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Problem

We consider the problem: stabilizing an unstable linear radially-dependent
reaction-diffusion equation, evolving on an n-ball (disk or sphere are of
most physical interest).

Main challenge: equations become singular in the radius; when applying
the backstepping method, same singularity appears in kernel equations.

Solved in:
1 R. Vazquez and M. Krstic, ”Boundary Control of Reaction-Diffusion PDEs on Balls in Spaces of Arbitrary Dimensions,”

ESAIM:Control, Optimization and Calculus of Variations, Vol. 22, No. 4, pp. 1078-1096, 2016.

2 R. Vazquez, J. Zhang, J. Qi, M. Krstic, ”Kernel Well-Posedness and Computation by Power Series in Backstepping
Output Feedback for Radially-Dependent Reaction-Diffusion PDEs on Multidimensional Balls,” Systems & Control
Letters, Vol. 177, pp. 105538, 2023
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Radially-Varying Reaction-Diffusion PDE on an
n-dimensional Ball

Consider the reaction-diffusion system in an n-dimensional ball of radius R
Bn(R):

∂u

∂t
= ϵ△n u + λ(r)u

where:

u = u(t, x⃗) is the state variable

x⃗ ∈ Bn(R) = {x⃗ ∈ Rn : ∥x⃗∥ ≤ R}
λ(r) is the radially-varying reaction coefficient

ϵ > 0 is the diffusion coefficient

ϵ△n the Laplacian in dimension n

Boundary conditions:

u(t, x⃗)
∣∣
∥x⃗∥=R

= U(t, x⃗)
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Coordinate System: n-Dimensional Spherical Coordinates

The ultraspherical coordinate system consists of:

One radial coordinate r = ∥x⃗∥
(n − 1) angular coordinates θ⃗ = (θ1, . . . , θn−1) where:

θ1, . . . , θn−2 ∈ [0, π] (polar angles)
θn−1 ∈ [0, 2π) (azimuthal angle)

Cartesian to spherical transformation:

x1 = r cos θ1

x2 = r sin θ1 cos θ2

x3 = r sin θ1 sin θ2 cos θ3
...

xn = r sin θ1 sin θ2 · · · sin θn−2 sin θn−1
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Spherical Harmonics Decomposition

We decompose the solution and control using n-dimensional ultraspherical
harmonics1:

u(t, r , θ⃗) =
∞∑
l=0

N(l ,n)∑
m=0

uml (r , t)Y
n
lm(θ⃗)

where:

Y n
lm is the m-th n-dimensional ultraspherical harmonic of degree l

N(l , n) is the number of linearly independent harmonics:

N(0, n) = 1 (mean value over n-ball)
For l > 0: N(l , n) = 2l+n−2

l

(
l+n−3
l−1

)
Y n
lm are eigenfunctions of the Laplace-Beltrami operator

1K.Atkinson and W. Han, Spherical Harmonics and Approximations on the Unit
Sphere: An Introduction, Springer, 2012.
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The Reduced 1-D Problem

From the spherical harmonics decomposition, each mode satisfies:

∂tu
m
l =

ϵ

rn−1
∂r

(
rn−1∂ru

m
l

)
− l(l + n − 2)

ϵ

r2
uml + λ(r)uml

evolving in r ∈ (0,R], with boundary conditions:

uml (t,R) = Um
l (t) (control)

Note:

The r−2 term appears from the angular derivatives

Singular behavior at r = 0 requires careful analysis

Control only acts at the boundary r = R
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Natural Stability of Higher Modes

Lemma (Higher Mode Stability)

Given λ(r) and R, there exists L ∈ N such that for all l > L, the
equilibrium uml ≡ 0 is open-loop exponentially stable.
Specifically, with Um

l = 0, there exists D1 > 0 such that:

∥uml (t, ·)∥L2 ≤ e−D1t∥uml (0, ·)∥L2

Key idea of proof: Use the L2 norm as Lyapunov function:

∥f ∥2L2 =
∫ R

0
|f (r)|2rn−1dr

The l(l + n − 2) term dominates λ(r) for large l .
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The Control Problem

Main goal: Design a state feedback control law Um
l (t) that stabilizes the

unstable modes (l ≤ L).

Approach: Use the backstepping method

Transform the system into a stable target system

Design through Volterra integral transformation

Key challenge: Finding the transformation kernel

Target system: We want to achieve

∂tw
m
l = ϵ

∂r (r
n−1∂rw

m
l )

rn−1
− ϵl(l + n − 2)

wm
l

r2
− cwm

l

with c > 0 and boundary condition wm
l (t,R) = 0
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The Backstepping Transform

Consider the Volterra transformation:

wm
l (t, r) = uml (t, r)−

∫ r

0
Kn
lm(r , ρ)u

m
l (t, ρ)dρ

This leads to:

Control law from transformation at r = R:

Um
l (t) =

∫ R

0
Kn
lm(R, ρ)u

m
l (t, ρ)dρ

Kernel PDE for Kn
lm(r , ρ) (after simplification, in domain

T = {(r , ρ) : 0 ≤ ρ ≤ r ≤ R}):

1

rn−1
∂r

(
rn−1

∂rK
n
lm

)
− ∂ρ

(
ρ
n−1

∂ρ

(
Kn
lm

ρn−1

))
− l(l + n − 2)

(
1

r2
−

1

ρ2

)
Kn
lm =

λ(ρ) + c

ϵ
Kn
lm

2ϵ
d

dr

(
Kn
lm(r, r)

)
= −(λ(r) + c)
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The Kernel Equation Challenge

The kernel equation has several challenging features:

Singular coefficients at r = 0 and ρ = 0

Traditional approaches for kernel well-posedness fail:

Successive approximations lead to singular integrals: only works for
l = 0 (mean value) and n = 3 (trivially reduces to 1-D case2), n = 2
(combinatorial proof based on Catalan’s numbers3)
Standard numerical schemes struggle with singularities
Explicit solutions only known for very special cases (constant λ):

Kn
lm(r, ρ) = −ρ

(
ρ

r

)l+n−2 λ + c

ϵ

I1

[√
λ+c
ϵ

(r2 − ρ2)

]
√

λ+c
ϵ

(r2 − ρ2)

Key Insight: Try power series solution

Similar to Frobenius method for ODEs

Must prove existence, convergence, need to handle the singularities

2
R. Vazquez and M. Krstic, ”Boundary control and estimation of reaction-diffusion equations on the sphere under

revolution symmetry conditions,” International Journal of Control, vol. 92, pp. 2-11, 2019.
3
R. Vazquez and M. Krstic, ”Boundary control of a singular reaction-diffusion equation on a disk,” CPDE 2016, 2016.
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Power Series Approach: Setting Up

Define a change of variables:

Kn
lm(r , ρ) = Gn

lm(r , ρ)ρ
(ρ
r

)l+n−2

The G -kernel must satisfy:

λ(ρ) + c

ϵ
Gn
lm = ∂rrG

n
lm + (3− n − 2l)

∂rG
n
lm

r

− ∂ρρG
n
lm + (1− n − 2l)

∂ρG
n
lm

ρ

with boundary condition:

Gn
lm(r , r) = −

∫ r
0 (λ(σ) + c)dσ

2rϵ
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Power Series Solution

Assuming λ(r) is analytic:

λ(r) + c

ϵ
=

∞∑
i=0

λi r
i

Seek solution of the form:

Gn
lm(r , ρ) =

∞∑
i=0

 i∑
j=0

Cij r
jρi−j


From the boundary condition:

∀i ,
i∑

j=0

Cij = − λi
2(i + 1)
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Even Property and Recursion

Theorem (Evenness Requirement)

If λ(r) is not even, then there are values of l ∈ N for which there is no
solution to the kernel equations in power series form.

When λ(r) is even:

Only even powers appear in the series, thus consider
λ(r)+c

ϵ =
∑∞

i=0 λi r
2i ,Gn

lm(r , ρ) =
∑∞

i=0

(∑i
j=0 Cij r

2jρ2(i−j)
)

The coefficients satisfy a recursion:

(j + 1)(j + 1− γ)Ci(j+1) − (i − j)(j − i − γ)Cij =
i−1∑
k=j

Ckjλi−1−k

where γ′ = γ
2 = n

2 + l − 1 ≥ 0
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Main Convergence Result

Theorem (Well-posedness)

Assume λ(r) is an even analytic function in [0,R]. Then:

1 For given n > 1 and all l ∈ N, there exists a unique power series
solution Gn

lm(r , ρ)

2 The solution is even in both variables

3 The series converges in the domain T = {(r , ρ) : 0 ≤ ρ ≤ r ≤ R}

Remark:

r = ∥x⃗∥ =
√
x21 + · · ·+ x2n

Non-even λ(r) implies non-smooth coefficients in physical space
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Sketch of Convergence Proof

Key steps to prove convergence:

1 Connection with Gauss hypergeometric functions
2 For odd dimension n:

Define special coefficients Lij involving Gamma functions
Find how the coefficients grow

3 For even dimension n:

Solve partially up to order γ − 1 by applying Fuchs’ theorem for regular
singular points on a recursive set of ODEs
Find how the coefficients grow for higher order

4 Define αi =
∑i

j=0 |Cij |. Need to show that
∑∞

i=0 αi r
2i converges.

5 Apply ratio test to prove absolute convergence. Based on:
V. Leon and B. Scardua,“On singular Frobenius for second order
linear partial differential equations,” preprint downloaded from ArXiv,
https://arxiv.org/abs/1907.02620, 2019.
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Connection with Gauss Hypergeometric Functions

Key insight: The coefficients relate to hypergeometric series
Define:

κ(i , γ) = 1 +
i−1∑
j=0

k=i−1∏
k=j

aik(γ)

where

aij(γ) =
(j + 1)(j + 1− γ)

(i − j)(i − j + γ)

Then, for i positive and γ > 0,

κ(i , γ) = 2F1(−i , γ − i ; 1 + γ; 1) =
2i !

i !

Γ(γ + 1)

Γ(i + γ + 1)
> 0

This connects our recursion to classical special functions theory.
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Solvability

One can find:

Cii = − 1

κ(i , γ′)

[
λi

2ϵ(2i + 1)
+ Hi

]
,

with Hi a function of previous coefficients that always exists.
Then:

Cij =

k=i−1∏
k=j

aik(γ
′)

Cii + B̂(i−1)j +
i−1∑

r=j+1

k=i−1∏
k=r

aik(γ
′)B̂(i−1)r ,

Where B̂i is also defined from previous coefficients.
Thus the key is that κ(i , γ′) ̸= 0, which is proved obtaining the
representation in previous page.
Thus we can always obtain the coefficients Cij .

18 / 83



Why Dimension Matters: The γ′ Split

The Critical Parameter

γ′ =
n

2
+ l − 1

n is spatial dimension

l is spherical harmonic degree

This appears in coefficient denominators!

Odd n

γ′ is half-integer

e.g., for n = 3:

γ′ =
3

2
+ l − 1 =

1

2
+ l

Never integer for any l!

Even n

γ′ is integer

e.g., for n = 2:

γ′ = 1 + l − 1 = l

Always integer!
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The Heart of the Matter: Coefficient Structure

Key Coefficient Formula

Lij =

(
i

j

)
(i + γ′)(i − 1 + γ′) · · · (i − j + γ′ + 1)

(1− γ′)(2− γ′) · · · (j − γ′)

Used to find an explicit formula for the coefficients and exploited for many
properties.

Odd Case (γ′ non-integer)

Denominator never zero

Can directly compute all Lij

Series coefficients well-defined

Convergence follows from
bounds

Even Case (γ′ integer)

Get terms like 1
0

Can’t compute Lij directly

Need special treatment

Must split solution
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Odd Dimension: Direct Convergence

Strategy

Define and bound coefficient sum: αi =
∑i

j=0 |Cij |

Key Inequality

Show αi satisfies: αi ≤ bi |λi |+ ci
∑i−1

k=0 αk |λi−1−k | where: bi decreasing,
ci → 0 as i → ∞

Conclusion

If λ(r) analytic in disc |r | < R:

∞∑
i=0

αi r
2i converges for |r | < R
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Even Dimension: The Split Solution

Step 1: Partial Solution

Up to order γ′ − 1: F (r , ρ) =
∑γ′−1

i=0 r2iϕi (ρ
2). Each ϕi solves ODE:

4xϕ′′γ′−1 + 2(2 + γ′)ϕ′γ′−1 +
λ(x) + c

ϵ
ϕγ′−1 = 0

Use Frobenius for those!

Step 2: Remainder Solution

Define Ǧn
lm = Gn

lm − F

Starts at order 2γ′

Avoids division by zero

Now similar to odd case

Can prove convergence for Ǧn
lm
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Summary of Power Series Solution

Key Achievements:

First rigorous proof of well-posedness for backstepping kernels via
power series

Discovered necessary evenness condition for λ(r)

Unified treatment for all dimensions n > 1

Explicit recursive formulas for coefficients

Practical Implications:

Simple numerical implementation

Symbolic computation possible

No need for discretization or mesh

High precision achievable
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The Full Picture: Physical Space Stability

Theorem (Complete System Stability)

Under the assumptions:

λ(r) even and analytic

Kernels Kn
lm(r , ρ) from power series solution

The complete physical solution:

u(t, r , θ⃗) =
∞∑
l=0

N(l ,n)∑
m=0

uml (r , t)Y
n
lm(θ⃗)

with control:

u(t, x⃗)
∣∣
∥x⃗∥=R

=
L∑

l=0

N(l ,n)∑
m=0

(∫ R

0
Kn
lm(R, ρ)u

m
l (t, ρ)dρ

)
Y n
lm(θ⃗)

is exponentially stable at the origin.
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Proof Strategy

1 For l > L: Natural stability (from angular derivatives)

∥uml (t, ·)∥L2 ≤ e−D1t∥uml (0, ·)∥L2

2 For l ≤ L: Controlled modes via backstepping

∥uml (t, ·)∥L2 ≤ Ce−D2t∥uml (0, ·)∥L2

3 Combining all modes:

∥u(t, ·)∥L2(Bn(R)) ≤ Ce−Dt∥u(0, ·)∥L2(Bn(R))

where D = min{D1,D2}

25 / 83



Outline

1 Introduction: Radially-Varying Reaction-Diffusion PDE on an
n-dimensional Ball ✓

2 Power series as a method of solution for backstepping kernel
computation

1 From complex to simple by complex numbers
2 Examples using Mathematica
3 Handling discontinuous kernels

3 The Timoshenko beam

4 Computational Aspects, Extensions and Challenges

5 Final remarks and conclusions

26 / 83



Power Series: From Complex to Simple

We developed power series for the radially-varying ball:
Complex geometry
Singularities at origin
Required Gauss hypergeometric theory

Key realization: Method is simpler for basic cases

More direct proofs
Easier implementation
Clear convergence conditions

Can become a general tool for kernel computation, specially for
beginners!
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Basic Power Series Framework

Let us demonstrate with a simple example:

Start with basic 1-D backstepping (e.g. reaction-diffusion equation)

Show explicit power series computation

Illustrate convergence proof using complex analysis

Demonstrate straightforward implementation

Key Theme: What was developed for a complex case becomes a powerful
general method
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Backstepping Method for 1-D Reaction Diffusion Equations

Consider

ut = ϵuxx + λ(x)u

u(t, L) = U(t)

u(t, 0) = 0

ϵ > 0, λ(x) a function in the domain x ∈ [0, L]. Potentially unstable

The feedback U =

∫ L

0
K (L, ξ)u(ξ)dξ is stabilizing, by choosing c ≥ 0 and

solving

Kxx(x , ξ)− Kξξ(x , ξ) =
λ(ξ) + c

ϵ
K (x , ξ)

K (x , x) = − 1

2ϵ

∫ x

0
(λ(ξ) + c) dξ

K (x , 0) = 0

in the triangular domain T = {(x , ξ) : 0 ≤ ξ ≤ x ≤ L}
At the end of the day, we only need K (L, ξ)
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Kernel PDEs

Kxx − Kξξ =
λ(ξ) + c

ϵ
K

K(x, x) = −
1

2ϵ

∫ x

0
[λ(σ) + c]dσ

K(x, 0) = 0

This is a Classical Goursat-type problem but with integral boundary
condition.

Second-order hyperbolic PDE

On triangular domain 0 ≤ ξ ≤ x ≤ L

With non-standard boundary conditions

If λ(x) = λ constant, and calling λ̄ = λ+c
ϵ , then we know

K (x , y) = −λ̄y
I1

(√
λ̄ (x2 − y2)

)
√
λ̄ (x2 − y2)

For very specific shapes of λ(x) other solutions exist.
There is no general explicit solution (or hope of getting one)
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The Power Series Framework: Theory

Consider the kernel equations:

Kxx(x , ξ)− Kξξ(x , ξ) =
λ(ξ) + c

ϵ
K (x , ξ)

K (x , x) = − 1

2ϵ

∫ x

0
[λ(σ) + c]dσ

K (x , 0) = 0

Key Insight: Extend to complex domain

Let DL be complex disk of radius L: {z ∈ C : |z | < L}
Consider kernel on polydisk DL+δ ×DL+δ

Analyticity in complex domain ⇒ power series convergence
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Main Theorem

Theorem

If there exists δ > 0 such that λ is analytic on DL+δ, then:

1 The kernel equation solution K (x , ξ) extends to an analytic function
on DL+δ/2 ×DL+δ/2

2 This solution is unique

3 The power series converges in this domain

Key to proof: Leverage classical successive approximation results in
complex domain

R. Vazquez, G. Chen, J. Qiao, M. Krstic, ”The power series method to
compute backstepping kernel gains: theory and practice,” CDC 2023.
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Proof Strategy (Part 1)

1 Transform to integral equation via rotation and integration:

K (x , ξ) = G

(
x + ξ

2
,
x − ξ

2

)
2 Write G as successive approximation series:

G (x , ξ) =
∞∑
i=0

Gi (x , ξ)

where:

G0 = − 1

4ϵ

∫ x

0
λ
( s
2

)
+ c ds

Gi+1 =
1

4ϵ

∫ x

ξ

∫ ξ

0
[λ(

τ − s

2
) + c]Gi (τ, s) ds dτ
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Proof Strategy (Part 2)

3 Consider the integrals as path integrals in the complex plane.
Complex line integrals are path-independent for analytic functions

4 Show recursively that each Gi is analytic

5 Prove uniform convergence using already known bound from succesive
approximations proof.

6 Apply Weierstrass M-test to get uniform convergence

Convergence + analyticity ⇒ unique power series solution
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Advantages of Complex Analysis Approach

Provides clear conditions for existence:

Analyticity of coefficients
Size of domain of convergence

Gives uniqueness of solution

By identity theorem for analytic functions
Power series must have unique coefficients

Constructive proof:
Shows why substitution method works
Guarantees convergence of numerical scheme
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Implementation in Mathematica: Key Steps

1 Introduce kernel power series:

K (x , ξ) =
n∑

i=0

i∑
j=0

Kijx
i−jξj

2 System coefficients expanded automatically:

Series[λ(x), {x , 0, n}]
Handles any analytic function
Automatic term collection

3 Substitute into PDE and boundary conditions:

D[expr, {x , 2}] - D[expr, {ξ, 2}] == ...
Coefficient[expr, x iξj ] gives equations
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Mathematica Implementation

No pre-processing needed
Automatic equation generation
Linear system solved symbolically
Can keep parameters symbolic
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Key Features of Implementation

Automation:
No manual derivation of recursions
System detects required equations
Handles any analytic coefficient

Verification:
Can substitute back into PDE
Check boundary conditions
Verify convergence numerically

Analysis:
Parameter studies
Order requirements
Convergence rates
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Basic Examples: Power Series Convergence

Example (Reaction-Diffusion with Smooth Coefficient)

Consider:
λ(x) = 3 + x2 sin(3x)

Analytic in C due to entire functions x2 and sin(3x) → converges

n=2

n=4

n=6

n=8

n=25

0.2 0.4 0.6 0.8 1.0
ξ

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

Note rapid convergence by order 8
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Basic Examples: Power Series Divergence

Example (Non-analytic Coefficient)

Consider:
λ(x) =

√
0.5 + x2

Branch point at x = ±i
√
0.5

Inside unit disk D1

Violates analyticity requirement

Series diverges as shown:

n=20 n=30 n=40 n=50

0.2 0.4 0.6 0.8 1.0
ξ

-10

-5

5

10
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Basic Examples: Parametric Solutions

Example (Linear Parametric Coefficient)

Consider:
λ(x) = 1 + Px

Symbolically compute power series in both x and parameter P:

K (L, ξ) =
∑
i ,j

Kij(P)ξ
iP j

P=1

P=5

P=10

P=15

0.2 0.4 0.6 0.8 1.0
ξ

-8

-6

-4

-2

Value: Single computation for family of problems
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Basic Examples: Space-Varying Diffusion

Consider:
ϵ(x)Kxx − ϵ(ξ)Kξξ = [λ(ξ) + c]K

Additional requirement: ϵ(z) ̸= 0 in DL+δ

Example (Convergent Case)

ϵ(x) = 2 + x2

Zeros at x = ±i
√
2

Outside unit disk

Series converges

Example (Divergent Case)

ϵ(x) = 2 + 3x2

Zeros at x = ±i
√
2/3

Inside unit disk

Series diverges
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Space-Varying Diffusion: Extension

Thus for the more general PDE with space-varying diffusion:

ϵ(x)Kxx(x , ξ)− ϵ(ξ)Kξξ(x , ξ) = [λ(ξ) + c]K (x , ξ)

−2ϵ(x)
d

dx
K (x , x) = −ϵ′(x)− λ(x)− c

K (x , 0) = 0

Theorem

If ∃δ > 0 such that λ and ϵ are analytic on DL+δ, and |ϵ(z)| > 0
∀z ∈ DL+δ, then there exists a unique power series solution converging in
DL+δ/2 ×DL+δ/2.
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Space-Varying Diffusion: Examples

Convergent Case:
λ(x) = 3 + x sin(6x)
ϵ(x) = 2 + x2

L = 1, c = 3

n=10

n=20

n=30

n=40

0.2 0.4 0.6 0.8 1.0
ξ

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.2

Divergent Case:
λ(x) = 3 + x sin(6x)
ϵ(x) = 2 + 3x2

L = 1, c = 3

n=10

n=20

n=30

n=40

0.2 0.4 0.6 0.8 1.0
ξ

-800

-600

-400

-200

Key Point: Divergence due to zero of ϵ(x) at x∗ =
√
2i
3 inside unit disk
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Hyperbolic System Example

Consider coupled hyperbolic system:

v1t = −µ1v1x + c1(x)v1 + c2(x)v2

v2t = µ2v2x + c3(x)v1 + c4(x)v2

With boundary conditions:

v1(t, 0) = qv(t, 0)

v2(t, L) = U(t)

Challenge: Multiple coupled kernels required for stabilization

45 / 83



Hyperbolic System: Kernel Equations

Kernel system:

µ(x)K vv
x + µ(ξ)K vv

ξ = −µ′(ξ)K vv + c2(ξ)K
vu

+ [c4(x)− c4(ξ)]K
vu

µ(x)K vu
x − ϵ(ξ)K vu

ξ = ϵ′(ξ)K vu + c3(ξ)K
vv

+ [c4(x)− c1(ξ)]K
vv

With boundary conditions:

K vv (x , 0) =
qϵ(0)

µ(0)
K vu(x , 0)

[ϵ(x) + µ(x)]K vu(x , x) = −c3(x)

46 / 83



Hyperbolic System: Results

Choosing coefficients:

µ(x) = 1.5 + x2

ϵ(x) = 1.2 + x3

c1(x) = 3 cos(x)

c2(x) = sin(2x)

c3(x) = 1 + 2ex

c4(x) =
1

3+x2

Kvu(1,ξ)
n=15

n=20

n=25

n=30

-1.00

-0.75

-0.50

-0.25

0

0 0.2 0.4 0.6 0.8 1.0
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Note: Space-varying transport speeds slow convergence
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Discontinuous Kernels: Motivation

Many backstepping designs lead to discontinuous kernels

Example: Motion planning for coupled transport equations

Plant:

v1t − µ1v1x = σ12(x)v2

v2t − µ2v2x = σ21(x)v1

with µ1 > µ2 > 0 and

v1(t, 1) = U1(t) v2(t, 1) = U2

Design U1(t) and U2(t) so that v1(t, 0) = Φ1(t) and v2(t, 0) = Φ2(t)
for some functions Φ1,Φ2 for t ≥ tM
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The Motion Planning Control Law

Control law structure:

U1 = Φ1(t +
1

µ1
) +

∫ 1

0
L11(1, ξ)v1(ξ)dξ +

∫ 1

0
L12(1, ξ)v2(ξ)dξ

U2 = Φ2(t +
1

µ2
)−

∫ 1

0

µ1
µ2

L21(ξ, 0)Φ1(t +
1− ξ

µ2
)dξ

+

∫ 1

0
L21(1, ξ)v1(ξ)dξ +

∫ 1

0
L22(1, ξ)v2(ξ)dξ

Four kernels (L11, L12, L21, L22) needed
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The Kernel Equations

µ1∂xL11 + µ1∂ξL11 = σ21(ξ)L12

µ1∂xL12 + µ2∂ξL12 = σ12(ξ)L11

µ2∂xL21 + µ1∂ξL21 = σ21(ξ)L22

µ2∂xL22 + µ2∂ξL22 = σ12(ξ)L21

With boundary conditions:

L11(x , 0) = L12(x , 0) = L22(x , 0) = 0

L12(x , x) =
σ12(x)

µ2 − µ1
, L21(x , x) =

σ21(x)

µ1 − µ2
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The Characteristic Line and Discontinuity

L12 has two boundary conditions:

L12(x , 0) = 0

L12(x , x) =
σ12(x)
µ2−µ1

Characteristic line: ξ = µ2
µ1
x

Solution: Define piecewise

L12(x , ξ) =

{
L112(x , ξ) if ξ < µ2

µ1
x

L212(x , ξ) if ξ > µ2
µ1
x
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Propagation of Discontinuity

L12 appears in L11 equation

L11 must be defined piecewise:

L11(x , ξ) =

{
L111(x , ξ) if ξ < µ2

µ1
x

L211(x , ξ) if ξ > µ2
µ1
x

But L11 must be continuous:

L111(x ,
µ2
µ1

x) = L211(x ,
µ2
µ1

x)
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Results for Transport System

For µ1 = 0.5, µ2 = 0.3, σ12(x) = 0.2 + x/3, σ21(x) = 0.3 + x2/3:

L21(1,ξ) L22(1,ξ) L11(1,ξ)

L12(1,ξ) L21(ξ,0)

0.2 0.4 0.6 0.8 1.0
ξ

-2

-1

1

2

3

Note:

Discontinuous L12(1, ξ)

Continuous but non-differentiable L11(1, ξ) at ξ = 0.6
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Power Series Method: Theoretical Foundation

Theorem (Power Series Convergence)

If there exists δ > 0 such that σ12 and σ21 are analytic on D1+δ, and
µ1 > µ2 > 0, then there exists piecewise-defined power series solutions for
L11, L12, L21, L22 so that:

1 Each kernel has a unique power series representation in each region

2 The series converge in D1+δ/2 ×D1+δ/2

3 The kernels solve the backstepping PDEs
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Timoshenko Beam: The Model

Consider a Timoshenko beam with displacement u(x , t) and rotation angle
α(x , t):

εutt = uxx − αx ,

µαtt = αxx +
a

ε
(ux − α) ,

with boundary conditions:

ux (0, t) = α(0, t)− θut (0, t)− ξu(0, t),

ux(1, t) = V1(t), αx(0, t) = 0, αx(1, t) = V2(t)

Where:

ε, µ > 0 are physical parameters

θ, ξ are anti-damping and anti-stiffness coefficients

V1(t),V2(t) are control inputs
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The Mathematical Challenge

The system lives in function space:

H = H1(0, 1)× L2(0, 1)× H1(0, 1)× L2(0, 1)

Key challenges:

Coupled wave equations
Anti-damping at uncontrolled boundary
Want to achieve prescribed decay rate

Assumption: θ ̸=
√
ε (non-resonance)
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The Well-Posedness Result

Theorem

Consider initial conditions (u0, α0) ∈ H1(0, 1), (u0t , α0t) ∈ L2(0, 1). If
θ ̸=

√
ε, then:

1. There exists a unique solution:

(u, ut , α, αt) ∈ C ([0,∞);H)

2. Without control (V1 = V2 = 0), the system is unstable

Use backstepping to stabilize!
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Key Idea: Transform Coordinates

Transform to new variables using Riemann-like transformation:

p(t, x) = ux(t, x) +
√
εut(t, x),

q(t, x) = ux(t, x)−
√
εut(t, x),

r(t, x) = αx(t, x) +
√
µαt(t, x),

s(t, x) = αx(t, x)−
√
µαt(t, x),

x1(t) = u(0, t),

x2(t) = α(0, t)

This transforms coupled wave equations into more manageable form.
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The Transformed System

In new variables we get (2 + 2)× (2 + 2) system with ODEs:

pt =
1√
ε
px −

1

2
√
ε
(r + s) ,

qt = − 1√
ε
qx −

1

2
√
ε
(r + s) ,

rt =
1
√
µ
rx +

a

2ε
√
µ
(p + q)− a

2ε
√
µ

[∫ x

0

(r + s)dy + 2x2

]
,

st = − 1
√
µ
sx +

a

2ε
√
µ
(p + q)− a

2ε
√
µ

[∫ x

0

(r + s)dy + 2x2

]
,

ẋ1 =
2√
ε− θ

[ξx1 − x2 + p(0, t)] ,

ẋ2 = − 1
√
µ
s (0, t)
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Matrix Form of Transformed System

Define state vectors:

Z =

[
p
r

]
,Y =

[
q
s

]
,X =

[
x1
x2

]
The system becomes:

Zt = ΣZx + Λ1(Z + Y ) + Λ2X +

∫ x

0
F [Z + Y ]dy

Yt = −ΣYx + Λ1(Y + Z ) + Λ2X +

∫ x

0
F [Z + Y ]dy

Ẋ = (A+ B2D)X + (B1 + B2C )Z (0, t)

With boundary conditions:

Z (1, t) = V , Y (0, t) = CZ (0, t) + DX
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The Backstepping Approach

Use Volterra transformation:

σ(x , t) = Z (x , t)−
∫ x

0
K (x , y)Z (y , t)dy

−
∫ x

0
L(x , y)Y (y , t)dy − Φ(x)X (t)

Need to find:

Kernel matrices K (x , y), L(x , y)

Matrix function Φ(x)

Target system that achieves stability

Key challenge: Multiple coupled kernel PDEs!
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The Target System

Choose target system:

σt = Σσx +Ω(x)σ

ψt = −Σψx + Λ1(ψ + σ) +

∫ x

0
Ξ2σdy

+

∫ x

0
Ξ3ψdy + Ξ1X

Ẋ = E1X + E2σ(0, t)

Where:

Ω(x) has special structure to decouple σ

E1 can be shaped via design parameters (Φ(0)).

After finite time, σ → 0
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The Kernel Equations

The kernels must satisfy:

ΣKx + KyΣ = (K + L) Λ1 − ΩK − F +

∫ x

y

(K + L)Fds,

ΣLx − LyΣ = (K + L) Λ1 − ΩL− F +

∫ x

y

(K + L)Fds,

Φx = Σ−1ΦA− Σ−1Λ2 +Σ−1ΦB2D

−Σ−1ΩΦ+

∫ x

0

Σ−1(K − L)Λ2dy

+Σ−1L(x , 0)ΣD

With boundary conditions:

ΣL(x , x) + L(x , x)Σ = −Λ1

ΣK (x , x)− K (x , x)Σ = −Λ1 +Ω(x)

K (x , 0)Σ− L(x , 0)ΣC = ΦB

and Φ(0) that can be chosen.
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Structure of Kernel Solutions

Theorem (Kernel Regularity)

The kernel equations have unique solutions (K , L,Φ) where:

Kij , Lij are piecewise C 1 in each region

Discontinuities occur along characteristics:

ξ =
µi
µj

x

Components bounded by MeMx for some M > 0

This justifies using different power series in each region!
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The Main Stabilization Result

Theorem (Exponential Stability)

Consider initial conditions (u0, α0) ∈ H1, (u0t , α0t) ∈ L2. For any C2 > 0,
one can choose Φ(0) and there exists C1 > 0 such that the closed-loop
system verifies:

∥X (t)∥H ≤ C1e
−C2t∥X (0)∥H

G. Chen, R. Vazquez, M. Krstic, ”Rapid Stabilization of Timoshenko
Beam by PDE Backstepping,” IEEE Transactions on Automatic Control,
vol. 69, pp. 1141-1148, 2024.
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From Theory to Numerics

Theory tells us:

Power series exist
Where discontinuities appear
What regularity to expect

Numerical implementation:

48 kernel functions
7 regions from discontinuities
Series in each region

Key link: Theoretical structure guides numerical method

67 / 83



Computed Kernel Gains

K11(1,y) K12(1,y) K13(1,y)
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Solutions of gain kernels Kij(1, y), Lij(1, y), 1 ≤ i ≤ 4, 1 ≤ j ≤ 4
Notable features:

Clear discontinuities in several kernels
Smooth behavior between discontinuities
Power series captures all features accurately 68 / 83
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MATLAB vs Mathematica: A Performance Comparison

Key Differences:

Mathematica: Symbolic computation

Exact but slow for large orders
Memory intensive
Complex expressions

MATLAB: Numerical linear algebra

Fast sparse matrix operations
Efficient memory usage
Optimized for large systems

Performance Gains:

Orders of magnitude faster computation

Higher orders achievable (N > 100)

Maintained precision
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The MATLAB Implementation Framework

Core Components:

Vector-matrix formulation

Transformation matrices for operators

Sparse matrix handling

Efficient linear system solver

Key Features:

Automatic equation generation

Built-in sparse matrix optimization

Direct access to numerical libraries

Easy integration with visualization tools
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Sparsity Analysis

Matrix Structure:

System matrix sparsity increases with order

For N = 50: 99.2% sparsity

Memory savings scale with problem size

Order N Sparsity Speed-up

25 98.2% 5x
50 99.2% 10x
100 99.6% 20x
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Localized Power Series: Theory

Key Concept:

K (x , ξ) =
∞∑
i=0

i∑
j=0

Kij(x − x0)
i−j(ξ − ξ0)

j

Advantages:

Choose expansion point strategically

Avoid singularities in complex plane

Better convergence for oscillatory solutions

Handle previously divergent cases

Requirements:

Analyticity in shifted domain

Proper choice of (x0, ξ0)
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Localized Series: Implementation

Transformation Steps:

Change of variables: x̃ = x − x0, ξ̃ = ξ − ξ0

Transform boundary conditions

Adjust integral terms

Modify system matrix

Computational Impact:

Slightly reduced sparsity

Moderate increase in computation time

Balanced by improved convergence

Enables solution of new problems
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Example: From Divergent to Convergent

Consider λ(x) =
√
0.5 + x2:

Original series (at origin):
Divergent due to branch points
No solution possible

Localized series (x0 = 0.5, ξ0 = 0.7):
Convergent solution
Clear physical interpretation
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-2

-1.5

-1

-0.5

0
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Patches of Power Series: Concept

Key Idea:

Multiple localized expansions

Different centers for different regions

Smooth connections between patches

Optimal order for each patch

Benefits:

Better approximation of oscillatory kernels

Lower orders needed per patch

More flexible handling of singularities

Improved numerical stability
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Future Directions: Patches Implementation

Technical Challenges:

Optimal patch placement

Connection conditions between patches

Error control at boundaries

Automatic patch generation

Applications:

Complex multi-kernel systems

Systems with discontinuities

Highly oscillatory solutions

Neural operator training
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Toolbox Development

Current Features:

Efficient sparse matrix operations

Localized series capability

Automatic equation generation

Example library

Planned Extensions:

Patch management system

Automatic singularity detection

Neural operator interface

Parameter optimization

To be presented in Dec 2024: X. Lin, R. Vazquez, M. Krstic, ”Towards a
MATLAB Toolbox to compute backstepping kernels using the power series
method,” CDC 2024.
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Final Remarks: Key Theoretical Results

Radially-Varying PDE Results:

First rigorous proof of convergence for backstepping kernels

Discovery of evenness condition for λ(r)

Unified treatment for all dimensions n > 1

Complete system stability proof

Connection with Gauss hypergeometric functions

Power Series Method:

From complex to simple back to complex

Explicit convergence conditions

Treatment of discontinuous kernels
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Practical Implementations

Computational Framework:

Efficient Mathematica and MATLAB implementation

Localized power series approach

Orders of magnitude speed improvement in Matlab

Handling of previously unsolvable cases

Timoshenko Beam:

Solution of 48 coupled kernel functions

Treatment of 7 regions from discontinuities
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Future Directions

Theoretical Extensions:

Patched power series development

Non-even reaction coefficients?

Other methods?

Higher-dimensional problems

Practical Development:

Create a real toolbox

Find a good framework for polynomial operations

Implement the patched power series approach

Integration with neural approaches for training

Optimization of kernels
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Thank You!

Questions?

Contact Information:

Rafael Vazquez
Department of Aerospace Engineering

Universidad de Sevilla, Spain
rvazquez1@us.es

with acknowledgments to Guangwei Chen, Junfei Qiao,
Miroslav Krstic, Jing Zhang, Jie Qi, and Xin Lin

Connect on LinkedIn
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