Robustness with neural ordinary differential equations

Rafael Orive, Daniel Fernandez (FAU)
Work with collaboration A. Alvarez (UAM), E. Zuazua (FAU)

Almagro, 3 December, 2024

Universidad Auténoma de Madrid



Supervised Learning setting

Setting: Data (x,y) ~

~ is (in general) an unknown probability distribution

Goal: Given a sample data x € R? predict y € RP

e Choose a model F

) Model
Feature (input) 9  Label (output)
x € R? F F(x) € R
Some typical model choices:
B Linear regression e
—>»
M Neural network —>

B Neural ODE



Neural ordinary differential equations

A neural ODE (NODE) [Chen, 2018] in its most general form, where xo € R
is the input (features), u = [w, b] € R™ is the control (parameters) and £

some neural network architecture, is given by

x(t) = f(t,x(t),u), te(0,T] (1)
x(0) = xo

Tl

XD = 5O 4 pf (e, xO u)

X0 — Xo
The “nonlinear” in NODEs:
_ Output:
e Inside: f(x,u) = o(w-x+ b) F(x0) := Po®7(x0)
o OQutside: f(X7 U) = WU(X) +b ° (Dt(xo) = X(t;Xo) flow map
e Bottleneck: e P=Mx+ N, M,N linear

f(x,u) = weo(wy - x + b)



Optimising the model

e Loss function J(u; x,y) as a measure of error between predicted and
actual values for each control/parameter u.
e Goal: Find
muin []E(Xﬁy)NWJ(u; X,y)}

But « is unknown... find instead
N
muin Z u, X:,y:

Training (optimisation)

Training data “Optimal”
{(xi, yi) 1 CRY x R parameters (control)
ueR%

e Optimisation through Gradient Descent (GD):
g = gk v, 6]

e Variants of GD used in practice: SGD, Adam, BFGS, ---



Classical training: Discretize —> Optimize

Idea: Our solver of the neural ODE is a neural network architecture. Then, we
use the the network algorithms.

Remember gradient descent u*™ = u* — 6V, J [u¥].
Gradient computation:
1) Discretize x(t)
< = ODESolver(t, x(o)7 e ,x“_l)7 u).
2) Apply chain rule (backpropagation)

(L) 0]
V) = aJ 8X7 .”8x .
Ox(L) 9x(L=1) ou)




Classical training: Optimize —> Discretize

From Pontryagin's Maximum Principle we can directly compute V,J.
Suppose J can be written as

J(u; x0,y) = /0 L(x(t), u) dt + V(P1(x0),y) 2)

Gradient computation through the adjoint [Massaroli, 2020]

Vud = / t), Duf(t,x(t), u)) dt

where p is the solution to

p(t) = —Dxf(t,x(t), u)"p(t) — ViL(t,x(t), u), 3)
p(T) = Vxn)V(x(T),y).

Adjoint method IS backpropagation!
Case of time-dependent controls: Gateaux derivative

duJ(U)n:/o (p(t), Duf (u(t), x(t))n(t)) dt.



Numerical aspects

In the numerical experiments we use piecewise constant controls

Piecewise constant controls
u(t) = uj, t € [t tis]

with to :=0y ty := T, then

) = [ ple)Da (o) )

(4)

where p is the solution to the adjoint equation.

We need to get the gradient for any data:
1. Solver the state x in (0, T].
2. Solver the adjoint p in [0, T)

3. Integrate (4)
Very expensive..., but we get new algorithms with optimize control techniques.



Robustness

e Robustness: the ability to withstand or overcome adverse conditions or
rigorous testing.

e Data (x, y) is supposed to follow a probability distribution ~

e Classical training might not give good results for perturbed input data

Applications in
B Autonomous driving
B Malware/spam detection

B Malfunctions (aeronautics, medicine)

stop interference limit 70



Input perturbation in classification problems:

e Budget/force e > 0, perturbation s(¢) € R?
e Perturbed input x + s(e)

B Random perturbation s ~ ¢ - N(0, /d)
B Adversarial attack s € B.(0) C R?

Solution: For a given norm / in R9, . S
. . 1) Solve the inner maximization
deal with the robust training problem

problem
min B,y Lg@i (i x + s,y)} Aer7) 5= piex Aeprarer )
Tl 2) Solve the outer minimization
problem

minE )y { max J(u;x + ev7y)]

< muin E(x,y)~y H(u; x, y).



Inner maximization problem

Taylor expansion of J at x results in

I?ﬁ)a<x1 J(uix+ev,y)=J(u;x,y)+e€ En)ax (Vd(u; x, ), v) + O(e%)

Modified robust training problem

m|n Ex,y)my [J(u; x,y) + elw)a<xl<VXJ(u; x,y), v)}

£°° norm (Fast Gradient Sign Method [Goodfellow, 2014]):

o [IVaed(ui X, y)lln = maxyy o <1{Vied (1 X, ), v)
o v =sign(V,J(u; x,y)) maximizes (V,J(u; x,y), v)

+.007 =

T+
* sign (Ve (6, ., ) esign(V,.J(6, z,y))
y ="‘panda” “nematode” “egibbon”
w/ 57.7% w/ 8.2% w/ 99.3 %
confidence confidence confidence

10



Linear sensitivity of loss

From Pontryagin's Maximum Principle we can directly compute V,,J.

For u € L*((0, T),R%), y € R? fixed, linear sensitivity of xo — J(u; X0, y) in

the direction v € R? is

J(u; x0 + ev) — J(x0)
€

Vid(xo)v = 6Il’n0 =p(0) v

where p(t) is the solution to the adjoint equation.

p(t) = =Dxf(x(t), u(t))p(t) — ViL(t, x(t),u), te€l0,T)
P(T) = Dor(x)J(u; x0,y)

New penalty term

€ maxl(VxJ(u; X,y),v) =€ [nax (p(0), v)

I(v)<

11



New loss function

Augmented loss function

Let the control u € L*((0, T); R%) be fixed and let x(t) y p(t) be the
solutions of the state and adjoint equation respectively. For fixed € > 0 the

augmented loss function

dilu; xo; €] := J[u; x0] + elw)a§><1<p(0), v)

approximates the minimization problem with linear precision in e.

If I is the norm £" for r € [1, 0], the augmented loss function can be written

as
Jr[u; xo0; €] := J[u; xo] + €||p(0)|

where r and r’ are Holder conjugates, i.e. 1/r+1/r = 1.

Proof is based on Holder inequality.

12



Computation of the penalty term gradient

Gradient of quadratic penalty term
Control u be fixed and the quadratic penalty term

S[u] = 1lpu(0)12

where p, is the adjoint with control u. Then,
duS(u)n ::*/ q(t) - D (x(2), u(t))"[6nx(t), p(1)]
0
—/0 q(t) - Duxf (x(t), u(t))"[n(t), p(t)] dt

q is the perturbation with respect the penalty term
q(t) = Dxf(x(t), u(t))q(t), te€(0,T] (5)
4(0) = —pu(0)
dnx is the sentivity with respect the controls
Syx(t) = Dxf (x(t), u(t))byx + Duf (x(t), u(t))n(t), t € (0,T] (6)
dyx(0) = 0. 13



Numerical aspects

In the numerical experiments we use piecewise constant controls
U(t‘) =uj, te [t,', t,'+1]

Gradient penalty term

SIS0 = = [ a(e) - Ducklx(e), () [5yx(e) p(e)eke

_ /rtwl q(t) . Du,-xf(X(t), U(t))T[’U(t), p(t)] dt

where p is the solution to the adjoint equation (3).

We need to get the gradient for any data:

Solver the state x in (0, T].
Solver the adjoint p in [0, T)
Solver g and d,x in (0, T]
Integrate (4) and penalty term

= @D E

Very expensive..., but we get new algorithms with optimize control techniques.

14



Numerical experiments

e In the numerical experiments we use piecewise constant controls consisting
of 10 pieces (stacked NODEs)

e Normal perturbed data

e Dormand-Prince-Shampine solvers

e Adams, BFGS optimizers solvers

e Modified neural ODE architecture of Wohrer, Massaroli

e Expensive but not too much

15



Experiments

Training set Testing set

-1

16



Experiments

1.000 20 1.000
0.857 0.857
0.714 0.714
0.571 0571 &
< H
0.429 0420F
-05 g
0.286 0.286
-1.0
0143 _1s 0143
-2.0 0.000 =20 0.000
-20 -15 -1.0 -05 0.0 -20 -15 -1.0 -05 00 05 10 15 20
X x
e=0.2 =103
1.000 1.000
0.857 0.857
0.714 0.714
0.571 g 0571 g
£ 00 § 2 H
04295 04293
-05 -0.5 g
0.286 0.286
-1.0 -1.0
“15 0143 _1s 0143
-2.0 0.000 0.000

-20
-20 -15 -10 05 00 05 10 15 20 =20 -15 -1.0 =05 00 05 10 15 20

X X 17



e We perform robust trainings with differents values € given to penalty term

e \We compare the performance in perturbed testing set

Evaluation set H Classical training | 0.1-robust | 0.2-robust | 0.3-robust

Test 0.042488 0.041761 0.075317 0.092077
0.1-FGSM-attack test 0.064908 0.063728 0.085838 0.207678
0.1-perturbed test 0.046271 0.041761 0.080335 0.182127
0.2-perturbed test 0.075131 0.087367 0.080335 0.190990
0.3-perturbed test 0.0105135 0.0102906 | 0.092077 0.199580

18



Experiments

Training set Testing set

-1

|
w
|
]
|
=
=]
=
A
w
|
w
I
[N]
|
[N
=]
o
)
w

19



Experiments

-20
20 -15 -1.0 -05 00
x

% 00

-05

-10

-15

-20
-20 -15 -10 05 00 05 10 15 20
x

1.000

0857

0714

0571

0429

prediction prob.

0286
0143

0.000

1.000
0857

0714

0571 8
€

04295

0286

0143

0.000

x

-20
-20 -15 -1.0 -05 00 05 5 20
x

e=20.3

-20
=20 -15 -1.0 =05 00 05 10 15 20
x

1.000

0857

0714

0571

0.429

prediction prob.

0286

0143

0.000

1.000

0857

0714

0571

0429

prediction prob.

0286

0143

0.000

20



Conclusions

Conclusions:

e Adversarial attacks are a
threat to Machine Learning
models

e NODEs let us treat problems
about neural networks from a
continuous point of view

e Generalize gradient
computation of the penalty
term to a more general norm

e Main takeaway: memory
efficient methods for
computing gradient of loss
function

21



Conclusions

Conclusions:

e Adversarial attacks are a
threat to Machine Learning Future directions:

models e More simulations (with adversarial

e NODEs let us treat problems attacks).
about neural networks from a e Choice of € > 0 for robust training
continuous point of view . .
e Consider other types of perturbation

e Generalize gradient . .

. e Enable robust training only in some part

computation of the penalty . .

of the training process and then switch

term to a more general norm . o
to classical training

e Main takeaway: memory ol Lt b B - techni

. e Implementation wi ayesian techniques
efficient methods for > y E
computing gradient of loss

function

21



Thank you for your attention!

22



