stability result for $d \geq 2$.

III-posed problem

Close DtN may be associated with very different q , but also one can be outside the domain of Λ [Siltanen and Mueller 2012]



Reconstruction methods

- **NOSER** (Cheney, Isaacson and Newell, 1990). A suitable choice of a basis gives the finite dimensional system

$$\gamma \sim \gamma_N = (\gamma_i)_{1 \leq i \leq N}, \quad \Lambda_\gamma \sim \Lambda_\gamma^M = (\Lambda_\gamma)_{1 \leq i, j \leq M} = \Phi^M(\gamma)$$

Now we can approximate γ^* by minimizing the least square functional

$$J(\gamma_N) = \frac{1}{2} \|\Phi^M(\gamma_N) - \Lambda_{\gamma^*}^M\|^2 + R$$

where γ^* is the unknown conductivity and R is a regularization term, typically Tikhonov or total variation.
Optimality condition

$$dJ(\gamma_N^*) = \left(\Phi^M(\gamma_N^*) - \Lambda_{\gamma^*}^M \right) d\Phi^M(\gamma_N^*) = F^N(\gamma_N^*) = 0$$

is solved by a one-step Newton method from the constant conductivity $\gamma_N^0 = 1$:

$$\gamma_N^1 = \gamma_N^0 - [dF^N(\gamma_N^0)]^{-1} F^N(\gamma_N^0)$$

- **Direct.** Use the CGO solutions in the unicity results (Knudsen, Lassas, Mueller and Siltanen, 2009, and Bikowski, Knudsen and Mueller, 2012).

$$(\Lambda_\gamma, \Lambda_1) \rightarrow \psi(x, \zeta)|_{\partial\Omega} \rightarrow t(\xi, \zeta) \rightarrow q(x) \rightarrow \gamma$$

where

$$\psi(x, \zeta) = e^{ix \cdot \zeta} - \int_{\partial\Omega} G_\zeta(x - y)(\Lambda_\gamma - \Lambda_1)\psi(y, \zeta) dS(y),$$

$$t(\xi, \zeta) = \int_{\partial\Omega} e^{-i\xi \cdot (\xi + \zeta)}(\Lambda_\gamma - \Lambda_1)\psi(x, \zeta) dS(x).$$

$$\hat{q}(\xi) = \lim_{\zeta \rightarrow \infty} t(\xi, \zeta).$$

Linearization around $\gamma = 1$: Born approximation.

$$(\Lambda_\gamma, \Lambda_1) \rightarrow t^{\exp}(\xi, \zeta) \rightarrow q(x) \rightarrow \gamma$$

where

$$t^{\exp}(\xi, \zeta) = \int_{\partial\Omega} e^{-ix \cdot (\xi + \zeta)} (\Lambda_\gamma - \Lambda_1) e^{ix \cdot \zeta} dS(x).$$

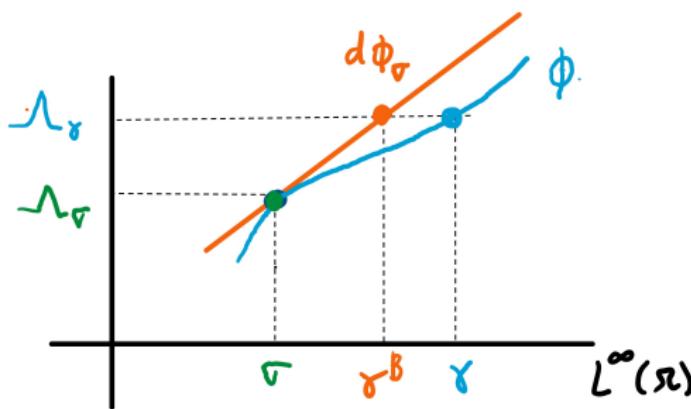
$$\hat{q}^{\exp}(\xi) = \lim_{\zeta \rightarrow \infty} t^{\exp}(\xi, \zeta).$$

Our approach: Direct linearization

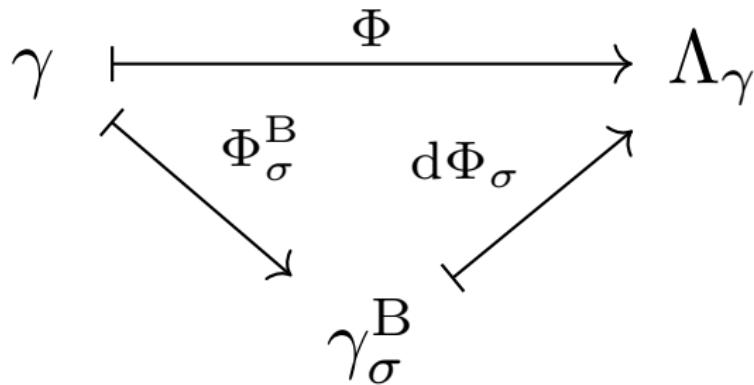
$$\begin{aligned}\Phi : L^\infty(\Omega) &\rightarrow \mathcal{L}(H^{1/2}(\partial\Omega), H^{-1/2}(\partial\Omega)) \\ \gamma &\rightarrow \Lambda_\gamma\end{aligned}$$

Take a reference background conductivity σ and look for γ_σ^B s.t.

$$d\Phi_\sigma(\gamma_\sigma^B - \sigma) = \Lambda_\gamma - \Lambda_\sigma.$$



This can be used to define a reconstruction strategy in two steps:



Main questions:

- ① γ_σ^B exists?
- ② Can we compute $d\Phi_\sigma^{-1}$?
- ③ Can we compute $(\Phi_\sigma^B)^{-1}$?

Existence of γ_σ^B

Formally

$$\gamma_\sigma^B = \sigma - d\Phi_\sigma^{-1}(\Lambda_\sigma - \Lambda_\gamma) = d\Phi_\sigma^{-1}(\Lambda_\gamma),$$

since it can be proved that $d\Phi_\sigma(\sigma) = \Lambda_\sigma$. Note that

$$\gamma_\sigma^B = \sigma - [d\Psi_\sigma]^{-1}\Psi(\sigma), \quad \Psi(s) = \Phi(s) - \Phi(\gamma).$$

Theorem (CC, Macià, Meroño, Sánchez-Mendoza, 25')

Suppose that Ω is the unit ball in \mathbb{R}^d , that $\gamma \in W_+^{2,\infty}(\Omega)$ is a **radial function**, and that $\kappa \in (-\infty, \lambda_{\nu_d,1}^2)$. Then there exists a **radial function** $\gamma_{\sigma_{\kappa,d}}^B \in W^{1,1}(\Omega)$ such that:

$$d\Phi_{\sigma_{\kappa,d}}(\gamma_{\sigma_{\kappa,d}}^B) = \Lambda_\gamma.$$

Here

$$\sigma_{\kappa,d}(x) = \left(c_d \frac{J_{\nu_d}(\sqrt{\kappa}|x|)}{(\sqrt{\kappa}|x|)^{\nu_d}} \right)^2, \quad \nu_d = \frac{d-2}{2}, \quad c_d = \Gamma(\nu_d+1)2^{\nu_d}.$$

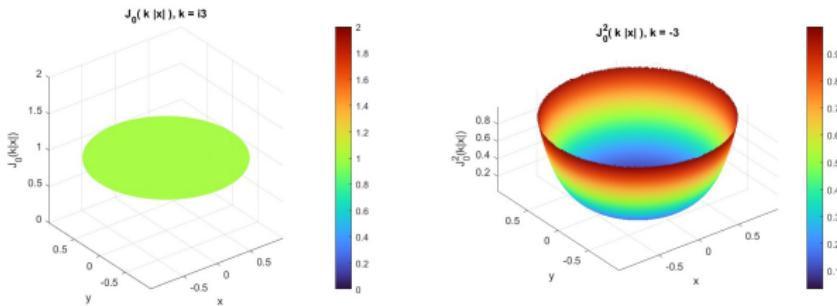


Figure: Background conductivity.

Idea: Reduce to the potential case where a similar result is known for background potential $q = cte$ ([T. Daudé, F. Macià, C. Meroño, and F. Nicoleau, 2025], [F. Macià, C. Meroño, D. Sánchez-Mendoza, 2025])

Invert $d\Phi_\sigma$, ($d = 2$)

We want to find γ_κ^B such that

$$d\Phi_{\sigma_\kappa}(\gamma_\kappa^B) = \Lambda_\gamma,$$

Let $(e_m)_{m \in \mathbb{N}}$ be an orthonormal basis in $L^2(\partial\Omega)$. Define the matrix,

$$\mathfrak{m}_{\ell,m}^{\kappa}[F] := \langle e_\ell, d\Phi_{\sigma_\kappa}(F)e_m \rangle_{H^{1/2} \times H^{-1/2}}, \quad F \in L^\infty(\mathbb{D}).$$

Then

$$\mathfrak{m}_{\ell,m}^{\kappa}[\gamma^B] = \langle e_\ell, \Lambda_\gamma e_m \rangle_{H^{1/2} \times H^{-1/2}}.$$

Theorem (CC, Macià, Meroño, Sánchez-Mendoza, 25')

For every $\gamma \in L^\infty(\mathbb{D})$, $\kappa \in (-\infty, \lambda_{0,1}^2)$, and $\ell, m \in \mathbb{Z}$ one has

$$\mathfrak{m}_{\ell,m}^\kappa[\gamma] = \sigma_\kappa(1) \int_{\mathbb{D}} \frac{\gamma(x)}{\sigma_\kappa(x)} \Phi(\kappa, \ell, m, |x|) dx,$$

where $\Phi(\kappa, \ell, m, |x|)$ is an explicit function that depends on the Bessel functions.

For $\kappa = 0$ we have the simpler formula

$$\mathfrak{m}_{\ell,m}^0[\gamma] = \int_{\mathbb{D}} \gamma(z) \frac{\ell m}{\pi} \bar{z}^{\ell-1} z^{m-1} m(dz).$$

Inversion algorithm

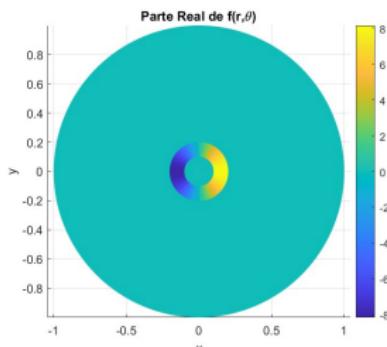
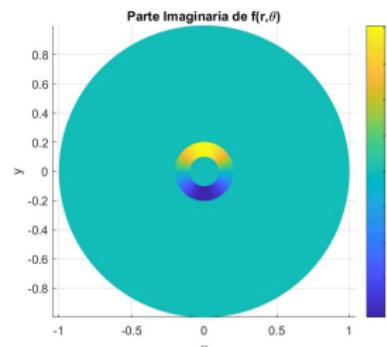
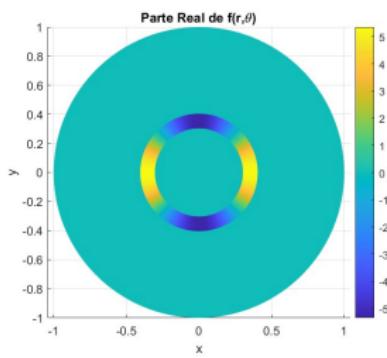
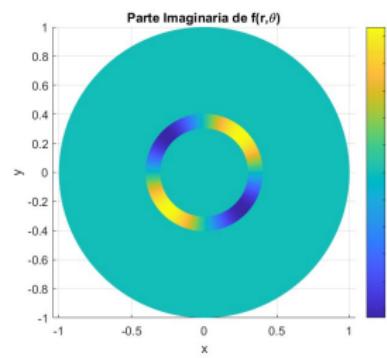
Find $\gamma^B \in L^\infty$ such that

$$\sigma_\kappa(1) \int_{\mathbb{D}} \frac{\gamma^B(x)}{\sigma_\kappa(x)} \Phi(\kappa, \ell, m, |x|) dx = \langle e_\ell, \Lambda_\gamma e_m \rangle_{H^{1/2} \times H^{-1/2}}.$$

Galerkin approximation: Introduce the finite dimensional space
 $V^{I,L} = \text{span} (f_{i,j}(r, \theta))_{i=1, j=-L}^{I,L}$ where

$$f_{i,j}(r, \theta) \frac{I}{\sqrt{i-1/2}} \chi_{(\frac{i-1}{I}, \frac{i}{I}]}(r) e_j(\theta), \quad i = 1, \dots, I, j = -L, \dots, L.$$

$$\sum_{i=1}^I \sum_{j=-L}^L x_{i,j} \mathfrak{m}_{\ell,m}^\kappa [f_{i,j}] = \langle e_\ell, \Lambda_\gamma e_m \rangle_{L^2(\mathbb{S}^1)}, \quad \ell, m = 1, \dots, L.$$



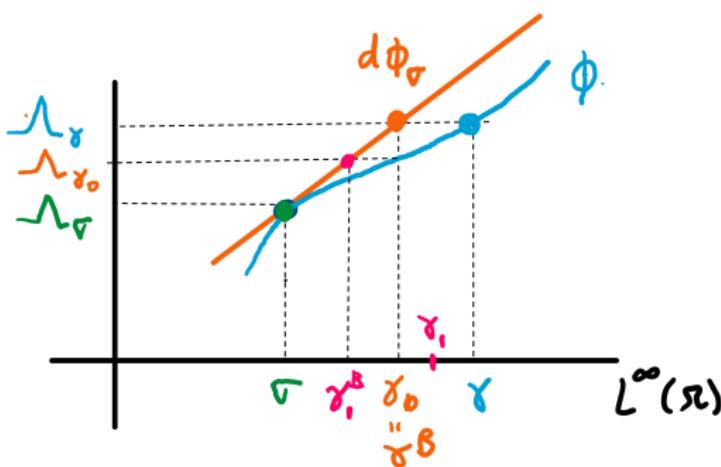
Iterative algorithm

$$\begin{cases} \gamma_0 = \gamma_1^B, \\ \gamma_n = \gamma_{n-1} + \gamma_1^B - (\gamma_{n-1})_1^B. \end{cases}$$

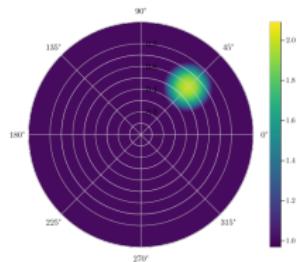
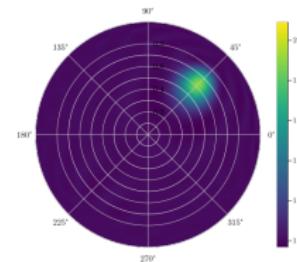
For each iteration $n - 1 \rightarrow n$:

$$\gamma_{n-1} \rightarrow \Lambda_{\gamma_{n-1}} \rightarrow \langle e_\ell, \Lambda_{\gamma_{n-1}} e_m \rangle_{L^2(\mathbb{S}^1)} \rightarrow (\gamma_{n-1})_1^B \rightarrow \gamma_n$$

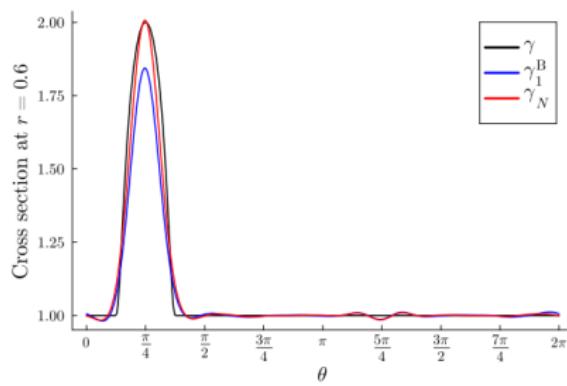
(The direct problem $\gamma_{n-1} \rightarrow \Lambda_{\gamma_{n-1}}$ is solved with a spectral method)



Background conductivity $\sigma = 1$



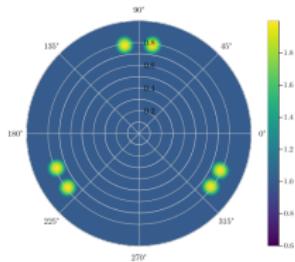
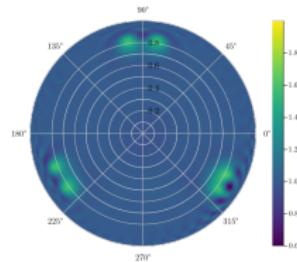
γ



$$\gamma_1^B = \gamma_0$$

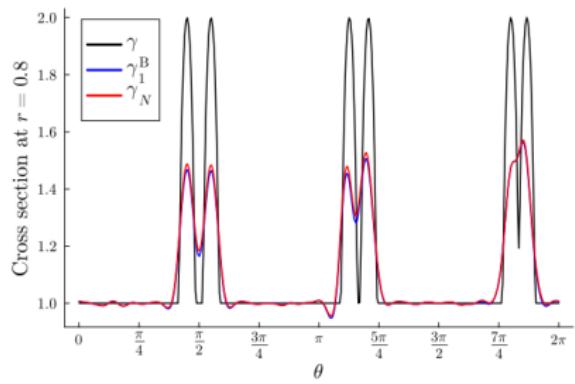
$n \setminus p$	1	2	∞
0	0.03895	0.06904	0.3338
1	0.03432	0.05210	0.2698
2	0.03670	0.05064	0.2510

Background conductivity $\sigma = 1$: precision

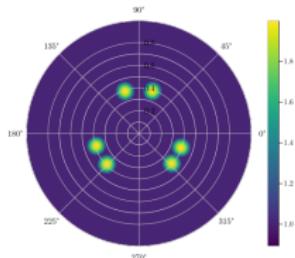
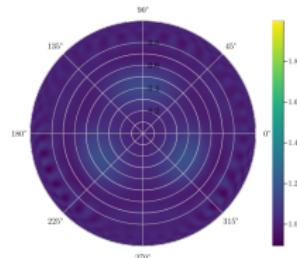


γ

$\gamma_1^B = \gamma_0$

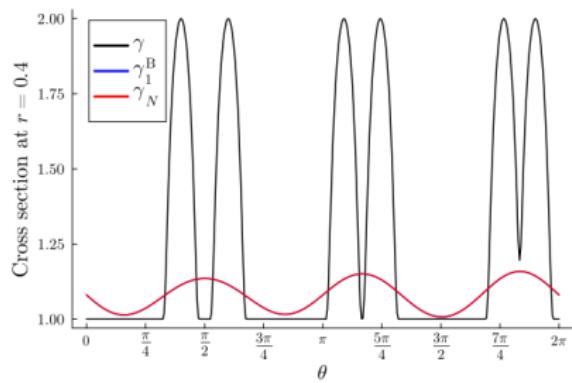


Background conductivity $\sigma = 1$: precision



γ

$\gamma_1^B = \gamma_0$



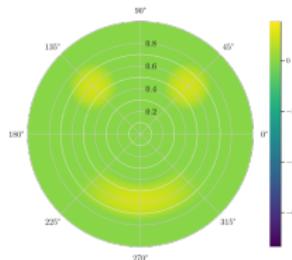
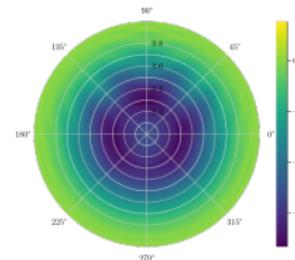
Convergence in terms of L ($I = 50$)

$L \setminus p$	1	2	∞
24	0.26730	0.24074	0.91152
29	0.19799	0.20441	0.89030
34	0.12702	0.15496	0.69693
39	0.10260	0.13376	0.67875
44	0.09744	0.13329	0.62283
49	0.08933	0.13038	0.61826

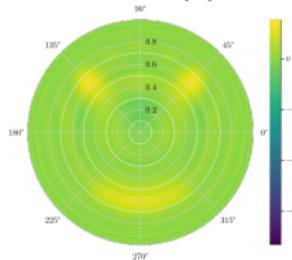
$\|\gamma - \gamma_1^B\|_{L^p(\mathbb{D})}$ for the conductivity using different values of L .

Background conductivity σ_k

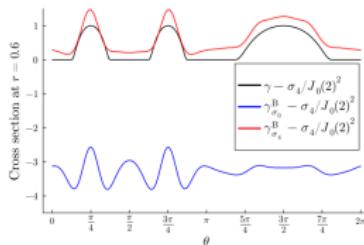
This experiment shows that whenever γ is a small perturbation of (a multiple of) σ_k , then $\gamma_{\sigma_k}^B$ is a much better approximation to γ than $\gamma_{\sigma_0}^B = \gamma_1^B$.



$$\gamma - \frac{\sigma_4}{J_0(2)^2}$$



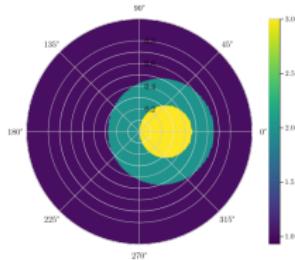
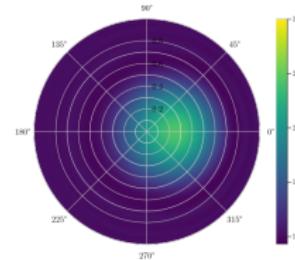
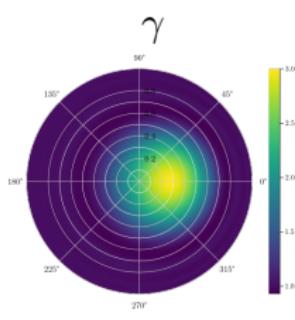
$$\gamma_{\sigma_0}^B - \frac{\sigma_4}{J_0(2)^2}$$



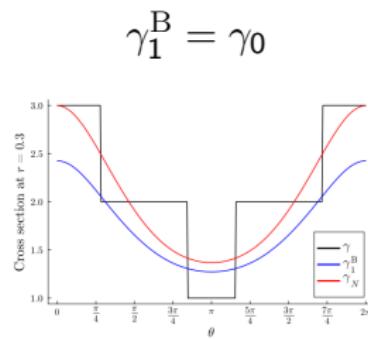
$$\gamma_{\sigma_4}^B - \frac{\sigma_4}{J_0(2)^2}$$

Angular cross section

Discontinuous conductivity

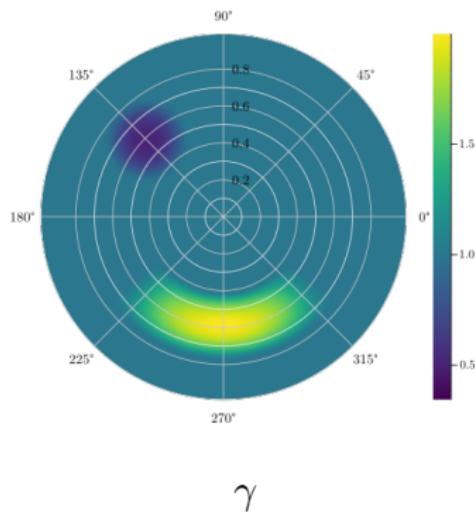
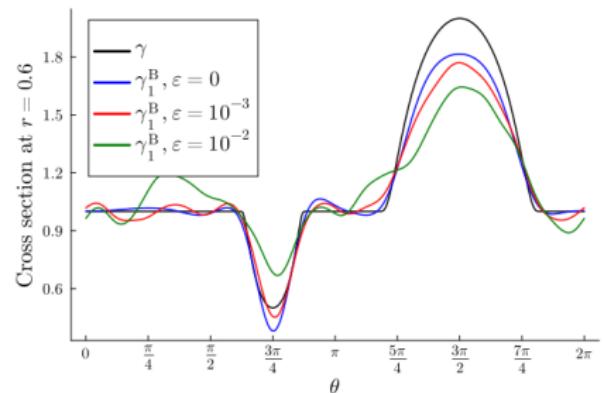


γ_N



Angular cross section

Noisy data



Angular cross section