## Control of the Schrödinger equation by domain deformation

#### C. Castro (joint work with A. Duca)

Univ. Politécnica de Madrid, Spain.

December 3, 2024

We consider the Schrödinger equation

$$\begin{cases} i\partial_t \psi + \Delta \psi = 0 & x \in \Omega_t, \ t \ge 0, \\ \psi = 0, & x \in \partial \Omega_t, \ t \ge 0, \\ \psi(0) = \psi^0 \in L^2(\Omega_0, \mathbb{C}). \end{cases}$$

where  $\Omega_t \subset \mathbb{R}^2$  is a continuous deformation of a bounded domain  $\Omega_0$  depending on the time  $t \geq 0$ The  $L^2$ -norm is conserved, i.e.

 $\|\psi(t)\|_{L^2} = \|\psi^0\|_{L^2}, \quad t > 0.$ 

We are interested in the following controllability result: Given  $\psi^f$  with  $\|\psi^f\|_{L^2} = \|\psi^0\|_{L^2}$ , find T > 0 and  $\Omega_t$ , with  $\Omega_0 = \Omega_T$  such that

$$\psi(T,x)=\psi^f(x).$$



In a recent paper by A. Duca, R. Joly and D. Turaev, (23)' it is shown a theoretical method to control the Schrödinger equation by domain deformation.

Question: Approximate numerically this process.

#### Difficulties:

- Obmain deformations are based on a 'not very explicit' diffeomorphism that preserves the adiabatic behavior.
- ② Control time is not explicit either and can be extremely large.
- Simulations in domains depending on the time are challenging.

**Idea:** We exploit a special simple formula for domain deformations of the form

 $\Omega(t) = (0, f_1(t)) \times (0, f_2(t)),$ 

to simulate the process (A. Duca and R. Joly 21').



After the change of variables

$$x_1 = f_1(t)y_1, \quad x_2 = f_2(t)y_2, \quad (y_1,y_2) \in (0,1) imes (0,1) = \Omega_f$$

$$\begin{cases} i\partial_t w + \frac{w_{y_1y_1}}{f_1^2(t)} + \frac{w_{y_2y_2}}{f_2^2(t)} - V(t,y)w = 0 \quad w \in \Omega_f, \ t \ge 0, \\ y = 0, \qquad \qquad w \in \partial\Omega_f, \ t \ge 0, \\ w(0) = w^0 \in L^2(\Omega_f, \mathbb{C}). \end{cases}$$

with

$$V(t,y) = \frac{f_1''(t)f_1(t)y_1^2 + f_2''(t)f_2(t)y_2^2}{4}, \quad w = e^{-i\psi(t,x)}u$$
$$\psi(t,x) = \frac{1}{4} \left(\frac{f_1'(t)}{f_1(t)}x_1^2 + \frac{f_2'(t)}{f_2(t)}x_2^2\right)$$

C. Castro (joint work with A. Duca) Univ. Politécnica de Me Control of the Schrödinger equation by domain deformation

э

Our result adapt the idea by A. Duca, R. Joly and D. Turaev, (23)' to a simpler setting where we can approximate numerically the control. Some simplifications:

- Domain deformations are restricted to rectangular domains
- A localized potential in the neighbourhood of a point must be included in the process, i.e. a potential of the form

$$a(t,x) = \eta(t)exp(-\gamma|x-x_0|^2), \quad \gamma >> 1,$$

where  $x_0 \in \Omega_t$  for  $t \in (0, T)$  and  $\eta(t)$  is complactly supported in (0, T).

• An approximate control is obtained.

$$\begin{cases} i\partial_t \psi + \Delta \psi + \eta(t) \exp(-\gamma |x - x_0|^2) \psi = 0 & x \in \Omega_t, \ t \ge 0, \\ \psi = 0, & x \in \partial \Omega_t, \ t \ge 0, \\ \psi(0) = \psi^0 \in L^2(\Omega_0, \mathbb{C}). \end{cases}$$

Here  $\Omega_t = (0, 1) \times (0, a(t))$ . The controls are:

 $\eta(t), a(t)$ 



 $\delta_P$  represents either a Dirac delta supported on P or a  $\exists r \in \mathbb{R}$   $\exists r \in \mathbb{R}$ C. Castro (joint work with A. Duca) Univ. Politécnica de Me Control of the Schrödinger equation by domain deformation

#### Theorem

Let  $\{\varphi_j(x)\}_{j\geq 1}$  the sequence of eigenfunctions of the Laplace operator in  $\Omega_0$ . Assume that

$$\psi^0 = \sum_{j=1}^{\infty} c_j \varphi_j(x), \quad \psi^f = \sum_{j=1}^{\infty} d_j \varphi_j(x).$$

For any  $\varepsilon > 0$  there exist T > 0 (large), a(t), with a(0) = a(T)and  $\eta(t) \in C_o(0, T)$  such that the solution of the above system can be written as

$$\psi(T) = \sum_{k=1}^{\infty} c_j(T) \varphi_j,$$

where

$$\sum_{k=1}^{\infty} ||c_k(T)| - |d_k||^2 < \varepsilon$$

・ 同 ト ・ ヨ ト ・ ヨ ト

### Example

Assume that we want to permute the 'energy' of the second and third modes:

$$\psi^0 = \varphi_2 \\ \psi^f = \varphi_3$$

The control will produce a solution for which

 $\psi(x, T) \sim c_3(T)\varphi_3,$ 

where  $|c_3(T)| \sim 1$ .



The control combine two ideas:

- Adiabaticity (Born and Fock 1928'): For smooth and sufficiently slow time-varying coefficients the Schrödinger equation preserves the energy of the modes, as soon as the modes are **simple**. This is also true for sufficienly slow deformation of the domain.
- **Continuity** in time of the solutions. When a deformation produces a multiple eigenvalue, the energy is exchanged between the two modes.





Eigenvalues for different deformations:  $a \in [0.6; 1.6]$ 

# The control to exchange the energy of the second and third mode



# The control to exchange the energy of the second and third mode



### transfer the energy of the second and fourth modes



Eigenvalues for different deformations:  $a \in [0.6; 1.6]$ 

### Transfer the energy of the second and fourth mode



### Numerical approximation: Spectral method

Take  $X = L^2(\Omega_f)$  and consider the associated eigenpairs of  $A^{\eta,\mathbf{a}}$ 

 $(\lambda_k(t), \phi_k(x, t)), \quad k \ge 1.$ 

Consider also the eigenpairs of the Dirichlet Laplacian

 $(\mu_k, w_k(x)), \quad k \geq 1.$ 

Define

$$X^N = span\{w_k\}_{k=1}^N, \qquad P^N: X \to X_N.$$

Discrete problem: Find  $\psi_N(t) \in X_N$  such that,

$$\begin{cases} i\partial_t \psi_N = P^N A^{\eta,\mathbf{a}}(t)\psi_N, \quad t > 0\\ \psi_N(0) = P^N \psi^0. \end{cases}$$

#### Theorem

Assume that a and  $\eta$  satisfy the hypotheses to guarantee the existence of a solution  $\psi \in C([0, T]; H_0^1)$  with initial data  $\psi^0 \in H_0^1$ . Let  $\psi_N$  be the solution of the corresponding finite dimensional approximation. Then, for  $t \in [0, T]$ ,

$$\|\psi(t)-\psi_{\mathsf{N}}(t)\|_{L^2}\leq \left(1+2Trac{\eta_{\mathsf{M}}}{\pi}
ight)rac{\sqrt{\eta_{\mathsf{M}}}}{\sqrt{3}\sqrt{\mathsf{N}}}\|\psi(t)\|_{L^\infty((0,T);H^1_0)},$$

where  $\eta_M = \max_{t \in [0,T]} \eta(t)$ .

**Remark** The estimate depends on  $\eta$  and T that are large. Therefore it requires N large.

- For simplicity we have focused on permutations of energy states. However, the technique can be adapted to any redistribution of the energy in a finite number of Fourier coefficients.
- The idea can be adapted to more general domains (in progress)
- The numerical analysis is not completely satisfactory since the adiabatic regime requires both large time T and N (difficult to estimate).
- The domain deformation can be replaced by a large potential simulating the domain deformation. In this way the control becomes a bilinear control. This problem has been widely studied in the literature with different strategies.

# Control of the 2-d Schrödinger equation with large potentials

We consider now the Schrödinger equation with bilinear control

$$\left\{ egin{array}{ll} i\partial_t\psi+\Delta\psi-{a(t,x)}\psi=0 & x\in\Omega, \ t\geq 0, \ \psi=0, & x\in\partial\Omega, \ t\geq 0, \ \psi(0)=\psi^0\in L^2(\Omega,\mathbb{C}). \end{array} 
ight.$$

where  $\Omega \subset \mathbb{R}^2$  is fixed and the control now is

a(t,x)

The idea now is to simulate the domain deformation with a strong potential

Most of the works consider electric fields  $a(t,x) = v(t)\mu(x)$  where v(t) is the intensity of the field (control) and  $\mu(x)$  the dipolar moment (smooth)

- Global approximate controllability: Mirrahimi and Beauchard' 09, Boscain and Adami' 05, Boscain, Chittaro, Gauthier, Mason, Rossi and Sigalotti' 12, Boussaid, Caponigro and Chambrion' 22, ...
- Local exact controllability: Ball, Marsden and Slemrod' 85 (Negative result), Beauchard and Laurent 11', Puel' 16...
- Nonlinear models, systems, networks, etc...

The peculiarity of our result is in the explicit form of the control. It produces an adibatic regime almost any time.

- 周 ト - ヨ ト - ヨ ト - -



C. Castro (joint work with A. Duca) Univ. Politécnica de Ma Control of the Schrödinger equation by domain deformation

• • = • • = •