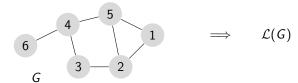
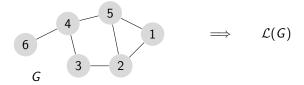
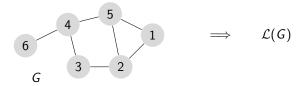


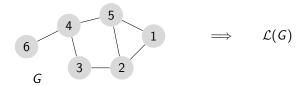
DISCRETE AND CONTINUOUS MODELS FOR CONNECTIVITY CONSTRAINTS IN TOPOLOGY OPTIMIZATION


Alberto Donoso Ernesto Aranda David Ruiz

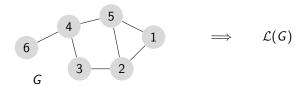

Departamento de Matemáticas (UCLM)

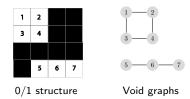
Red COPI2A (Sevilla, 17 de enero, 2024)

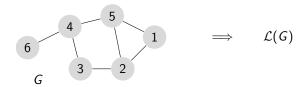

TOPOLOGY OPTIMIZATION



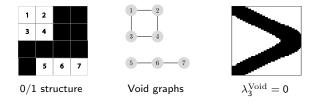
• The algebraic connectivity is the second-smallest eigenvalue λ_2 of \mathcal{L} : a measure of how well connected the overall graph G is.

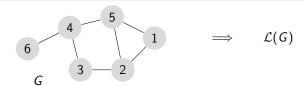

- The **algebraic connectivity** is the second-smallest eigenvalue λ_2 of \mathcal{L} : a measure of how well connected the overall graph G is.
- The multiplicity of the null eigenvalue coincides with the number of connected components in G (i.e., λ₂ > 0 ← G is connected).

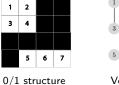

- The **algebraic connectivity** is the second-smallest eigenvalue λ_2 of \mathcal{L} : a measure of how well connected the overall graph G is.
- The multiplicity of the null eigenvalue coincides with the number of connected components in G (i.e., λ₂ > 0 ← G is connected).



0/1 structure




- The **algebraic connectivity** is the second-smallest eigenvalue λ_2 of \mathcal{L} : a measure of how well connected the overall graph G is.
- The multiplicity of the null eigenvalue coincides with the number of connected components in G (i.e., λ₂ > 0 ← G is connected).



- The algebraic connectivity is the second-smallest eigenvalue λ_2 of \mathcal{L} : a measure of how well connected the overall graph G is.
- The multiplicity of the null eigenvalue coincides with the number of connected components in G (i.e., λ₂ > 0 ← G is connected).

- The **algebraic connectivity** is the second-smallest eigenvalue λ_2 of \mathcal{L} : a measure of how well connected the overall graph G is.
- The multiplicity of the null eigenvalue coincides with the number of connected components in G (i.e., λ₂ > 0 ← G is connected).

 $\lambda_3^{\mathrm{Void}} = 0$

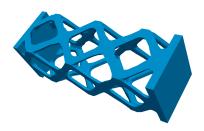
 $\lambda_2^{
m Void} > 0$

STRUCTURAL DESIGN

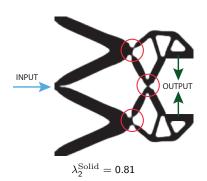
$$\lambda_8^{\rm Void}=0$$

 $\lambda_2^{\rm Void}>0$

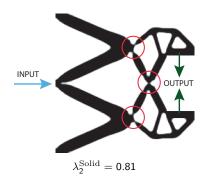
STRUCTURAL DESIGN

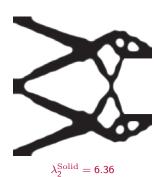

 $\lambda_8^{\rm Void}=0$

$$\lambda_2^{\rm Void}=0$$



 $\lambda_2^{\rm Void}>0$




 $\lambda_2^{
m Void}>0$

COMPLIANT MECHANISMS

COMPLIANT MECHANISMS

