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>ms modeled by partial differential equations (PDEs) are at least as ubiquitous as systems that are by nature (-
nsional and modeled by ordinary differential equations (ODEs). And yet, systematic and readily usable methodo!
uch a significant portion of real systems, have been historically scarce. Around the year 2000, the backstepping apy
DE control began to offer not only a less abstract alternative to PDE control techniques replicating optimal and spe
nment techniques of the 1960s, but also enabled the methodologies of adaptive and nonlinear control, matured
s and 1990s, to be extended from ODEs to PDEs, allowing feedback synthesis for physical and engineering system
ncertain, nonlinear, and infinite-dimensional. The PDE backstepping literature has grown in its nearly a quarter :"’
wvelopment to many hundreds of papers and nearly a dozen books. This survey aims to facilitate the entry, for S
ircher, into this thriving area of overwhelming size and topical diversity. Designs of controllers and observers, for parz.
rbolic, and other classes of PDEs, in one and more dimensions (in box and spherical geometries), with nonlinear, adag-_4
rled-data, and event-triggered extensions, are covered in the survey. The lifeblood of control are technology and p
survey places a particular emphasis on applications that have motivated the development of the theory and whic
fited from the theory and designs: applications involving flows, flexible structures, materials, thermal and che
’ ~mergv (from oil drilling to batteries and magnetic confinement fusions), and vehicles.

New Survey (under review, preprint available)

https://arxiv.org/pdf/2410.15146
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Problem

We consider the problem: stabilizing an unstable linear radially-dependent
reaction-diffusion equation, evolving on an n-ball (disk or sphere are of
most physical interest).

Main challenge: equations become singular in the radius; when applying
the backstepping method, same singularity appears in kernel equations.

Solved in:

R. Vazquez and M. Krstic, " Boundary Control of Reaction-Diffusion PDEs on Balls in Spaces of Arbitrary Dimensions,”
ESAIM:Control, Optimization and Calculus of Variations, Vol. 22, No. 4, pp. 1078-1096, 2016.

e R. Vazquez, J. Zhang, J. Qi, M. Krstic, " Kernel Well-Posedness and Computation by Power Series in Backstepping
Output Feedback for Radially-Dependent Reaction-Diffusion PDEs on Multidimensional Balls,” Systems & Control
Letters, Vol. 177, pp. 105538, 2023
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Radially-Varying Reaction-Diffusion PDE on an

n-dimensional Ball

Consider the reaction-diffusion system in an n-dimensional ball of radius R
B"(R):

where:
e u = u(t,X) is the state variable
e Xe B"(R)={XeR":||X|| <R}
@ \(r) is the radially-varying reaction coefficient
@ ¢ > 0 is the diffusion coefficient
@ ¢/\, the Laplacian in dimension n
Boundary conditions:

u(t,i)\”ﬂ':R = U(t,x)
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Coordinate System: n-Dimensional Spherical Coordinates

The ultraspherical coordinate system consists of:
@ One radial coordinate r = ||X||
e (n—1) angular coordinates § = (61, . ..,60,_1) where:

o 01,...,0,_2 € [0,7] (polar angles)
o 0,_1 €[0,27) (azimuthal angle)

Cartesian to spherical transformation:

X1 = rcos
Xo = rsin 61 cos 6>

X3 = rsin 6 sin 6, cos 03
Xp = rsinfi1sin0---sinf,_»sinf,_1
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Spherical Harmonics Decomposition

We decompose the solution and control using n-dimensional ultraspherical
harmonics!:

where:

@ Y, is the m-th n-dimensional ultraspherical harmonic of degree /
e N(I,n) is the number of linearly independent harmonics:

e N(0,n) =1 (mean value over n-ball)

o For /> 0: N(/,n) = 2tn=2(Hn3)
@ Y, are eigenfunctions of the Laplace-Beltrami operator

'K .Atkinson and W. Han, Spherical Harmonics and Approximations on the Unit
Sphere: An Introduction, Springer, 2012.
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The Reduced 1-D Problem

From the spherical harmonics decomposition, each mode satisfies:

Oru" = rn€_18, (r" 0, u™) — I(I +n — 2)%u,’" + A(r)y)”

evolving in r € (0, R], with boundary conditions:

ul'(t,R) = UM(t) (control)

Note:
@ The r—2 term appears from the angular derivatives
@ Singular behavior at r = 0 requires careful analysis

@ Control only acts at the boundary r = R
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Natural Stability of Higher Modes

Lemma (Higher Mode Stability)

Given \(r) and R, there exists L € N such that for all | > L, the
equilibrium u” = 0 is open-loop exponentially stable.
Specifically, with U™ = 0, there exists D; > 0 such that:

(2, M2 < e P (0, )|l 2

Key idea of proof: Use the L? norm as Lyapunov function:

R
112 = /0 ()Pt

The /(I + n —2) term dominates A(r) for large /.
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The Control Problem

Main goal: Design a state feedback control law U"(t) that stabilizes the
unstable modes (/ < L).

Approach: Use the backstepping method
@ Transform the system into a stable target system
@ Design through Volterra integral transformation

o Key challenge: Finding the transformation kernel

Target system: We want to achieve

a,(r"—la,w,m)

Wm
Orw/" =€ 1 —e/(/+n—2)r—’2—cwlm

with ¢ > 0 and boundary condition w,"(t,R) =0
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The Backstepping Transform

Consider the Volterra transformation:

r
wiP(t,7) = u(t,r) — /0 KE (. p)ul (2, p)dp

This leads to:

@ Control law from transformation at r = R:

R
up(t) = /O KEL(R. p)uf’(t.p)dp

o Kernel PDE for K| (r,p) (after simplification, in domain
T={(r,p):0<p<r<R}):

1 n—1 n n—1 K/n 1 1 n A(p) + ¢ n
,nfla’ (’ 8,K,m) —0p | P "0 pnT1 —’(/+"—2)(r7 - ;2) Kim = 7’(/:77

d n
2 (Kim(r, 1)) = —=(X(r) + ¢)
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The Kernel Equation Challenge

The kernel equation has several challenging features:
@ Singular coefficients at r =0and p =0
@ Traditional approaches for kernel well-posedness fail:

e Successive approximations lead to singular integrals: only works for
=0 (mean value) and n = 3 (trivially reduces to 1-D case?), n = 2
(combinatorial proof based on Catalan’s numbers®)
e Standard numerical schemes struggle with singularities
o Explicit solutions only known for very special cases (constant A):

X
., oNHn—2 A4 c 1 [ e - "2)]
Kim(rs p) = —p ( r) . —HC( s
2 —p
€

Key Insight: Try power series solution
@ Similar to Frobenius method for ODEs

@ Must prove existence, convergence, need to handle the singularities

R. Vazquez and M. Krstic, "Boundary control and estimation of reaction-diffusion equations on the sphere under
revolution symmetry conditions,” International Journal of Control, vol. 92, pp. 2-11, 2019.

R. Vazquez and M. Krstic, " Boundary control of a singular reaction-diffusion equation on a disk,” CPDE 2016, 2016.
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Power Series Approach: Setting Up

Define a change of variables:

n n p\n=2
Kim(r,p) = Gim(r; p)p (;)

The G-kernel must satisfy:

Ap) + Gn

Or
G/m = (9,,G,m + (3 —n— 2/)
Gn
— 0GP+ (1 2/) O S
P
with boundary condition:
for()\(o) + ¢)do

2re

Gim(r 1) = —
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Power Series Solution

Assuming A(r) is analytic:

r)+c Z)\r

Seek solution of the form:
00 i
Gt =3 | 3 G

i=0 \j=0

From the boundary condition:
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Even Property and Recursion

Theorem (Evenness Requirement)

If X(r) is not even, then there are values of | € N for which there is no
solution to the kernel equations in power series form.

When A(r) is even:

@ Only even powers appear in the series, thus consider
A(r)+ - ' P (i)
(1 = S0 Nr? Gl (r.p) = 220 (Sioo Cir¥o% )

€

@ The coefficients satisfy a recursion:
i—1
G+DG+L =Gy~ =NU—i=7)C = Z CijNi—1—k
k=j

wherey =2 =04+/-1>0
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Main Convergence Result

Theorem (Well-posedness)

Assume \(r) is an even analytic function in [0, R]. Then:
@ For given n > 1 and all | € N, there exists a unique power series
solution G (r, p)

m

@ The solution is even in both variables

© The series converges in the domain T = {(r,p) : 0 < p<r <R}

Remark:
o r=lXlI= g+ o

@ Non-even A(r) implies non-smooth coefficients in physical space
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Sketch of Convergence Proof

Key steps to prove convergence:
@ Connection with Gauss hypergeometric functions

@ For odd dimension n:
o Define special coefficients L;; involving Gamma functions
e Find how the coefficients grow

© For even dimension n:

e Solve partially up to order v — 1 by applying Fuchs’' theorem for regular
singular points on a recursive set of ODEs
e Find how the coefficients grow for higher order

© Define a; = Zjl::o |C;i|. Need to show that S°%°, a;;jr®’ converges.

© Apply ratio test to prove absolute convergence. Based on:
V. Leon and B. Scardua, “On singular Frobenius for second order
linear partial differential equations,” preprint downloaded from ArXiv,
https://arxiv.org/abs/1907.02620, 2019.
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https://arxiv.org/abs/1907.02620

Connection with Gauss Hypergeometric Functions

Key insight: The coefficients relate to hypergeometric series

Define:
i—1 k=i—1

k(i) =1+ J[ a()

j=0 k=j

where ] ]
G+DG+1-1)

(I =N =i+7)

aji(v) =
Then, for i positive and v > 0,

200 T(y+1)

This connects our recursion to classical special functions theory.
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Solvability

One can find:

1 A
Ci=——— .
k(i,7") [2¢(2i + 1)
with H; a function of previous coefficients that always exists.
Then:

+HI':|7

k=i—1 i—1 k=i—1
Cij = H a,k(’}/ ) Ci + B (i—1); P+ Z H alk é (i=1)r>
i r=j+1 k=r

Where B; is also defined from previous coefficients.

Thus the key is that x(i,~") # 0, which is proved obtaining the
representation in previous page.

Thus we can always obtain the coefficients Cj;.
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Why Dimension Matters: The ~/ Split

The Critical Parameter

@ n is spatial dimension
@ [ is spherical harmonic degree

@ This appears in coefficient denominators!

o

e ~/ is half-integer e 7/ is integer
@ e.g., for n=3: @ eg., forn=2:
3 1 r_ _
2 i 1=2-4] Yy=1+/-1=1
=57 2 "
| |
@ Never integer for any /! ® Always integer! /
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The Heart of the Matter: Coefficient Structure

Key Coefficient Formula

Lo C) (+7)i=1+7)- (i —j+7 +1)
’ 1=-7)2=v) (=)
Used to find an explicit formula for the coefficients and exploited for many

properties.

Odd Case (7' non-integer)
@ Denominator never zero
@ Can directly compute all L
@ Series coefficients well-defined

e Convergence follows from
bounds

/

Even Case (v

integer)

o Get terms like %

e Can't compute Lj; directly
@ Need special treatment

@ Must split solution
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Odd Dimension: Direct Convergence

Define and bound coefficient sum: «; = Zji':o | Cijl

v

Key Inequality

Show «; satisfies: a; < bj|Ai| + C,'ZL;IO ak|A\i—1—k| where: b; decreasing,

¢ —~0asi — o
v

If A(r) analytic in disc |r| < R:

(e}
E a;r® converges for |r| < R
i=0

21/83



Even Dimension: The Split Solution

Step 1: Partial Solution

Up to order o/ — 1: F(r,p) = 375" r¥¢;(p?). Each ¢; solves ODE:

/\(x) +c

Ax¢li_y +2(2+ 7)1 + $y—1=0

Use Frobenius for those!

Step 2: Remainder Solution
Define G! = G — F
@ Starts at order 2~/

| \

@ Avoids division by zero

@ Now similar to odd case

@ Can prove convergence for G
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Summary of Power Series Solution

Key Achievements:

@ First rigorous proof of well-posedness for backstepping kernels via
power series

@ Discovered necessary evenness condition for A(r)

@ Unified treatment for all dimensions n > 1

@ Explicit recursive formulas for coefficients
Practical Implications:

@ Simple numerical implementation

@ Symbolic computation possible

@ No need for discretization or mesh

@ High precision achievable
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The Full Picture: Physical Space Stability

Theorem (Complete System Stability)
Under the assumptions:
@ \(r) even and analytic
o Kernels K|} (r, p) from power series solution

The complete physical solution:

with control:

L N(/,n)

)| 1=k => > (/R Kim(R, p)u” (tap)dP) Yim(0)

I=0 m=0

is exponentially stable at the origin.
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Proof Strategy

@ For [ > L: Natural stability (from angular derivatives)
luf (8, )2 < e P (0, )]l 2
@ For / < L: Controlled modes via backstepping
luP(t, )2 < Ce™ 2 |u (0, )l 2
© Combining all modes:
u(t, Mzgn(ry < Ce~ P u(0, )l 2(an(ry)

where D = min{D;, D>}
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© Introduction: Radially-Varying Reaction-Diffusion PDE on an
n-dimensional Ball v/

@ Power series as a method of solution for backstepping kernel
computation

@ From complex to simple by complex numbers
@ Examples using Mathematica
©® Handling discontinuous kernels

The Timoshenko beam

Computational Aspects, Extensions and Challenges

Final remarks and conclusions
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Power Series: From Complex to Simple

@ We developed power series for the radially-varying ball:
o Complex geometry
e Singularities at origin
o Required Gauss hypergeometric theory

@ Key realization: Method is simpler for basic cases

e More direct proofs
o Easier implementation
o Clear convergence conditions

@ Can become a general tool for kernel computation, specially for
beginners!
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Basic Power Series Framework

Let us demonstrate with a simple example:
@ Start with basic 1-D backstepping (e.g. reaction-diffusion equation)
@ Show explicit power series computation
o lllustrate convergence proof using complex analysis
@ Demonstrate straightforward implementation

Key Theme: What was developed for a complex case becomes a powerful
general method

28/83



Backstepping Method for 1-D Reaction Diffusion Equations

Consider
Uy = €Uy + A(X)u
u(t,L) = U(t)
u(t,0) = 0

e > 0, A(x) a function in the domain x € [0, L]. Potentially unstable

L
The feedback U = / K(L,&)u(§)d¢ is stabilizing, by choosing ¢ > 0 and
0

solving

KXX(X7€) - KEE(X7€) = )‘(5)64— CK(X7§)
Kxx) = =5 [ 0@+
K(x,0) = 0

in the triangular domain 7 = {(x,£) : 0 < ¢ < x < L}
At the end of the day, we only need K(L, {)
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Kernel PDEs

P CETS
K(x, %) = —i '/OX[A(J) + cldo
K(x,0) =0

This is a Classical Goursat-type problem but with integral boundary
condition.

@ Second-order hyperbolic PDE
@ On triangular domain 0 < ¢ <x <L
@ With non-standard boundary conditions
If \(x) = X constant, and calling X = <, then we know

L (V)
Koo === e

For very specific shapes of A(x) other solutions exist.
There is no general explicit solution (or hope of getting one)
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The Power Series Framework: Theory

Consider the kernel equations:

Kxx(Xaf) - Kgg(X,g) = MKO@&)

K(x,x) = —2% /OX[)\(U) + cldo
K(x,0) =0

Key Insight: Extend to complex domain
o Let D; be complex disk of radius L: {z€ C: |z| < L}
@ Consider kernel on polydisk Dy15 X Dy

@ Analyticity in complex domain = power series convergence
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Main Theorem

If there exists § > 0 such that X is analytic on Dy, then:

@ The kernel equation solution K(x, &) extends to an analytic function
onDiys5/2 X Diyspo
@ This solution is unique

© The power series converges in this domain

Key to proof: Leverage classical successive approximation results in
complex domain

R. Vazquez, G. Chen, J. Qiao, M. Krstic, " The power series method to
compute backstepping kernel gains: theory and practice,” CDC 2023.
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Proof Strategy (Part 1)

@ Transform to integral equation via rotation and integration:

B x+& x—¢
K(ng)_G< 2 ) 2 )

@ Write G as successive approximation series:

Xf :iGl

i=0

where:

,S)dsdr

Giv1 = //[
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Proof Strategy (Part 2)

© Consider the integrals as path integrals in the complex plane.
Complex line integrals are path-independent for analytic functions

© Show recursively that each G; is analytic

© Prove uniform convergence using already known bound from succesive
approximations proof.

Q Apply Weierstrass M-test to get uniform convergence

Convergence + analyticity = unique power series solution
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Advantages of Complex Analysis Approach

@ Provides clear conditions for existence:

o Analyticity of coefficients
e Size of domain of convergence

@ Gives uniqueness of solution

e By identity theorem for analytic functions
o Power series must have unique coefficients

@ Constructive proof:

e Shows why substitution method works
o Guarantees convergence of numerical scheme
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Implementation in Mathematica: Key Steps

© Introduce kernel power series:

K, => Y Kyx ¢

i=0 j=0

@ System coefficients expanded automatically:
o Series[A(x), {x,0,n}]
e Handles any analytic function
e Automatic term collection

© Substitute into PDE and boundary conditions:

o Dlexpr, {x,2}] - Dlexpr, {€,2}] = ..
o Coefficient[expr, x'¢/] gives equations
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Mathematica Implementation

ngsl= N = 103
K[x_, v_] = Normal([Series[G[x«t, y«t], {t, 8, n}]] /. t=1;
epsilon = 13
lambda[y ] =y*2«Cos[3+y] +V¥;
c=3;

inftoal= LHS = epsilon«D[D[K[x, y], %], x] -epsilon«D[D[K[x, v], ¥1, ¥1}

inj01)= RHS = Normal [Series[(lambda[y«t] +c) «K[x+t, y«t], {t, 8, n-2}]] /. t=1;

n1oz= BCL =D[K[x, ¥], X] /. ¥y =03

nficsl= Integral[x_] =1/ (2+epsilon) = Integrate[ (lambda[y] +¢), {y, B, x}1;

njioe)= BC2 = K[x, x] + Normal[Series[Integral[x«t], {t, @, n}]] /. t=1;

in[t10)= soln = SolveAlways[Join[{LHS = RHS}, {BC2 =0}, {BCl=0}], {x, v}];

= sel[x_, v 1 =K[x, y] /. seln[[1]]

- 3y Xy 11y ) K3_y . 13xty ) 3ty ) 3B1xEy . 103x7y . 221x%y ) 69 %%y .
2 a 16 8 768 128 92160 = 107520 368648 1146880
25y 145x?y? kP yd 517wty 283x5yd 41TTxE R 1033xTyE oyt xy?t
48 384 64 18432 15360 552960 860160 8 48
11x2y* 3yt 13xty' xSyt 361x5y' 133y5  xyS  1201x?yS 83 x3y°
192 96 9216 512 1105920 3840 = 128 30720 3072
67T x*y® 337x*y® 5y® 20x?y® xS B1Tx'y®  12933yT  221xyT
46080 81920 192 1536 1280 368640 71688 9216
33127x%y7  1265x3yT 229y 23xy®  283x%y®  837031y? 1099xy? 66863y
430080 73728 107520 53760 286720 7741440 98304 7741440 3743



Key Features of Implementation

@ Automation:

e No manual derivation of recursions
e System detects required equations
e Handles any analytic coefficient

@ Verification:

e Can substitute back into PDE
e Check boundary conditions
o Verify convergence numerically

o Analysis:

o Parameter studies
o Order requirements
o Convergence rates
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Basic Examples: Power Series Convergence

Example (Reaction-Diffusion with Smooth Coefficient)

Consider:
A(x) = 3 + x?sin(3x)

Analytic in C due to entire functions x2 and sin(3x) — converges

0.‘2 0:4 0:6 0:8 1:0 2

-0.5;

-1.0f

-15 — n=2

-2.0F n=4

-25- — n=6

_30 — n=8

_35 — n=25

Note rapid convergence by order 8
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Basic Examples: Power Series Divergence

Example (Non-analytic Coefficient)

A(x) = V0.5 + x?

@ Branch point at x = +/v/0.5
@ Inside unit disk D;

Consider:

o Violates analyticity requirement

@ Series diverges as shown:

10

— n=20 n=30 n=40 — n=50
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Basic Examples: Parametric Solutions

Example (Linear Parametric Coefficient)
Consider:
A(x) =1+ Px

Symbolically compute power series in both x and parameter P:

K(L§) = D Ky(P)EP

Value: Single computation for family of problems
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Basic Examples: Space-Varying Diffusion

Consider:
e(x) Kx — €(§)Kee = [ME) + c]K
Additional requirement: ¢(z) # 0 in Dy

Example (Convergent Case)
0 e(x) =2+ x?
@ Zeros at x = +iv/2
@ Outside unit disk

@ Series converges

Example (Divergent Case)
0 e(x) =2+ 3x2
@ Zeros at x = £i,/2/3
@ Inside unit disk

@ Series diverges

.
!
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Space-Varying Diffusion: Extension

Thus for the more general PDE with space-varying diffusion:
6(X)KXX(Xa f) - G(f)Kgg(X, f) = [A(g) + C]K(Xa f)
—26(X)%K(X, x)=—€(x) = A\x) — ¢
K(x,0) =0

If 30 > 0 such that A and e are analytic on Dy, and |e(z)| > 0
Vz € Dy s, then there exists a unique power series solution converging in

Diysj2 X Ditsya-
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Space-Varying Diffusion: Examples

Convergent Case:
A(x) = 3 + xsin(6x)

Divergent Case:
A(x) = 3 + xsin(6x)

_ 2
e(x)=2+x e(x) = 2 + 3x?
L=1c=3 L=1c=3
02
.................... £ ¢
0
-0.2 0.2 0.4 0.6 1.0
-0.4 -200
06— n=10 aopl =10
-08 n=20 n=20
S0 n=30 600/ — n=30
12— n=40 aop, =40
V2i

Key Point: Divergence due to zero of ¢(x) at x* =

3 inside unit disk
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Hyperbolic System Example

Consider coupled hyperbolic system:

vie = —p1vix + c(x)vi + ca(x)v2

Vor = faVax + c3(x)vy + ca(x)vo

With boundary conditions:

Challenge: Multiple coupled kernels required for stabilization
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Hyperbolic System: Kernel Equations

Kernel system:

pO)KY + K = = (K™ + oK™
+ [aa(x) — ca(§)IK™

PO)KE — (K = €(HK™ + c3(§ K™
+ [aa(x) — a(IK™

With boundary conditions:
0
KW (x,0) = 940w o)

1(0)
[e(x) + ()K" (x, x) = —c3(x)
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Hyperbolic System: Results

Choosing coefficients:
o u(x)=15+x2

0 ¢(x)=12+x3

@ ci(x) = 3cos(x)

® o(x) = sin(2x)

e (x)=1 —|— 2ex

° ayx) = 3+x2

¢ ¢
0 02 04 06 08 10 0 02 04 06 08 10
0 -0.65

-0.25 -0.70

~0.50 -0.75

075 -0.80

-0.85

-1.00

Note: Space-varying transport speeds slow convergence
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Discontinuous Kernels: Motivation

@ Many backstepping designs lead to discontinuous kernels
@ Example: Motion planning for coupled transport equations
o Plant:

Vit — H1Vix = 012(X)V2

Vot — H2Vox = 021(X)V1
with g > po > 0 and
Vl(t7 1) = Ul(t) VZ(t) 1) = U2

Design Ui(t) and Ux(t) so that vi(t,0) = ®1(t) and va(t,0) = do(t)
for some functions ®1, ®, for t > ty
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The Motion Planning Control Law

Control law structure:

1 1 1
U= Oae+ )+ /O Ly (1, €)wa(€)de + /0 Lia(L, €)va(€) de
_ 1, [tm 1-¢
U2_¢2(t+ﬂz) /0M2L21(§,0)¢1(t+ i )d¢
1

1
+ [ . 9u@ds + [ Ll et

Four kernels (L11, L12, L1, L22) needed
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The Kernel Equations

p10xL11 + p10¢Lin = 021(§) L1z
p10xL12 + p120¢ L1 = 012(&) L1z
p20x Lot + p110¢ Loy = 021(&) L2z
p20x Lo + 1120¢Los = 012(€) Loy

With boundary conditions:

L11(x,0) = L12(x,0) = Lo(x,0) =0

o12(Xx 021(X
( )’ L1 (x, %) = (x)
M2 — 1 M1 — H2

Lia(x,x) =
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The Characteristic Line and Discontinuity

@ L4 has two boundary conditions:

4] L12(X7 O) =0
o L12(X, X) = %(;)1
o Characteristic line: £ = %X

@ Solution: Define piecewise

_L(x€) if e < B2x
L12(X7£) - {Liz(X,f) Iff > %X
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Propagation of Discontinuity

@ L1, appears in Li1 equation
@ Lq1 must be defined piecewise:

_JLhi(x ) ife < B2x
Li1(x,&) = {L%l(x,g) e ;X

M1

@ But L1; must be continuous:
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Results for Transport System

For u1 = 0.5, up = 0.3, 012(x) = 0.2 + x/3, 021(x) = 0.3 + x2/3:

w

Note:

— L21(1,6) Ly(1,6) — L41(1,8)
— Lip(1,8) — Ly1(£0) /

0:2 0:4

@ Discontinuous Lj»(1,&)
e Continuous but non-differentiable L11(1,£) at £ = 0.6
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Power Series Method: Theoretical Foundation

Theorem (Power Series Convergence)

If there exists § > 0 such that 012 and o1 are analytic on D15, and
w1 > pp > 0, then there exists piecewise-defined power series solutions for
L11, L12, Loy, Loy so that:
© Each kernel has a unique power series representation in each region
@ The series converge in Dy 5/2 X D152
© The kernels solve the backstepping PDEs
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Timoshenko Beam: The Model

Consider a Timoshenko beam with displacement u(x, t) and rotation angle
a(x, t):

€Ut = Uxx — Ok,

a
pag =t - (U —a),
with boundary conditions:

ux (0,t) = «a(0,t) —Ou: (0,t) — Eu(0, t),
uc(1,t) = VAi(t), ax(0,t) =0, ax(1,t) = Va(t)

Where:
@ £, > 0 are physical parameters
@ 0,& are anti-damping and anti-stiffness coefficients
e Vi(t), Va(t) are control inputs
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The Mathematical Challenge

@ The system lives in function space:
H = H*(0,1) x L3(0,1) x H*(0,1) x L3(0,1)

o Key challenges:
e Coupled wave equations
o Anti-damping at uncontrolled boundary
e Want to achieve prescribed decay rate

@ Assumption: 6 # /e (non-resonance)
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The Well-Posedness Result

Consider initial conditions (ug, ag) € H*(0,1), (uor, aor) € L2(0,1). If

0 # /e, then:

1. There exists a unique solution:

(u,ur, a0, ) € C([0,00); H)

2. Without control (Vi = V, = 0), the system is unstable

Use backstepping to stabilize!
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Key Idea: Transform Coordinates

Transform to new variables using Riemann-like transformation:

p(t,x) = ux(t,x)+ Veue(t,x),
q(t,x) = ux(t,x) — Veu(t,x),
r(t,x) = ax(t,x)+ pa(t, x),
s(t,x) = oult,x) — /pae(t, x),
x(t) = u(0,1),
x(t) = «0,t)

This transforms coupled wave equations into more manageable form.
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The Transformed System

In new variables we get (2 + 2) x (2 + 2) system with ODEs:
1

B 1
pt = %Px_ﬁ(""‘s)’

_ 1 i( + )
qt - 7$qxf 2\/g r s)s
o= L4 @ (p+q)fi{/x(f+5)dy4r2x2}v

N 2e/1k 2e\/1 Lo
1 a a )

s — _ﬁsx+25\/ﬁ(p+q)_25\/ﬁ [/0 (r+s)dy+2xz},
X1 = ﬁ [£X1 — X2+ p(0~ t)] ’
).(2 = 7#5(07t)
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Matrix Form of Transformed System

Define state vectors:

The system becomes:

Zi = YZ+M(Z+ Y)+/\2X+/ F[Z + Y]dy
0

X
0
X = (A+ByD)X +(By + B,C)Z(0, 1)
With boundary conditions:

Z(1,t) = V, Y(0,t) = CZ(0,t) + DX
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The Backstepping Approach

Use Volterra transformation:
sxt) = 2000~ [ K(xy)Z(r, 0y
0
- [ L)Y 0y — ox(0)

Need to find:

o Kernel matrices K(x,y), L(x,y)

e Matrix function ®(x)

o Target system that achieves stability
Key challenge: Multiple coupled kernel PDEs!
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The Target System

Choose target system:
or = Xox+Qx)o
Ve = Tt N(to)+ [ ody
0
+ / =ypdy + Z1X
0
X = EX+Eo(0,t)

Where:
o Q(x) has special structure to decouple o
@ E; can be shaped via design parameters (¢(0)).
o After finite time, 0 — 0
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The Kernel Equations

The kernels must satisfy:

YK+ KT =
- LY =
o, =

With boundary conditions:

(K+L)A1—QK—F+/ (K + L) Fds,
y

(K + L)Ay — QL — F+/ (K + L) Fds,
y
Y loA - YN + T 10BD
-y 100 +/ Y YK — L)Aody
0

+X71L(x,0)ED

YL(x,x)+ L(x, X)X = =N\
YK(x,x) — K(x,x)X = —A+Q(x)
K(x,0)X — L(x,0)XC = o¢B

and ®(0) that can be chosen.
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Structure of Kernel Solutions

Theorem (Kernel Regularity)

The kernel equations have unique solutions (K, L, ®) where:
e Kjj, Lj are piecewise C L in each region
@ Discontinuities occur along characteristics:
&= "tix
Hj

o Components bounded by Me" for some M > 0

This justifies using different power series in each region!
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The Main Stabilization Result

Theorem (Exponential Stability)

Consider initial conditions (ug, ag) € HY, (uos, cor) € L?. For any C, > 0,
one can choose ®(0) and there exists C; > 0 such that the closed-loop

system verifies:
IX(6)ll7 < Cre™ @H|X(0) 1%

G. Chen, R. Vazquez, M. Krstic, " Rapid Stabilization of Timoshenko
Beam by PDE Backstepping,” IEEE Transactions on Automatic Control,
vol. 69, pp. 1141-1148, 2024.
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From Theory to Numerics

@ Theory tells us:
o Power series exist
o Where discontinuities appear
e What regularity to expect

@ Numerical implementation:

o 48 kernel functions
e 7 regions from discontinuities
e Series in each region

o Key link: Theoretical structure guides numerical method
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Computed Kernel Gains

— Ka1(1y) — Kaz(1.y) — Kaa(1.y)
— Kaa(ly) — Kun(1y) — Kaa(1y)
Kaa(1y)

— Ki(ly) — Kia(1y) — Kis(1y) 20
100F— Kia(1y) — Ka1(1y) — Kzo(1y)
50/ Kaa(1y) — Kaa(1y)

0.2
-50
-100
20
20/ Li(hy) — Laz(1y) — Lis(1y) — Lai(1y) — Laa(1yy) — Las(1y)
— Lu(ty) — Lat(1y) — Laao(1y) qof— Laa(ly) — Lar(1y) — La2(1y)

3(1.y)

Lag(1y) — Laa(1y)

Laa(1y)

Solutions of gain kernels Kj;(1,y), Lj(1,y),1<i<4,1<;<4
Notable features:

o Clear discontinuities in several kernels

@ Smooth behavior between discontinuities

@ Power series captures all features accurately
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MATLAB vs Mathematica: A Performance Comparison

Key Differences:
@ Mathematica: Symbolic computation

e Exact but slow for large orders
o Memory intensive
o Complex expressions

o MATLAB: Numerical linear algebra

o Fast sparse matrix operations
o Efficient memory usage
o Optimized for large systems

Performance Gains:
@ Orders of magnitude faster computation
@ Higher orders achievable (N > 100)

@ Maintained precision
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The MATLAB Implementation Framework

Core Components:
@ Vector-matrix formulation
@ Transformation matrices for operators
@ Sparse matrix handling
o Efficient linear system solver
Key Features:
@ Automatic equation generation
@ Built-in sparse matrix optimization
@ Direct access to numerical libraries

@ Easy integration with visualization tools
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Sparsity Analysis

Matrix Structure:
@ System matrix sparsity increases with order
@ For N =50: 99.2% sparsity

@ Memory savings scale with problem size

Order N Sparsity Speed-up
25 98.2% 5x
50 99.2% 10x
100 99.6% 20x

72/83



Localized Power Series: Theory

Key Concept:

K(x,¢) = ZZKU(X_XO )€~ &Yy
i=0 j=0
Advantages:
@ Choose expansion point strategically
@ Avoid singularities in complex plane
@ Better convergence for oscillatory solutions
@ Handle previously divergent cases
Requirements:
@ Analyticity in shifted domain
@ Proper choice of (xg, o)
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Localized Series: Implementation

Transformation Steps:
o Change of variables: X = x — xp, £ =& — &
@ Transform boundary conditions
o Adjust integral terms
o Modify system matrix
Computational Impact:
@ Slightly reduced sparsity
@ Moderate increase in computation time
@ Balanced by improved convergence
°

Enables solution of new problems
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Example: From Divergent to Convergent

Consider A\(x) = V0.5 + x2:
o Original series (at origin):
o Divergent due to branch points
o No solution possible
o Localized series (xo = 0.5, {o = 0.7):
e Convergent solution
o Clear physical interpretation

0

B e\ =)
--— - N =4
\ ----- N=8
05 NNO 0 e N =50
\§
N
N\,
< R
S N
> A
),
N,
),
15 NG
Jw
N
—y,
L | | | :
0.6 0.4 02 0 02
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Patches of Power Series: Concept

Key Idea:
@ Multiple localized expansions
o Different centers for different regions
@ Smooth connections between patches
@ Optimal order for each patch
Benefits:
Better approximation of oscillatory kernels

°
@ Lower orders needed per patch

@ More flexible handling of singularities
°

Improved numerical stability
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Future Directions: Patches Implementation

Technical Challenges:

@ Optimal patch placement

@ Connection conditions between patches

@ Error control at boundaries

@ Automatic patch generation
Applications:

@ Complex multi-kernel systems

@ Systems with discontinuities
e Highly oscillatory solutions
°

Neural operator training
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Toolbox Development

Current Features:
o Efficient sparse matrix operations
@ Localized series capability
@ Automatic equation generation
@ Example library
Planned Extensions:
@ Patch management system
@ Automatic singularity detection
o Neural operator interface
@ Parameter optimization

To be presented in Dec 2024: X. Lin, R. Vazquez, M. Krstic, " Towards a
MATLAB Toolbox to compute backstepping kernels using the power series
method,” CDC 2024.
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Final Remarks: Key Theoretical Results

Radially-Varying PDE Results:
@ First rigorous proof of convergence for backstepping kernels
@ Discovery of evenness condition for A(r)
@ Unified treatment for all dimensions n > 1
@ Complete system stability proof
@ Connection with Gauss hypergeometric functions
Power Series Method:
@ From complex to simple back to complex
@ Explicit convergence conditions
@ Treatment of discontinuous kernels
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Practical Implementations

Computational Framework:
Efficient Mathematica and MATLAB implementation

Localized power series approach

Orders of magnitude speed improvement in Matlab

Handling of previously unsolvable cases
Timoshenko Beam:
@ Solution of 48 coupled kernel functions

@ Treatment of 7 regions from discontinuities
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Future Directions

Theoretical Extensions:
@ Patched power series development
@ Non-even reaction coefficients?
@ Other methods?

Higher-dimensional problems
Practical Development:
@ Create a real toolbox
Find a good framework for polynomial operations
Implement the patched power series approach

Integration with neural approaches for training

Optimization of kernels
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Thank Y

Questions?

Contact Information:

Rafael Vazquez
Professor of Orbital
Mechanics at Universi...

Rafael Vazquez
Department of Aerospace Engineering
Universidad de Sevilla, Spain
rvazquezlQ@us.es

Connect on LinkedIn
with acknowledgments to Guangwei Chen, Junfei Qiao,

Miroslav Krstic, Jing Zhang, Jie Qi, and Xin Lin
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