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m y = y(t) € D(A) is the state variable,
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Given a time T > 0 and a target state y' € X, the exact controllability

problem for system (1) amounts to finding a control u € Y such that its
associated state y = y(u) satisfies

(T =y". (2)

Goal: Learn, from a dataset, the controllability map associated with (1)-(2)

G: X—=Y, yov—>g(y°)::u.
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f: K — Y, a continuous single-valued map with f(x) € F(x) for every x € K.
Then f can be extended to a continuous selection defined on the whole space
X. In particular, if K C X is finite, and f : K — X is an arbitrary map with
f(x) € F(x) for every x € K, then there is a continuous selection defined
on the whole space X “interpolating” f.

Idea of the proof. We rely on the celebrated Michael's theorem

Theorem

Let F be a lower semicontinuous set-valued map with closed, convex values
from a compact metric space X to a Banach space Y. It does have a
continuous selection.

This is Th. 9.1.2 in
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Idea of the proof (cont.). Consider the non-trivial closed, subspace
S=g(0), Scl?0,T),

By linearity,
g(yo) = uO +S for any UO € g(yo)

Hence, the values of G are closed and convex.
Let 7 : L2(0, T) — S be the orthogonal projection onto the orthogonal
complement of S. Then,

moG: L[%(0,1) — L*(0, T) (3)
turns out to be single-valued and linear. In fact, since
m(y) = argmin {||z|| : z € y + S},
the composition in (3) yields the control of minimal norm. Hence,
llull2,7) < Cliyolli20,1)s

which is equivalent to the continuity of such a projection 7.
The continuity of G is then a consequence of the identity

Gy)=moG(y) +S.
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We fix a set of sensor points {x1,x2, -+, xm} C [0,1]. The information of
each selected continuous initial datum y° is encoded in the vector

(yO(Xl)7 }/0()(2)7 . 7_)/0(Xm)) = yinitial
We also take t; € [0, T]. The corresponding labels are

{Ug ( initial | t2)7 1 S gS N},

|n|t|a|

the control at time t; corresponding to the initial datum y;

m Hypothesis space: the neural network
We will use the so-called DeepONet, which takes the form

N(8; (ymmal (x); t ZZC g (Z §k |n|t|a| k) co(wi - t+ i)

k=1 i=1

where 8 = (c,-k,gfj, 0%, wi, k) is the set of parameters of the net, and o,
the activation function.
m Loss function (MSE)

|OSS Z . |n|t|a| b )) . u€‘2
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Deep Operator Network (DeepONet) as the prediction model

Branch net:
|n|t|al ZC o <Z §k |n|t|a| J)+01k> , 1 S k S p
Trunk net:
Tk(t)ZO'(Wk't—FT]k), OSkSP
so that

N(B, (yinitial( _); = 70 t) + Zﬂ |n|t|a|

Schematically,
G

X——Y

Encoding Sé R Reconstruction N
U fux)y By - o) + By, Ar)Ti(y)

M ~~~~mmmp RP
R A R

Approximation
ey = (Bl
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Theorem (UAT for functions (A. Pinkus) )

Suppose that K € R? is compact, U C C(K) is compact, and

o(s) = max{s, 0} is the ReLU activation funcion. Then, for any € > Q there
exist a positive integer n, real numbers 0;, w; € R", independent of f € U, and
constants ¢; = ci(f) depending on f, such that
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holds for all x € K and f € U. Moreover, each ci(f) is a continuous linear
functional defined on U.
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Universal Approximation of functions, funcionals and operators
Theorem (UAT for functions (A. Pinkus) )

Suppose that K € R? is compact, U C C(K) is compact, and

o(s) = max{s,0} is the RelLU activation funcion. Then, for any € > 0 there
exist a positive integer n, real numbers 6;, w; € R", independent of f € U, and
constants ¢; = ci(f) depending on f, such that

1f(x) = D ciowi - x+6;)| < e
i=1

holds for all x € K and f € U. Moreover, each ci(f) is a continuous linear
functional defined on U.

Theorem (UAT for functionals (Chen & Chen) )

Suppose that o € TW, X is a Banach space, K C X is a compact set, V is a
compact set in C(K), and f : V — R is a continuous functional. Then for any
€ > 0, there are a positive integer n, m sensor points xi, X2, -+ ,xm € K, and
real constants ¢;,0;,&;, 1 < i< n,1<j<m, such that

|f(u) — Z cio (Z &iju(x;) + 9;) | <e, forallueV.
i=1

Jj=1
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Mishra, Karniadakis, 2022) )

Let y1 € P(C(D)) be a probability measure on C(D) and let G : C(D) — L*(U)
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Theorem (UAT for Borel set-valued measurable mappings )

Let G : X — Y be a lower semicontinuous set-valued map with closed, convex
values. Then, for every € > 0, there exists a DeepONet N such that
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([ int la =N ) <

In practice, one would determine a DeepONet N such that A/(y;) is a good
approximation to a suitable selection G(y;) of G(yi) in the sense

|nf Hu “NHIP < IG)-N)|? <e, for a finite, selected set {y;} C X.
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For a given € > 0, let V. be a DeepONet providing error < ¢, and

size(N:) ~ O (Ffﬂe) for some Y. > 0.

Our DeepONet approximation is said to incurr a curse of dimensionality if
lime_,0 ¥e = +00 and breaks the curse of dimensionality if
lime_o¥e = < +00.

1Size of a neural network is understood as the number of non-vanishing parameters of the net.
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Definition (Curse of dimensionality)

For a given € > 0, let V. be a DeepONet providing error < ¢, and

size(N:) ~ O (Ffﬂe) for some Y. > 0.

Our DeepONet approximation is said to incurr a curse of dimensionality if
lime_,0 ¥e = +00 and breaks the curse of dimensionality if
lime_o¥e = < +00.

Yarotsky (2018) proved that the approximation of a general Lipschitz function
to accuracy € requires a ReLU network of size! ¢ =™()/2 with m(e) — oo as

e — 0, and hence suffers from the curse of dimensionality. m is the number of
sensors for the enconding y — £(y) = (y(x1), -+, y(xm)) -

However, if G is single-valued and linear, the curse of dimensionality can
be broken. This is clearly so for the control of minimal L2-norm in the case of
the wave equation; but it is much more involved for the heat equation.

1Size of a neural network is understood as the number of non-vanishing parameters of the net.
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Estimates for approximation and estimation errors

@ S. Lanthaler, S. Mishra, G. E. Karniadakis, Error estimates for
DeepONets: a deep learning framework in infinite dimensions, Trans.
Math. Appl. 6 (1) (2022) 1-144.

Approximation error

1/2
Et= ( Loy L1900 =N () dtdu(y)> .

The DeepONet N : C(D) — C(U) is decomposed into:
m An encoder

S:C(D)%Rmv yH(y(X1)7"'>y(Xm))7 )QED

m An approximation operator
A R" SR y=(n, - ,ym) = (Bi(y), 0 (¥)).

m An affine reconstruction operator

RiR® = C(U), (Br,-++ . Bp) = Fo(t) + Y Bfu(t).
k=1
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o Joo( )
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m Encoding error

toim ([ IPoc0) - Ik du(}/))m

m Approximation error due to the neural network

1/2
Eai= ([ 1M0) - PoGo DOl dEm )

where
u=E&(y), Ex(n)(B)=u (E_I(B)) is the push-forward measure

m Reconstruction error

1/2
Er = </L?(U) [RoP(y)— }’HiZ(U) d (Gyp) (Y)>
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Our setup : (wave equation)

€ P2 (C(D)) is a probability measure with mean 0, and with uniformly
bounded eigenfunctions of the covariance operator I,

Me=> \Ne®e
Jj=1

The sensors xi, - - -, xm ~ Unif(D) for the encoder are drawn iid random.
The decoder is linear.

For the reconstruction operator, 7o = 0 and 7 are the first p
eigenfunctions of the covariance operator 'g,,. The projector is

P(u) = (< u, 71 >, , < u, 7 >), u€L?(U).



Breaking the curse of dimensionality

Theorem (Bound for approximation error)

Under the above conditions, let T be the trunk net approximation of ¥ such
that the associated reconstruction R and projection P operators satisfy
Lip(R), Lip(R o P) < 2. Then, with probability 1 in the choice of the sensor
points, there exists C = C(|D|, i) > 0 such that for any m, p € N there exists
a shallow RelLU approximator net A : R™ — RP, with size (A) < 2(2 + m)p,
depth (A) < 1 such that the DeepONet N satisfies

é\approx <+V1+ Hg”2 X Tax ||7A—k - Tk||L2(U) + \/5 +
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Under the above conditions, let T be the trunk net approximation of ¥ such
that the associated reconstruction R and projection P operators satisfy
Lip(R), Lip(R o P) < 2. Then, with probability 1 in the choice of the sensor
points, there exists C = C(|D|, i) > 0 such that for any m, p € N there exists
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depth (A) < 1 such that the DeepONet N satisfies
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=1, ,p :
J>p

>

; m
I>€ log(m)
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Idea of the proof. Crucially, since G is linear, and the decoder and projector
are affine, there exists and exact affine approximator A = P o G o D, which can
be represented by a shallow ReLU of the claimed size since

Ax + b= o(Ax + b) — o(—(Ax + b)).
Thus, £4 = 0.The estimate
G4u
DN UGN
i>p j>p

must be used as well.
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In practice, u is chosen as the law of a Gaussian field

a(x,w) = Z akée(w)en(x), x e T’ :=[0,27]",
kezd

where |ay| < exp(—£¢|k

), £ > 0.Then, for any € > 0 and o > 0, and taking
m ~ log(¢ 1)) and p ~ log(c )¢

an overall approximation error &pprox < € may be achieved with a DeepONet A
whose branch 8 and trunk 7 nets satisfy

size(8) < log(e™1)*7*,  depth(8) <1

and
size(7) < log(e 1), depth(7) < log(e™1)*™.

This means that the proposed DeepONet-based approximation scheme for
the controllability map breaks the curse of dimensionality with respect to p
and the number of sensor points m in the sense that the complexity of the
DeepONet does not grow exponentially with these two parameters.
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Consider the loss function
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and the empirical loss
Lu(N) = L,L\/,‘Z\g(w)(tj) Ny ()P (5)

where (yj, tj) ~ p ® Unif(U).
Let A be an optimizer of (4) and let Ny be an optimizer of (5).

Estimation (Generalization) error

o = 1 £ (NN) -L (N)
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1) Boundedness assumption: there exists ¢ : L>(D) — [0, 4+-o0[ such that

IG()(1)] < B(y), sup INo(y)()] < %(y), Vy e L*(D),Vt € U,

6c[—-B,B]%

and there exists C,x > 0 such that ¢(y) < C (1 + |lylli2(py)" -

2) Lipschitz continuity assumption: there exists ® : L?(D) — [0, 400 such
that

(No(y)(t) = Nor(y)(t)] < @(y)II6 = O'l[e=, ¥y € L*(D),Vt € U,
and there exists C,x > 0 such that ®(y) < C (1 + [|ylli2(p))" -

Theorem (Bound for generalization error ( Lanthaler-Mishra-Karniadakis))

Let N be an optimizer of (4) and let N be an optimizer of (5). If the above
two assumptions hold, then there exists C = C(u,,®), independent of B and
do, such that

B (2 (4h) £ (A)] < = (1+ caniog (cavA)) ™ (9)

|G(¥)(t)] < 9(y) is like a uniform observability inequality .



Numerical experiments

Data generation. Initial conditions are computed by sampling a Gaussian
ramdon field with the kernel

2
Clx,x') = exp (—u) X €(01),

where £ is the correlation length. Thus, the associated input measure  is

e}

a(x,w) = > VAe(x)&(w),

i=1
where &; are iid standard Gaussian variables, and {\;, ej(x)}2; are the
eigenvalues and normalized eigenfuncions of the operator C : L?(0,1) — L3(0,1)

C(B)(x) = / Clx)o(x') d.
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Numerical experiments

Data generation. Initial conditions are computed by sampling a Gaussian
ramdon field with the kernel

2
Clx,x') = exp (—u) X €(01),

where £ is the correlation length. Thus, the associated input measure  is
a(x,w) =Y VAei(x)&(w),
i=1
where &; are iid standard Gaussian variables, and {\;, ej(x)}2; are the
eigenvalues and normalized eigenfuncions of the operator C : L?(0,1) — L3(0,1)

C(B)(x) = / Clx)o(x') d.

DeepONet size. We use the ReLU activation function, trunk depth/width =
2/40 and branch depth/width = 2/40.

Training process. Adam optimizer with learning rate 0.01. Initialization of
the parameters is carried out with Glorot uniform.

Implementation. DeepONet: learning operators [Lu, Li, Pang, Zhang,
Karniadakis: Nat. Mach. Intell., 2021]
https://github.com/lululxvi/deepxde
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Numerical experiments: the wave equation

An academic example with an explicit solution

Vit — Y = 0, in (0,1) x (0,2)
Y(X’O) :yO(X)’ on (Ov 1)
ye(x,0) = y*(x) on (0,1)
y(0,t) =0, on (0,2)
y(1,t) = u(t) on (0,2)

y(x,2) = y:(x,2) =0, on (0,1).
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Numerical experiments: the wave equation

An academic example with an explicit solution

Vit — Y = 0, in (0,1) x (0,2)
Y(X’O) :yO(X)’ on (Ov 1)
yi(x,0) = y'(x) on (0,1)
y(0,t) =0, on (0,2)
y(1,t) = u(t) on (0,2)

y(Xa2):yt(X72):07 on (07 1)
The operator to be approximated is

G: [*0,1) x H7Y(0,1) — L%(0,2)
°yh =G0y i=u
where
-+ [l yi(s)ds, 0<t<1
u(t) =

Lt -1+ 1[0 yi(s)ds, 1<t<2

is the unique control of minimal L2-norm.



Numerical experiments: the wave equation

—— Train loss —— Train loss
100 Test loss 10° | Test loss
|
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Figure: Loss history for correlation lengths of 0.25 for position and 0.125 for velocity.
Number of sensor points = 51. Sample functions: (Left) 100 and (right) 10000.



Numerical experiments: the wave equation

—— Exact control 1.00 —— Exact control
—— Predicted control —— Predicted control

0.00 025 050 075 100 125 150 175 2.00 000 025 050 075 1.00 125 150 175 2.00
t t

Figure: Exact versus predicted solutions. ngnctions = 104 (Left) Smooth initial data:
yO = yl = Sin(ﬂx)v (Kpomé\/e/) = (0'2570'125)r Nsensors=100. Relative error =~ 1%.
. . 4x, 0<x<05
- .0 — ) > >
(Right) Non-smooth initial data: y°(x) = { 0, 05<x<1

(€pos, Lver) = (0.0625,0.03125), nsensors=10. Relative error =~ 4%.



Numerical experiments: the heat equation

Ye — Y =0, 0<x<1,0<t< T
y(x,0)=y"(x), 0<x<1 )
y(0,t) =0, 0<t<T

y(Lit)=u(t), 0<t<T
y(x,T)=0,0<x<1.



Numerical experiments: the heat equation

Ye — _)/xx*() 0<x<1,0<t< T
y(x,0)=y"(x), 0<x<1
(Ot)—O 0<t<T
(lt)—u(t) 0<t<T

—— Reference control
—— Predicted control

0.0 01 02 0.3 0.4 0.5

Figure: Heat equation. PINN (reference control) versus DeepONet (predicted)
controls for the initial condition y°(x) = sin(7x). Ngnctions = 275, £o = 0.25,
Nsensors = 101, p = 100.

(7)



