Random Batch Method (RBM) for Converted-Dominated Power System Models Control, Inverse Problems and Machine Learning

Carlos Vázquez Monzón

January 16, 2024

ministerio de ciencia, innovación y universidades

Introduction

- Stability and control aspects of converter-dominated power systems for integrating renewable energies.
- ► Implementation of the Random Batch Method (RBM) to the converter-dominated power systems model.

LQ optimal control problem

We consider the classical (finite-dimensional) LQ optimal control problem in which we want to find the control $u^*(t)$ that minimizes

$$J(u) = \frac{1}{2} \int_0^T \left((x(t) - x_d(t))^T Q(x(t) - x_d(t)) + u(t)^T R u(t) \right)$$
(1)

subject to the dynamics

$$\dot{x}(t) = Ax(t) + Bu(t), \ x(0) = x_0,$$
 (2)

with x_d being the reference trajectory and Q and R the weighting matrices.

Random Batch Method (RBM) Implementation

- ► RBM involves a multi-step process for efficiently reducing the model order while retaining dynamic characteristics.
- Crucial for handling the complexity of converter-dominated power systems, particularly evident in its application to the electrical model.

Step 1. Decompose the matrix A into M submatrices A_m :

$$A = \sum_{m=1}^{M} A_m \tag{3}$$

It's preferable that each A_m is dissipative, i.e., $< x, A_m x > \le 0$ $\forall x, m \in 1, 2..., M$.

We will choose M = 3.

Random Batch Method

Batch: array of size that of the number of the discretization points

Batch randomly chosen: [1, 2, 1, 2, 2, 3, 1...]Matrix randomly chosen: $[A_1, A_2, A_1, A_2, A_2, A_3, A_1...]$

```
calculate states random(Ah, b, tgrid, T, ntrials, M, K, X0):
def matrix(t):
   i = np.argmin(np.abs(tgrid - t))
   m = batches[i]
   print(t)
   return Ah[m-1]
def system(t, x):
   A t = matrix(t)
   return np.dot(A t, x) + b
for j in range(0,1):
    for in range(0,ntrials):
        batches = generate batch(1, M, K)
        sol = solve ivp(fun=lambda t, x; system(t, x), t span=(0.T), v0=X0, method='Radau', t eval=tgrid)
        x.append(sol.y[j, :])
   plot solutions random(x,tgrid, j, ntrials)
```

Step 2. For each the 2^M subsets of $\{1,2,...,M\}$, which we call $\{S_1,S_2,...,S_{2^M}\}$, assign probabilities $p_1,p_2,...,p_{2^M}$ to be chosen, such as

$$\sum_{l=1}^{2^{M}} p_{l} = 1 \tag{4}$$

and

$$\pi_{m} = \sum_{I \in L_{m}} p_{I} > 0,$$

$$L_{m} = \{I \in \{1, 2, ..., 2^{M}\} / m \in S_{I}\},$$
(5)

for all $m \in \{1, 2, ..., M\}$.

Step 3. Divide the considered time interval [0,T] into K subintervals $[t_{k-1},t_k), k \in \{1,...,K\}$:

$$0 = t_0 < t_1 < \dots < t_{K-1} < t_K = T$$
 (6)

and choose an index ω_k according to the probability distribution of the assigned probabilities $p_1, p_2, ..., p_{2^M}$ in each subinterval independently. Store the selected indices as

$$\omega := (\omega_1, \omega_2, ..., \omega_K). \tag{7}$$

Step 4. For the selected ω , we define a matrix $A_h(\omega, t)$

$$A_h(\omega, t) = \sum_{m \in S_{\omega_k}} \frac{A_m}{\pi_m},\tag{8}$$

for $t \in [t_{k-1}, t_k)$. It can be easily proven that $E(A_h(\omega, t)) = A$.

Step 5. The matrix A is replaced by $A_h(\omega, t)$ in (1) and (2). Now we look to compute the solution $x_h(\omega, t)$ of the dynamics

$$\dot{x}_h(\omega, t) = A_h(\omega, t) x_h(\omega, t) + Bu(t), \ x_h(\omega, 0) = x_0 \tag{9}$$

for a given control u(t).

Example. 1D heat equation with no controls

$$\frac{\partial y(t,\xi)}{\partial t} = \frac{\partial^2 y(t,\xi)}{\partial x^2}, \ \xi \in [-L,L]$$
 (10)

$$\frac{\partial y(t, -L)}{\partial t} = \frac{\partial y(t, L)}{\partial t} = 0, \tag{11}$$

$$y(0,\xi) = \exp(-\xi^2) + \xi^2 \exp(-L^2).$$
 (12)

Crank Nicholson scheme for the heat equation

$$A = \frac{1}{\Delta \xi^2} \begin{bmatrix} -2 & 2 & 0 & \dots & 0 \\ 1 & -2 & 1 & \dots & 0 \\ 0 & 1 & -2 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 1 \\ 0 & 0 & \dots & 2 & -2 \end{bmatrix}$$

Previous decomposition by blocks

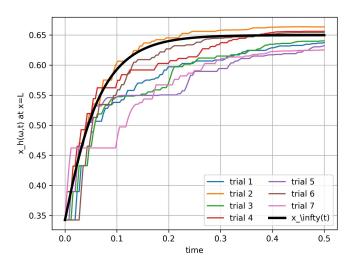


Figure: RBM for the 1D heat equation with no controls for 7 realizations

Electrical model

$$\begin{cases}
\frac{di_g}{dt} &= \omega_b \left(\frac{1}{L_g} (v_0 - R_g i_g - v_g) - j \omega_g i_g \right) \\
\frac{di_i}{dt} &= \omega_b \left(\frac{1}{L_f} (m V_{dc} - R_f i_i - v_0) - j \omega_g i_i \right) \\
\frac{dv_0}{dt} &= \omega_b \left(\frac{1}{C_f} (i_i - i_g) - j \omega_g v_0 \right) \\
\frac{d(M_f i_f)}{dt} &= \frac{1}{K} \left[Q_{ref} - Q + K_q (\hat{v}_{ref} - \hat{v}_0^c) \right] \\
\frac{d\omega_{sv}}{dt} &= \frac{1}{T_a} \left[\frac{P_m}{\omega_{sv}} - \frac{P_e}{\omega_{sv}} - K_D (\omega_{sv} - \omega_{ref}) \right] \\
\frac{d\delta\theta_{sv}}{dt} &= \omega_b (\omega_{sv} - \omega_g),
\end{cases} (13)$$

being $P_m=P_{ref}+K_\omega(\omega_{ref}-\omega_{sv}).$ v_0,i_g,v_g and i_i have two components: one in the d-axis (real part) and the other in the q-axis (imaginary part). We can therefore convert the complex ODE system into a real one, by introducing the variables v_0^q,v_0^d,i_g^d,i_g^q , etc.

Applying the RBM to the electrical model

States x: i_g^d , i_g^q , i_i^q , i_i^q , v_0^d , v_0^q , $M_f i_f$, ω_{sv} , $\delta\theta_{sv}$ (9) Controls u: V_g^d , V_g^q , P_{ref} , Q_{ref} , ω_{ref} , \hat{v}_{ref} (6). The controls are constant.

Linealized model

 $A = [\nabla_x f(x, u)]_{x=x_0}$, $B = [\nabla_u f(x, u)]_{x=x_0}$, being x_0 a steady-state point.

$$A = \begin{pmatrix} -15.45 & 57.17 & 0 & 0 & 2128.99 & 0 & 0 & 0 \\ -1726.44 & -15.45 & 0 & 0 & 0 & 2078.63 & 0 & 0 \\ 0 & 0 & -11.82 & 57.17 & -5322.49 & 0 & 5272.42 & -266.42 \\ 0 & 0 & -1726.44 & -11.82 & 0 & -5196.58 & 6100.30 & 6953.81 \\ -3881.86 & 0 & 3881.86 & 0 & 0 & 55.82 & 0 & 0 \\ 0 & -3975.91 & 0 & 3975.91 & -1768.27 & 0 & 0 & 0 \\ 0 & 0 & -0.06 & -0.00 & -0.06 & -0.00 & -41.77 & 6.55e - 19 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1308.99 & 0 \\ 0 & 0 & -0.00 & 0.00 & 0.00 & -0.00 & 0 & -3.16e - 20 \end{pmatrix}$$

Linealized model

Applying the RBM to the electrical model

Eigenvalues of the state matrix A: [-6.42 + 5692.42j, -6.42 - 5692.42j, -6.42 + 5064.10j, -6.42 - 5064.10j, -14.42 + 314.16j, -14.42 - 314.16j, -39.44, -23.64, -4.65e - 03]. All with negative real part.

$$A = Q \Lambda Q^{-1}, \ sp(A) = \{\lambda_1, \lambda_2, ..., \lambda_9\}.$$

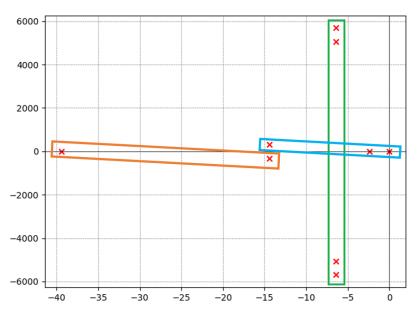
where Q is the matrix of eigenvectors and Λ is the diagonal matrix of eigenvalues. The spectral decomposition is then formulated as:

$$\Lambda = \Lambda_{s_1} + \Lambda_{s_2} + \Lambda_{s_3},$$

$$\begin{split} &\Lambda_{s_1} = \textit{diag}\big(\lambda_5, \lambda_8, \lambda_9, 0, 0, ..., 0\big), \\ &\Lambda_{s_2} = \textit{diag}\big(0, 0, 0, \lambda_6, \lambda_7, 0, 0, ..., 0\big), \\ &\Lambda_{s_3} = \textit{diag}\big(0, 0, ..., 0, \lambda_1, \lambda_2, \lambda_3, \lambda_4\big) \end{split}$$

In each subspace s_k , we combine eigenvalues with low and high absolute value.

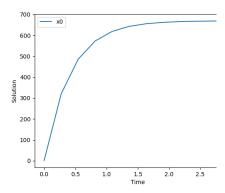
Plot of the eigenvalues

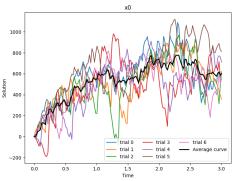


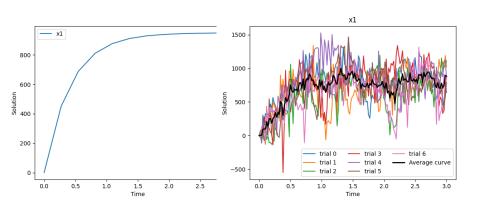
- s_1 : Subspace generated by the eigenvectors associated to $\{\lambda_6,\lambda_7\}$.
- s_2 : Subspace generated by the eigenvectors associated to $\{\lambda_5,\lambda_8,\lambda_9\}$.
- s_3 : Subspace generated by the eigenvectors associated to $\{\lambda_1, \lambda_2, \lambda_3, \lambda_4\}$.

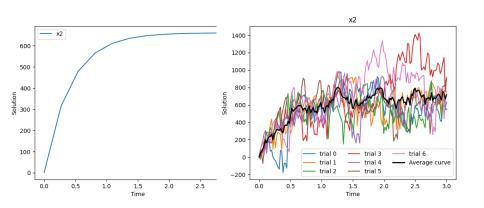
$$A = A_{s_1} + A_{s_2} + A_{s_3},$$
 $A_{s_1} = Q\Lambda_{s_1}Q^{-1},$
 $A_{s_2} = Q\Lambda_{s_2}Q^{-1},$
 $A_{s_3} = Q\Lambda_{s_3}Q^{-1}.$

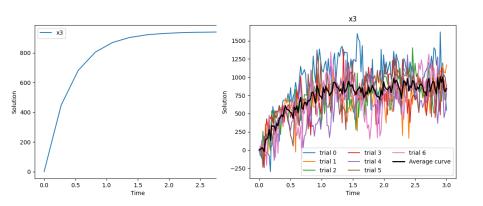
√With Radau we obtain very similar solutions to the ode15s method in Matlab Initial condition: steady-state point

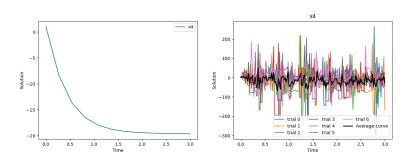




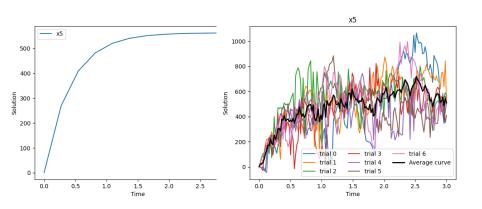


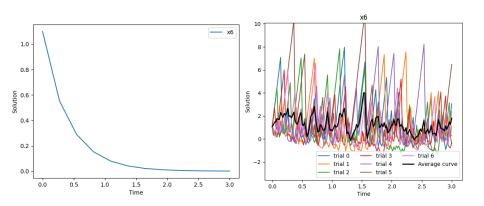




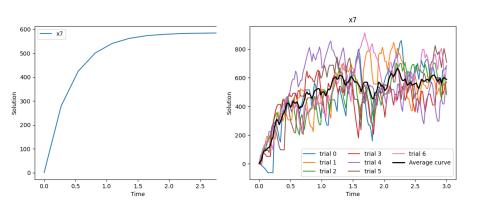


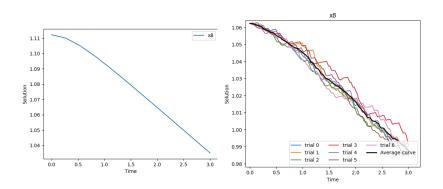
Not resembling the original solution curve



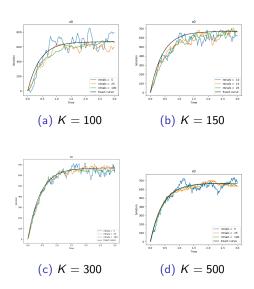


Not resembling the original solution curve





Convergence of the RBM with respect to ntrials and K



MPC Procedure

- ▶ We denote $\tau_i := \tau i$, $i \ge 0$, in the following.
- Starting at i = 0, we predict over [0, T], and obtain an optimal control $\boldsymbol{u}_{T}^{*}(t)$, which minimizes

$$J_{T,\tau_0}(\boldsymbol{u}_T) = \int_0^T \left(\boldsymbol{x}_T(t)^T Q \boldsymbol{x}_T(t) + \boldsymbol{u}_T(t)^T R \boldsymbol{u}_T(t) \right) dt,$$

where $x_T(t)$ fulfills

$$\dot{\mathbf{x}}_T(t) = A\mathbf{x}_T(t) + B\mathbf{u}_T(t), \quad \mathbf{x}_T(0) = \mathbf{x}_0. \tag{8}$$

We now apply \boldsymbol{u}_T^* to the true dynamics and obtain, like this, the state \boldsymbol{x}_T^*

$$\dot{\mathbf{x}}_{T}^{*}(t) = A\mathbf{x}_{T}^{*}(t) + B\mathbf{u}_{T}^{*}(t), \quad \mathbf{x}_{T}^{*}(0) = \mathbf{x}_{0},$$
 (9)

which we set to the MPC trajectory x_M^* on $t \in [0, \tau_1]$.

This procedure is repeated: Starting from the state $\mathbf{x}_{M}^{*}(\tau_{1})$, we predict the randomized control \mathbf{u}_{T}^{*} over $[\tau_{1}, \tau_{1} + T]$ and apply it to the system over $[\tau_{1}, \tau_{1} + T]$, which yields \mathbf{x}_{T}^{*} on $[\tau_{1}, \tau_{2}]$.

MPC Procedure Summary

- 1. Initialize the state: $\mathbf{x}_{M}^{*}(0) = \mathbf{x}_{0}, i = 0.$
- 2. While $\tau_i + T \leq T_{\text{max}}$:
 - a) Compute $\boldsymbol{u}_{T}^{*}(t,\boldsymbol{x}_{M}^{\tau_{i}})$ on $[\tau_{i},\tau_{i}+T]$.
 - b) Determine $x_T^*(t, x_M^{\tau_i})$ on $[\tau_i, \tau_{i+1}]$ by solving

$$\dot{x}_{T}^{*}(t, x_{M}^{*}(\tau_{i})) = Ax_{T}^{*}(t, x_{M}^{*}(\tau_{i})) + Bu_{T}^{*}(t, x_{M}^{*}(\tau_{i})).$$

- c) Set $x_M^*(t) = x_T^*(t, x_M^*(\tau_i))$ on $[\tau_i, \tau_{i+1}]$.
- **d)** i = i + 1.

Example. 1D heat equation with controls

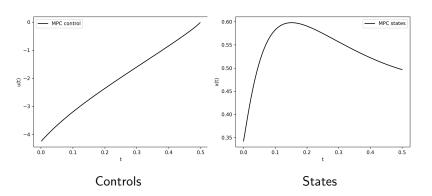
$$\frac{\partial y(t,\xi)}{\partial t} = \frac{\partial^2 y(t,\xi)}{\partial x^2} + \chi_{[-L/3,0]}(\xi)u(t), \ \xi \in [-L,L]$$
 (14)

$$\frac{\partial y(t, -L)}{\partial t} = \frac{\partial y(t, L)}{\partial t} = 0, \tag{15}$$

$$y(0,\xi) = \exp(-\xi^2) + \xi^2 \exp(-L^2).$$
 (16)

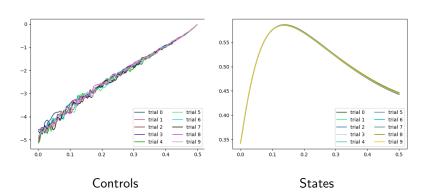
Plot for the MPC for the 1D heat equation with controls

$$T = 0.5, \tau = 0.05$$



Plot for RBM + MPC for the 1D heat equation with controls

$$T = 0.5, \tau = 0.05, 9$$
 realizations



Future work

- Simulation of the linealized system of the electrical model for more initial conditions.
- Physical interpretation of the constant controls used in the problem.
- Compare the state solutions of the linealized problem with the nonlinear one.
- Introduce non-constant controls, to apply the Model Predictive Control (MPC) to Converted-Dominated Power System.
- ► Follow the same methodology for more complex power systems, for example more controllers and more converters.

References

- Y. Gu, N. Bottrell & T. C. Green, Reduced-order models for representing converters in power system studies, IEEE Trans. Power Electron., 33.4 (2018), pp. 3644-54.
- ▶ U. Biccari, N. Sakamoto, E. Unamuno, D. Madariaga, E. Zuazua & J.A. Barrena, Model reduction of converter-dominated power systems by Singular Perturbation Theory, preprint (2019).
- ▶ Veldman, D. W., & Zuazua, E. (2022). A framework for randomized time-splitting in linear-quadratic optimal control. Numerische Mathematik, 151(2), 495-549.
- ▶ Ko, D., & Zuazua, E. (2021). Model predictive control with random batch methods for a guiding problem. Mathematical Models and Methods in Applied Sciences, 31(08), 1569-1592.