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Problem setup

Consider the control system{
y ′(t) = Ay(t) + Bu(t), t > 0
y(0) = y 0 ∈ X ,

(1)

where

A : D(A) ⊂ X → X is a linear operator,

y = y(t) ∈ D(A) is the state variable,

u = u(t) ∈ Y is the control variable, and

B is an admissible control operator

Given a time T > 0 and a target state yT ∈ X , the exact controllability
problem for system (1) amounts to finding a control u ∈ Y such that its
associated state y = y(u) satisfies

y(T ) = yT . (2)

Goal: Learn, from a dataset, the controllability map associated with (1)-(2)

G : X → Y , y 0 7→ G(y 0) := u.
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Problem setup

First difficulty: In general, G is a set-valued map, meaning that problem
(1)-(2) may have many solutions.

Important question: Is there a selection (single-valued map) G of G such that
G(y 0

j ) = uj(t; y
0
j )? In such a case, how smooth is this selection?

Answer: YES, there is a Lipschitz continuous selection, and moreover:

Corollary

Under the same hypotheses as in the theorem below, let K ⊂ X, and
f : K → Y , a continuous single-valued map with f (x) ∈ F (x) for every x ∈ K.
Then f can be extended to a continuous selection defined on the whole space
X . In particular, if K ⊂ X is finite, and f : K → X is an arbitrary map with
f (x) ∈ F (x) for every x ∈ K , then there is a continuous selection defined
on the whole space X “interpolating” f .

Idea of the proof. We rely on the celebrated Michael’s theorem

Theorem

Let F be a lower semicontinuous set-valued map with closed, convex values
from a compact metric space X to a Banach space Y . It does have a
continuous selection.

This is Th. 9.1.2 in

J.-P. Aubin, H. Frankowska, Set-valued analysis, Vol. 2 of Systems &
Control: Foundations & Applications, Birkhäuser Boston, 1990
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Single and set-valued maps

Idea of the proof (cont.). Consider the non-trivial closed, subspace

S ≡ G(0), S ⊂ L2(0,T ),

By linearity,
G(y 0) = u0 + S for any u0 ∈ G(y 0).

Hence, the values of G are closed and convex.
Let π : L2(0,T ) 7→ S⊥ be the orthogonal projection onto the orthogonal
complement of S. Then,

π ◦ G : L2(0, 1) 7→ L2(0,T ) (3)

turns out to be single-valued and linear. In fact, since

π(y) = argminz{∥z∥ : z ∈ y + S},

the composition in (3) yields the control of minimal norm. Hence,

∥u∥L2(0,T ) ≤ C∥y0∥L2(0,1),

which is equivalent to the continuity of such a projection π.
The continuity of G is then a consequence of the identity

G(y) = π ◦ G(y) + S.
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Numerical approximation of G: Machine Learning setup

Dataset
We fix a set of sensor points {x1, x2, · · · , xm} ⊂ [0, 1]. The information of
each selected continuous initial datum y 0 is encoded in the vector

(y 0(x1), y
0(x2), · · · , y 0(xm)) ≡ y initial

We also take tℓ ∈ [0,T ]. The corresponding labels are

{uℓ = u(y initial
ℓ ; tℓ), 1 ≤ ℓ ≤ N},

the control at time tℓ corresponding to the initial datum y initial
ℓ .

Hypothesis space: the neural network
We will use the so-called DeepONet, which takes the form

N (θ; (y initial(xj); t)) :=

p∑
k=1

n∑
i=1

cki σ

(
m∑
j=1

ξkijy
initial(xj) + θki

)
· σ(wk · t + ηk)

where θ = (cki , ξ
k
ij , θ

k
i ,wk , ηk) is the set of parameters of the net, and σ,

the activation function.

Loss function (MSE)

loss(θ) =
1

N

N∑
ℓ=1

|N (θ; (y initial
ℓ ; tℓ))− uℓ|2
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Numerical approximation of G: Machine Learning setup

Deep Operator Network (DeepONet) as the prediction model

Branch net:

βk(y
initial) =

n∑
i=1

cki σ

(
m∑
j=1

ξkijy
initial(xj) + θki

)
, 1 ≤ k ≤ p

Trunk net:
τk(t) = σ(wk · t + ηk), 0 ≤ k ≤ p

so that

N (θ; (y initial(xj); t)) := τ0(t) +

p∑
k=1

βk(y
initial)τk(t).

Schematically,

ERROR ESTIMATES FOR DEEPONETS 3

Fig. 1. Schematic illustration of the decomposition of a DeepONet into the encoder E , approximator A and reconstructor R.

recent approach based on principal component analysis and Li et al. (2021) and the references therein
on Fourier neural operators. A different approach was proposed by Chen & Chen (1995), where they
presented a neural network architecture, termed as operator nets, to approximate a non-linear operator
G : K → K′, where K, K′ are compact subsets of infinite-dimensional Banach spaces, K ⊂ C(D),
K′ ⊂ C(U) with D, U compact domains in Rd, Rn, respectively. Then, an operator net can be formulated
in terms of two shallow, i.e., one hidden layer, neural networks. The first is the so-called branch net
β(u) = (β1(u), . . . ,βp(u)), defined for 1 � k � p as

βk(u) =
�∑

i=1

ci
kσ

⎛
⎝

m∑

j=1

ξ
j
kiu(xj)+ θ i

k

⎞
⎠ . (1.1)

Here, {xj}1�j�m ⊂ D are the so-called sensors and ci
k, ξ j

ki are weights and θ i
k are biases of the neural

network.
The second neural network is the so-called trunk net τ (y) = (τ1(y), . . . , τp(y)), defined as

τk(y) = σ(wk · y + ζk), 1 � k � p, (1.2)

for any y ∈ U and with weights wk and biases ζk. Here, σ is a non-linear activation function in the
branch net (1.1) and (a possibly different one) in the trunk net (1.2). The branch and trunk nets are then
combined to approximate the underlying non-linear operator in the operator net

G (u)(y) ≈
p∑

k=1

βk(u)τk(y), u ∈ K, y ∈ U. (1.3)

More recently, Lu et al. (2019) replace the shallow branch and trunk nets in the operator net (1.3) with
deep neural networks to propose deep operator nets (DeepONets in short), which are expected to be
more expressive than shallow operator nets and have already been successfully applied to a variety of
problems with differential equations. These include learning linear and non-linear dynamical systems
and reaction-diffusion PDEs with source terms (Lu et al., 2019), learning the PDEs governing electro-
convection (Mao et al., 2021), Navier–Stokes equations in hypersonics with chemistry (Cai et al., 2021)

D
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 https://academ

ic.oup.com
/im

atrm
/article/6/1/tnac001/6542709 by universidad politecnica de cartagena user on 02 February 2024
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τk(t) = σ(wk · t + ηk), 0 ≤ k ≤ p

so that

N (θ; (y initial(xj); t)) := τ0(t) +

p∑
k=1

βk(y
initial)τk(t).

Schematically,
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Fig. 1. Schematic illustration of the decomposition of a DeepONet into the encoder E , approximator A and reconstructor R.

recent approach based on principal component analysis and Li et al. (2021) and the references therein
on Fourier neural operators. A different approach was proposed by Chen & Chen (1995), where they
presented a neural network architecture, termed as operator nets, to approximate a non-linear operator
G : K → K′, where K, K′ are compact subsets of infinite-dimensional Banach spaces, K ⊂ C(D),
K′ ⊂ C(U) with D, U compact domains in Rd, Rn, respectively. Then, an operator net can be formulated
in terms of two shallow, i.e., one hidden layer, neural networks. The first is the so-called branch net
β(u) = (β1(u), . . . ,βp(u)), defined for 1 � k � p as

βk(u) =
�∑

i=1

ci
kσ

⎛
⎝

m∑

j=1

ξ
j
kiu(xj)+ θ i

k

⎞
⎠ . (1.1)

Here, {xj}1�j�m ⊂ D are the so-called sensors and ci
k, ξ j

ki are weights and θ i
k are biases of the neural

network.
The second neural network is the so-called trunk net τ (y) = (τ1(y), . . . , τp(y)), defined as

τk(y) = σ(wk · y + ζk), 1 � k � p, (1.2)

for any y ∈ U and with weights wk and biases ζk. Here, σ is a non-linear activation function in the
branch net (1.1) and (a possibly different one) in the trunk net (1.2). The branch and trunk nets are then
combined to approximate the underlying non-linear operator in the operator net

G (u)(y) ≈
p∑

k=1

βk(u)τk(y), u ∈ K, y ∈ U. (1.3)

More recently, Lu et al. (2019) replace the shallow branch and trunk nets in the operator net (1.3) with
deep neural networks to propose deep operator nets (DeepONets in short), which are expected to be
more expressive than shallow operator nets and have already been successfully applied to a variety of
problems with differential equations. These include learning linear and non-linear dynamical systems
and reaction-diffusion PDEs with source terms (Lu et al., 2019), learning the PDEs governing electro-
convection (Mao et al., 2021), Navier–Stokes equations in hypersonics with chemistry (Cai et al., 2021)
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Why DeepONet as the prediction model?

Universal Approximation of functions, funcionals and operators

Theorem (UAT for functions (A. Pinkus) )

Suppose that K ∈ Rd is compact, U ⊂ C(K) is compact, and
σ(s) = max{s, 0} is the ReLU activation funcion. Then, for any ε > 0 there
exist a positive integer n, real numbers θi , ωi ∈ Rn, independent of f ∈ U, and
constants ci = ci (f ) depending on f , such that

|f (x)−
n∑

i=1

ciσ(ωi · x + θi )| < ε

holds for all x ∈ K and f ∈ U. Moreover, each ci (f ) is a continuous linear
functional defined on U.

Theorem (UAT for functionals (Chen & Chen) )

Suppose that σ ∈ TW, X is a Banach space, K ⊂ X is a compact set, V is a
compact set in C(K), and f : V → R is a continuous functional. Then for any
ε > 0, there are a positive integer n, m sensor points x1, x2, · · · , xm ∈ K, and
real constants ci , θi , ξij , 1 ≤ i ≤ n, 1 ≤ j ≤ m, such that

|f (u)−
n∑

i=1

ciσ

(
m∑
j=1

ξiju(xj) + θi

)
| < ε, for all u ∈ V .
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Why DeepONet as the prediction model?

Universal Approximation of functions, funcionals and operators

Theorem (UAT for Borel single-valued measurable mappings (Lanthaler,
Mishra, Karniadakis, 2022) )

Let µ ∈ P(C(D)) be a probability measure on C(D) and let G : C(D) → L2(U)
be a Borel measurable mapping, with G ∈ L2(µ). Then, for every ε > 0, there
exists a DeepONet N = R ◦ A ◦ E such that

∥G −N∥L2(µ) =
(∫

X

∥G(u)−N (u)∥2L2(U) dµ(u)

)1/2

< ε

Theorem (UAT for Borel set-valued measurable mappings )

Let G : X 7→ Y be a lower semicontinuous set-valued map with closed, convex
values. Then, for every ε > 0, there exists a DeepONet N such that(∫

X

inf
u∈G(y)

∥u −N (y)∥2L2(U) dµ(y)

)1/2

< ε.

In practice, one would determine a DeepONet N such that N (yi ) is a good
approximation to a suitable selection G(yi ) of G(yi ) in the sense

inf
u∈G(yi )

∥u−N (yi )∥2 ≤ ∥G(yi )−N (yi )∥2 < ε, for a finite, selected set {yi} ⊂ X .
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Approximation error and the curse of dimensionality

Definition (Curse of dimensionality)

For a given ε > 0, let Nε be a DeepONet providing error < ε, and

size (Nε) ∼ O
(
ε−ϑε

)
for some ϑε ≥ 0.

Our DeepONet approximation is said to incurr a curse of dimensionality if
limε→0 ϑε = +∞ and breaks the curse of dimensionality if
limε→0 ϑε = ϑ < +∞.

Yarotsky (2018) proved that the approximation of a general Lipschitz function
to accuracy ε requires a ReLU network of size1 ε−m(ε)/2, with m(ε) → ∞ as
ε→ 0, and hence suffers from the curse of dimensionality. m is the number of
sensors for the enconding y 7→ E(y) = (y(x1), · · · , y(xm)) .

However, if G is single-valued and linear, the curse of dimensionality can
be broken. This is clearly so for the control of minimal L2-norm in the case of
the wave equation; but it is much more involved for the heat equation.

1Size of a neural network is understood as the number of non-vanishing parameters of the net.
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Estimates for approximation and estimation errors

S. Lanthaler, S. Mishra, G. E. Karniadakis, Error estimates for
DeepONets: a deep learning framework in infinite dimensions, Trans.
Math. Appl. 6 (1) (2022) 1-144.

Approximation error

Êapprox :=

(∫
L2(D)

∫
U

|G(y)(t)−N (y)(t)|2dtdµ(y)

)1/2

.

The DeepONet N : C(D) → C(U) is decomposed into:

An encoder

E : C(D) → Rm, y 7→ (y(x1), · · · , y(xm)) , xj ∈ D

An approximation operator

A : Rm → Rp, y = (y1, · · · , ym) 7→ (β1 (y) , · · · , βp (y)) .

An affine reconstruction operator

R : Rp → C(U), (β1, · · · , βp) 7→ τ̂0(t) +

p∑
k=1

βk τ̂k(t).
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Approximation error and the curse of dimensionality
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operators that arise when considering differential equations such as those of Lu et al. (2019) and later in
this paper. However, this extension comes at the expense of considering a weaker distance (L2(μ⊗ dy)
vs. L∞(μ⊗ dy)) than in Chen & Chen (1995). In practice, it is indeed the L2-distance that is minimized
during the training process. Moreover, the above theorem also allows us to consider cases of practical
interest where μ is supported on an unbounded subset, as is e.g., the case when μ is a non-degenerate
Gaussian measure. Indeed, in most of the numerical examples in Lu et al. (2019), the underlying measure
μ is a Gaussian measure given by the law of a Gaussian random field.

The universal approximation theorem 3.1 shows that for any given tolerance ε, there exists a
DeepONet of the form (2.10) such that the resulting approximation error (2.11) is smaller than this
tolerance. However, this theorem does not provide any explicit information about the number of sensors
m, the number of branch and trunk net outputs p or the hyperparameters of the approximator neural
network A and the trunk net τ . As discussed in the introduction, these numbers specify the complexity
of a DeepONet and we would like to obtain explicit bounds (information) on the computational
complexity of a DeepONet for achieving a given error tolerance and ascertain whether DeepONets are
efficient at approximating a given nonlinear operator G . In practice, we are thus interested in deriving
quantitative error and complexity bounds for the DeepONet approximation of operators. This will be
the focus of the remainder of the present section.

3.2 Overview of quantitative error bounds

We will first provide an overview of the main results on quantitative error bounds derived in the present
work. An extended discussion of these results can be found in the following subsections, which include
detailed derivations and proofs.

3.2.1 Error decomposition and the curse of dimensionality. Given the decomposition of the Deep-
ONet (2.10) into an encoder E , approximator A and reconstructor R, it is natural to expect that the total
error (2.11) also decomposes into errors associated with them. For a given encoder E and reconstructor
R, we can define (approximate) inverses D (the decoder) and P (the projector), which are required to
satisfy the following relations exactly

E ◦D = Id : Rm → Rm, P ◦R = Id : Rp → Rp,

and should satisfy

D ◦ E ≈ Id : X → X, R ◦P ≈ Id : Y → Y .

We note that D and P are not necessarily unique, and need to be chosen. All mappings are illustrated
in the following diagram:
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Encoding error

ÊE :=

(∫
X

∥D ◦ E(y)− y∥2X dµ(y)

)1/2

Approximation error due to the neural network

ÊA :=

(∫
Rm

∥A(y)− P ◦ G ◦ D(y)∥2ℓ2(Rp) d (E#µ) (y)
)1/2

,

where

u = E(y), E#(µ)(B) = µ
(
E−1(B)

)
is the push-forward measure

Reconstruction error

ÊR :=

(∫
L2(U)

∥R ◦ P(y)− y∥2L2(U) d (G#µ) (y)

)1/2
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operators that arise when considering differential equations such as those of Lu et al. (2019) and later in
this paper. However, this extension comes at the expense of considering a weaker distance (L2(μ⊗ dy)
vs. L∞(μ⊗ dy)) than in Chen & Chen (1995). In practice, it is indeed the L2-distance that is minimized
during the training process. Moreover, the above theorem also allows us to consider cases of practical
interest where μ is supported on an unbounded subset, as is e.g., the case when μ is a non-degenerate
Gaussian measure. Indeed, in most of the numerical examples in Lu et al. (2019), the underlying measure
μ is a Gaussian measure given by the law of a Gaussian random field.

The universal approximation theorem 3.1 shows that for any given tolerance ε, there exists a
DeepONet of the form (2.10) such that the resulting approximation error (2.11) is smaller than this
tolerance. However, this theorem does not provide any explicit information about the number of sensors
m, the number of branch and trunk net outputs p or the hyperparameters of the approximator neural
network A and the trunk net τ . As discussed in the introduction, these numbers specify the complexity
of a DeepONet and we would like to obtain explicit bounds (information) on the computational
complexity of a DeepONet for achieving a given error tolerance and ascertain whether DeepONets are
efficient at approximating a given nonlinear operator G . In practice, we are thus interested in deriving
quantitative error and complexity bounds for the DeepONet approximation of operators. This will be
the focus of the remainder of the present section.

3.2 Overview of quantitative error bounds

We will first provide an overview of the main results on quantitative error bounds derived in the present
work. An extended discussion of these results can be found in the following subsections, which include
detailed derivations and proofs.

3.2.1 Error decomposition and the curse of dimensionality. Given the decomposition of the Deep-
ONet (2.10) into an encoder E , approximator A and reconstructor R, it is natural to expect that the total
error (2.11) also decomposes into errors associated with them. For a given encoder E and reconstructor
R, we can define (approximate) inverses D (the decoder) and P (the projector), which are required to
satisfy the following relations exactly

E ◦D = Id : Rm → Rm, P ◦R = Id : Rp → Rp,

and should satisfy
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Approximation error and the curse of dimensionality

Our setup : (wave equation)

1 µ ∈ P2 (C(D)) is a probability measure with mean 0, and with uniformly
bounded eigenfunctions of the covariance operator Γµ

Γµ =
∞∑
j=1

λjej ⊗ ej

2 The sensors x1, · · · , xm ∼ Unif(D) for the encoder are drawn iid random.
The decoder is linear.

3 For the reconstruction operator, τ̂0 = 0 and τ̂k are the first p
eigenfunctions of the covariance operator ΓG#µ . The projector is

P(u) := (< u, τ̂1 >, · · · , < u, τ̂p >) , u ∈ L2(U).
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Breaking the curse of dimensionality

Theorem (Bound for approximation error)

Under the above conditions, let τ be the trunk net approximation of τ̂ such
that the associated reconstruction R and projection P operators satisfy
Lip(R), Lip(R ◦ P) ≤ 2. Then, with probability 1 in the choice of the sensor
points, there exists C = C(|D|, µ) > 0 such that for any m, p ∈ N there exists
a shallow ReLU approximator net A : Rm → Rp, with size (A) ≤ 2(2 +m)p,
depth (A) ≤ 1 such that the DeepONet N satisfies

Êapprox ≤
√

1 + ∥G∥2

 max
k=1,··· ,p

∥τ̂k − τk∥L2(U) +

√∑
j>p

λj +

√√√√ ∑
j> m

C log(m)

λj



Idea of the proof. Crucially, since G is linear, and the decoder and projector
are affine, there exists and exact affine approximator A = P ◦ G ◦ D, which can
be represented by a shallow ReLU of the claimed size since

Ax + b = σ(Ax + b)− σ(−(Ax + b)).

Thus, ÊA = 0.The estimate∑
j>p

λ
G#µ

j ≤ ∥G∥2
∑
j>p

λj

must be used as well.
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Breaking the curse of dimensionality

In practice, µ is chosen as the law of a Gaussian field

a(x , ω) =
∑
k∈Zd

αkξk(ω)ek(x), x ∈ Td := [0, 2π]d ,

where |αk | ≤ exp(−ℓ|k|), ℓ > 0.

Then, for any ε > 0 and σ > 0, and taking

m ∼ log(ε−1)d(1+σ) and p ∼ log(ε−1)d

an overall approximation error Êapprox ≲ ε may be achieved with a DeepONet N
whose branch β and trunk τ nets satisfy

size(β) ≲ log(ε−1)2d+σ, depth(β) ≲ 1

and
size(τ) ≲ log(ε−1)d+2+σ, depth(τ) ≲ log(ε−1)2+σ.

This means that the proposed DeepONet-based approximation scheme for
the controllability map breaks the curse of dimensionality with respect to p
and the number of sensor points m in the sense that the complexity of the
DeepONet does not grow exponentially with these two parameters.
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Estimation (or generalization) error

Consider the loss function

L̂(N ) :=

∫
L2(D)

∫
U

|G(y)(t)−N (y)(t)|2dtdµ(y). (4)

and the empirical loss

L̂N(N ) =
|U|
N

N∑
j=1

|G(yj)(tj)−N (yj)(tj)|2 (5)

where (yj , tj) ∼ µ⊗ Unif(U).
Let N̂ be an optimizer of (4) and let N̂N be an optimizer of (5).

Estimation (Generalization) error

Êgen =

√
L̂
(
N̂N

)
− L̂

(
N̂
)
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Estimation (or generalization) error

1) Boundedness assumption: there exists ψ : L2(D) → [0,+∞[ such that

|G(y)(t)| ≤ ψ(y), sup
θ∈[−B,B]dθ

|Nθ(y)(t)| ≤ ψ(y), ∀y ∈ L2(D), ∀t ∈ U,

and there exists C , κ > 0 such that ψ(y) ≤ C
(
1 + ∥y∥L2(D)

)κ
.

2) Lipschitz continuity assumption: there exists Φ : L2(D) → [0,+∞[ such
that

|Nθ(y)(t)−Nθ′(y)(t)| ≤ Φ(y)∥θ − θ′∥ℓ∞ , ∀y ∈ L2(D),∀t ∈ U,

and there exists C , κ > 0 such that Φ(y) ≤ C
(
1 + ∥y∥L2(D)

)κ
.

Theorem (Bound for generalization error ( Lanthaler-Mishra-Karniadakis))

Let N̂ be an optimizer of (4) and let N̂N be an optimizer of (5). If the above
two assumptions hold, then there exists C = C(µ, ψ,Φ), independent of B and
dθ, such that

E
[
L̂
(
N̂N

)
− L̂

(
N̂
)]

≤ C√
N

(
1 + Cdθ log

(
CB

√
N
))2κ+ 1

2
(6)

|G(y)(t)| ≤ ψ(y) is like a uniform observability inequality .
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Numerical experiments

Data generation. Initial conditions are computed by sampling a Gaussian
ramdon field with the kernel

C(x , x ′) = exp

(
−|x − x ′|2

2ℓ

)
, x , x ′ ∈ (0, 1),

where ℓ is the correlation length. Thus, the associated input measure µ is

a(x , ω) =
∞∑
i=1

√
λiei (x)ξi (ω),

where ξi are iid standard Gaussian variables, and {λi , ei (x)}∞i=1 are the
eigenvalues and normalized eigenfuncions of the operator C : L2(0, 1) → L2(0, 1)

C(ϕ)(x) =
∫ 1

0

C(x , x ′)ϕ(x ′) dx ′.

DeepONet size. We use the ReLU activation function, trunk depth/width =
2/40 and branch depth/width = 2/40.
Training process. Adam optimizer with learning rate 0.01. Initialization of
the parameters is carried out with Glorot uniform.
Implementation. DeepONet: learning operators [Lu, Li, Pang, Zhang,
Karniadakis: Nat. Mach. Intell., 2021]
https://github.com/lululxvi/deepxde

https://github.com/lululxvi/deepxde
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Numerical experiments: the wave equation

An academic example with an explicit solution

ytt − yxx = 0, in (0, 1)× (0, 2)
y(x , 0) = y 0(x), on (0, 1)
yt(x , 0) = y 1(x) on (0, 1)
y(0, t) = 0, on (0, 2)
y(1, t) = u(t) on (0, 2)
y(x , 2) = yt(x , 2) = 0, on (0, 1).

The operator to be approximated is

G : L2(0, 1)× H−1(0, 1) → L2(0, 2)
(y 0, y 1) 7→ G(y 0, y 1) := u

where

u(t) =


1
2
y 0(1− t) + 1

2

∫ 1

1−t
y 1(s) ds, 0 ≤ t ≤ 1

− 1
2
y 0(t − 1) + 1

2

∫ 1

t−1
y 1(s) ds, 1 < t ≤ 2

is the unique control of minimal L2-norm.
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Numerical experiments: the wave equation
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Figure: Loss history for correlation lengths of 0.25 for position and 0.125 for velocity.
Number of sensor points = 51. Sample functions: (Left) 100 and (right) 10000.



Numerical experiments: the wave equation
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Figure: Exact versus predicted solutions. nfunctions = 104 (Left) Smooth initial data:
y0 = y1 = sin(πx), (ℓpos , ℓvel ) = (0.25, 0.125), nsensors=100. Relative error ≈ 1%.

(Right) Non-smooth initial data: y0(x) =

{
4x , 0 ≤ x ≤ 0.5
0, 0.5 < x ≤ 1

,

(ℓpos , ℓvel ) = (0.0625, 0.03125), nsensors=10. Relative error ≈ 4%.



Numerical experiments: the heat equation


yt − yxx = 0, 0 < x < 1, 0 < t < T
y(x , 0) = y 0(x), 0 ≤ x ≤ 1
y(0, t) = 0, 0 ≤ t ≤ T
y(1, t) = u(t), 0 ≤ t ≤ T

(7)

y(x ,T ) = 0, 0 ≤ x ≤ 1.
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Figure: Heat equation. PINN (reference control) versus DeepONet (predicted)
controls for the initial condition y0(x) = sin(πx). nfunctions = 275, ℓ0 = 0.25,
nsensors = 101, p = 100.



Numerical experiments: the heat equation


yt − yxx = 0, 0 < x < 1, 0 < t < T
y(x , 0) = y 0(x), 0 ≤ x ≤ 1
y(0, t) = 0, 0 ≤ t ≤ T
y(1, t) = u(t), 0 ≤ t ≤ T

(7)

y(x ,T ) = 0, 0 ≤ x ≤ 1.

0.0 0.1 0.2 0.3 0.4 0.5
t

7

6

5

4

3

2

1

0

1

Reference control
Predicted control

Figure: Heat equation. PINN (reference control) versus DeepONet (predicted)
controls for the initial condition y0(x) = sin(πx). nfunctions = 275, ℓ0 = 0.25,
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