
Robustness with neural ordinary differential equations

Rafael Orive, Daniel Fernández (FAU)

Work with collaboration A. Álvarez (UAM), E. Zuazua (FAU)

Almagro, 3 December, 2024

Universidad Autónoma de Madrid

1



Supervised Learning setting

• Setting: Data (x , y) ∼ γ

• γ is (in general) an unknown probability distribution

• Goal: Given a sample data x ∈ Rd predict y ∈ RD

• Choose a model F

Feature (input)

x ∈ Rd

Model

F
Label (output)

F (x) ∈ RD

Some typical model choices:

■ Linear regression

■ Neural network

■ Neural ODE

2



Neural ordinary differential equations

A neural ODE (NODE) [Chen, 2018] in its most general form, where x0 ∈ Rd

is the input (features), u = [w , b] ∈ Rdu is the control (parameters) and f

some neural network architecture, is given byẋ(t) = f (t, x(t), u), t ∈ (0,T ]

x(0) = x0
(1)

x (t+1) = x (t) + hf (t, x (t), u)

x (0) = x0

The “nonlinear” in NODEs:

• Inside: f (x , u) = σ(w · x + b)

• Outside: f (x , u) = wσ(x) + b

• Bottleneck:

f (x , u) = w2σ(w1 · x + b)

Output:

F (x0) := P ◦ ΦT (x0)

• Φt(x0) = x(t; x0) flow map

• P = Mx + N, M,N linear

3



Optimising the model

• Loss function J(u; x , y) as a measure of error between predicted and

actual values for each control/parameter u.

• Goal: Find

min
u

[
E(x,y)∼γJ(u; x , y)

]
But γ is unknown... find instead

min
u

1

N

N∑
i=1

J(u; xi , yi )

Training data

{(xi , yi )}Ni=1 ⊆ Rd × RD

Training (optimisation)
“Optimal”

parameters (control)

u ∈ Rdu

• Optimisation through Gradient Descent (GD):

uk+1 = uk − η∇uJ [uk ]

• Variants of GD used in practice: SGD, Adam, BFGS, · · ·

4



Classical training: Discretize =⇒ Optimize

Idea: Our solver of the neural ODE is a neural network architecture. Then, we

use the the network algorithms.

Remember gradient descent uk+1 = uk − δ∇uJ [uk ].

Gradient computation:

1) Discretize x(t)

x (l) = ODESolver(t, x (0), · · · , x (l−1), u).

2) Apply chain rule (backpropagation)

∇u(l)J =
∂J

∂x (L)

∂x (L)

∂x (L−1)
· · · ∂x

(l)

∂u(l)
.

5



Classical training: Optimize =⇒ Discretize

From Pontryagin’s Maximum Principle we can directly compute ∇uJ.

Suppose J can be written as

J(u; x0, y) =

∫ T

0

L(x(t), u) dt +Ψ(ΦT (x0), y) (2)

Gradient computation through the adjoint [Massaroli, 2020]

∇uJ =

∫ T

0

⟨p(t),Duf (t, x(t), u)⟩ dt,

where p is the solution toṗ(t) = −Dx f (t, x(t), u)
⊺p(t)−∇xL(t, x(t), u),

p(T ) = ∇x(T )Ψ(x(T ), y).
(3)

Adjoint method IS backpropagation!

Case of time-dependent controls: Gateaux derivative

duJ(u)η =

∫ T

0

⟨p(t),Duf (u(t), x(t))η(t)⟩ dt.
6



Numerical aspects

In the numerical experiments we use piecewise constant controls

Piecewise constant controls

u(t) = ui , t ∈ [ti , ti+1]

with t0 := 0 y tm := T , then

d

dui
J(u) =

∫ ti+1

ti

p(t)Dui f (x(t), u(t)) dt (4)

where p is the solution to the adjoint equation.

We need to get the gradient for any data:

1. Solver the state x in (0,T ].

2. Solver the adjoint p in [0,T )

3. Integrate (4)

Very expensive..., but we get new algorithms with optimize control techniques.

7



Robustness

• Robustness: the ability to withstand or overcome adverse conditions or

rigorous testing.

• Data (x , y) is supposed to follow a probability distribution γ

• Classical training might not give good results for perturbed input data

Applications in

■ Autonomous driving

■ Malware/spam detection

■ Malfunctions (aeronautics, medicine)

8



Robustness

Input perturbation in classification problems:

• Budget/force ϵ > 0, perturbation s(ϵ) ∈ Rd

• Perturbed input x + s(ϵ)

■ Random perturbation s ∼ ϵ · N(0, Id)

■ Adversarial attack s ∈ Bϵ(0) ⊆ Rd

Solution: For a given norm l in Rd ,

deal with the robust training problem

min
u

E(x,y)∼γ

[
max
l(s)≤ϵ

J(u; x + s, y)

]

min
u

E(x,y)∼γ

[
max
l(v)≤1

J(u; x + ϵv , y)

]

1) Solve the inner maximization

problem

H(u; x , y) := max
l(v)≤1

J(u; x+ϵv , y).

2) Solve the outer minimization

problem

min
u

E(x,y)∼γH(u; x , y).

9



Inner maximization problem

Taylor expansion of J at x results in

max
l(v)≤1

J(u; x + ϵv , y) = J(u; x , y) + ϵ max
l(v)≤1

⟨∇xJ(u; x , y), v⟩+ O(ϵ2)

Modified robust training problem

min
u

E(x,y)∼γ

[
J(u; x , y) + ϵ max

l(v)≤1
⟨∇xJ(u; x , y), v⟩

]

ℓ∞ norm (Fast Gradient Sign Method [Goodfellow, 2014]):

• ∥∇xJ(u; x , y)∥1 = max∥v∥∞≤1⟨∇xJ(u; x , y), v⟩
• v = sign(∇xJ(u; x , y)) maximizes ⟨∇xJ(u; x , y), v⟩

10



Linear sensitivity of loss

From Pontryagin’s Maximum Principle we can directly compute ∇x0J.

Linear sensitivity - initial data

For u ∈ L2((0,T ),Rdu ), y ∈ Rd fixed, linear sensitivity of x0 → J(u; x0, y) in

the direction v ∈ Rd is

∇x0J(x0)v := lim
ϵ→0

J(u; x0 + ϵv)− J(x0)

ϵ
= p(0) · v

where p(t) is the solution to the adjoint equation.ṗ(t) = −Dx f (x(t), u(t))
⊺p(t)−∇xL(t, x(t), u), t ∈ [0,T )

p(T ) = DΦT (x0)J(u; x0, y)

New penalty term

ϵ max
l(v)≤1

⟨∇xJ(u; x , y), v⟩ = ϵ max
l(v)≤1

⟨p(0), v⟩

11



New loss function

Augmented loss function

Let the control u ∈ L2((0,T );Rdu ) be fixed and let x(t) y p(t) be the

solutions of the state and adjoint equation respectively. For fixed ϵ > 0 the

augmented loss function

Jl [u; x0; ϵ] := J[u; x0] + ϵ max
l(v)≤1

⟨p(0), v⟩

approximates the minimization problem with linear precision in ϵ.

If l is the norm ℓr for r ∈ [1,∞], the augmented loss function can be written

as

Jr [u; x0; ϵ] := J[u; x0] + ϵ∥p(0)∥r′

where r and r ′ are Hölder conjugates, i.e. 1/r + 1/r ′ = 1.

Proof is based on Hölder inequality.

12



Computation of the penalty term gradient

Gradient of quadratic penalty term

Control u be fixed and the quadratic penalty term

S [u] := ∥pu(0)∥22

where pu is the adjoint with control u. Then,

duS(u)η :=−
∫ T

0

q(t) · Dxx f (x(t), u(t))
⊺[δηx(t), p(t)]

−
∫ T

0

q(t) · Dux f (x(t), u(t))
⊺[η(t), p(t)] dt

q is the perturbation with respect the penalty termq̇(t) = Dx f (x(t), u(t))q(t), t ∈ (0,T ]

q(0) = −pu(0)
(5)

δηx is the sentivity with respect the controls ˙δηx(t) = Dx f (x(t), u(t))δηx + Duf (x(t), u(t))η(t), t ∈ (0,T ]

δηx(0) = 0.
(6)

13



Numerical aspects

In the numerical experiments we use piecewise constant controls

u(t) = ui , t ∈ [ti , ti+1]

Gradient penalty term

d

dui
[S(u)]η(t) :=−

∫ T

ti

q(t) · Dxx f (x(t), u(t))
⊺[δηx(t), p(t)]dt

−
∫ ti+1

ti

q(t) · Dui x f (x(t), u(t))
⊺[η(t), p(t)] dt

where p is the solution to the adjoint equation (3).

We need to get the gradient for any data:

1. Solver the state x in (0,T ].

2. Solver the adjoint p in [0,T )

3. Solver q and δηx in (0,T ]

4. Integrate (4) and penalty term

Very expensive..., but we get new algorithms with optimize control techniques.

14



Numerical experiments

• In the numerical experiments we use piecewise constant controls consisting

of 10 pieces (stacked NODEs)

• Normal perturbed data

• Dormand-Prince-Shampine solvers

• Adams, BFGS optimizers solvers

• Modified neural ODE architecture of Wohrer, Massaroli

• Expensive but not too much

15



Experiments

16



Experiments

ϵ = 0 ϵ = 0.1

ϵ = 0.2 ϵ = 0.3

17



Experiments

• We perform robust trainings with differents values ϵ given to penalty term

• We compare the performance in perturbed testing set

Evaluation set Classical training 0.1-robust 0.2-robust 0.3-robust

Test 0.042488 0.041761 0.075317 0.092077

0.1-FGSM-attack test 0.064908 0.063728 0.085838 0.207678

0.1-perturbed test 0.046271 0.041761 0.080335 0.182127

0.2-perturbed test 0.075131 0.087367 0.080335 0.190990

0.3-perturbed test 0.0105135 0.0102906 0.092077 0.199580

18



Experiments

19



Experiments

ϵ = 0 ϵ = 0.1

ϵ = 0.2 ϵ = 0.3

20



Conclusions

Conclusions:

• Adversarial attacks are a

threat to Machine Learning

models

• NODEs let us treat problems

about neural networks from a

continuous point of view

• Generalize gradient

computation of the penalty

term to a more general norm

• Main takeaway: memory

efficient methods for

computing gradient of loss

function

Future directions:

• More simulations (with adversarial

attacks).

• Choice of ϵ > 0 for robust training

• Consider other types of perturbation

• Enable robust training only in some part

of the training process and then switch

to classical training

• Implementation with Bayesian techniques

21



Conclusions

Conclusions:

• Adversarial attacks are a

threat to Machine Learning

models

• NODEs let us treat problems

about neural networks from a

continuous point of view

• Generalize gradient

computation of the penalty

term to a more general norm

• Main takeaway: memory

efficient methods for

computing gradient of loss

function

Future directions:

• More simulations (with adversarial

attacks).

• Choice of ϵ > 0 for robust training

• Consider other types of perturbation

• Enable robust training only in some part

of the training process and then switch

to classical training

• Implementation with Bayesian techniques

21



Thank you for your attention!

22


