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The Calderón Problem

During his early career, as a research engineer in the geophysical
division at YPF, Alberto Calderón considered the following
question:

Inverse conductivity problem
Can one reconstruct the conductivity from
measurements made only at the boundary of a
conductor?

Motivation: Knowledge of the conductivity function gives an
image of the interior of the conductor. Non-invasive testing
applications: Electrical impedance tomography (EIT). An
analogous problem can be formulated in the context of
Geophysics.



The Calderón-Gel’fand Problem

Let Ω be a bounded domain of Rd, d ≥ 2 with smooth boundary
and q ∈ L∞(Ω,R) a real potential and κ ∈ R the energy.

If κ is not a Dirichlet eigenvalue of −∆ + q then, given
f ∈ C∞(∂Ω), there exists a unique u ∈ H2(Ω) that solves:{

(−∆− κ+ q(x))u(x) = 0, x ∈ Ω,

u|∂Ω = f.

The Dirichlet-to-Neumann (DtN) map at energy κ defined by
q maps f (Dirichlet datum) to the normal derivative of the
corresponding solution on the boundary (Neumann data):

Λq,κ : f 7−→ Λq,κf := ∂νu|∂Ω.



The Calderón-Gel’fand Problem

Let Ω be a bounded domain of Rd, d ≥ 2 with smooth boundary
and q ∈ L∞(Ω,R) a real potential and κ ∈ R the energy.

If κ is not a Dirichlet eigenvalue of −∆ + q then, given
f ∈ C∞(∂Ω), there exists a unique u ∈ H2(Ω) that solves:{

(−∆− κ+ q(x))u(x) = 0, x ∈ Ω,

u|∂Ω = f.

The Dirichlet-to-Neumann (DtN) map at energy κ defined by
q maps f (Dirichlet datum) to the normal derivative of the
corresponding solution on the boundary (Neumann data):

Λq,κ : f 7−→ Λq,κf := ∂νu|∂Ω.



The Calderón-Gel’fand Problem

Let Ω be a bounded domain of Rd, d ≥ 2 with smooth boundary
and q ∈ L∞(Ω,R) a real potential and κ ∈ R the energy.

If κ is not a Dirichlet eigenvalue of −∆ + q then, given
f ∈ C∞(∂Ω), there exists a unique u ∈ H2(Ω) that solves:{

(−∆− κ+ q(x))u(x) = 0, x ∈ Ω,

u|∂Ω = f.

The Dirichlet-to-Neumann (DtN) map at energy κ defined by
q maps f (Dirichlet datum) to the normal derivative of the
corresponding solution on the boundary (Neumann data):

Λq,κ : f 7−→ Λq,κf := ∂νu|∂Ω.



The Calderón-Gel’fand Problem

If Ω ⊆ Rd is the unit ball then for q =

If κ = 0

Λ0,0 =

√
−∆∂Ω +

(
d− 2

2

)2

− d− 2

2

and SpL2(∂Ω) Λ0,κ = N.

If κ 6= 0 then Λ0,κ has the same eigenfunctions as Λ0,0

(spherical harmonics) but the spectrum changes:

λ`[0, κ] = `−
√
κ
J`+1+νd(

√
κ)

J`+νd(
√
κ)

, ` ∈ N,

where

νd :=
d− 2

2
.



The Calderón-Gel’fand Problem

If Ω ⊆ Rd is the unit ball then for q =

If κ = 0

Λ0,0 =

√
−∆∂Ω +

(
d− 2

2

)2

− d− 2

2

and SpL2(∂Ω) Λ0,κ = N.

If κ 6= 0 then Λ0,κ has the same eigenfunctions as Λ0,0

(spherical harmonics) but the spectrum changes:

λ`[0, κ] = `−
√
κ
J`+1+νd(

√
κ)

J`+νd(
√
κ)

, ` ∈ N,

where

νd :=
d− 2

2
.



The Calderón-Gel’fand Problem

The DtN map enjoys a number of interesting properties:

Λ0,0 =
√
−∆∂Ω +B where B ∈ L(L2(∂Ω)) is a bounded

operator on L2(∂Ω).

Λq,κ = Λ0,κ +K where K ∈ K(L2(∂Ω)) is a compact
operator on L2(∂Ω).

The Calderón-Gel’fand problem ∼’55
Is q uniquely determined by the DtN map Λq,κ? If so,
reconstruct the potential q from the boundary data Λq,κ.
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The forward map
The Calderón problem can be reformulated in terms of the
non-linear map

Φκ : X −→ K(L2(∂Ω))
q 7−→ Λq,κ − Λ0,κ

(called the forward map) where (for instance)

X := {q ∈ L∞(Ω,R) : κ 6∈ SpH1
0 (Ω)(−∆ + q)}.

The uniqueness aspect. Is the map Φκ injective?
The stability issue. Find a modulus of continuity for
(Φκ)−1:

‖q1−q2‖L∞(Ω) ≤ ω(‖Φκ(q1)−Φκ(q2)‖L(L2)) = ω(‖Λq1−Λq2‖L(L2)),

at least uniformly for q1, q2 in some compact set.
The reconstruction aspect. Find an effective formula to
compute q in terms of Λq,κ. Related to the
characterization of the range Φκ(X).
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Sketch of known results
Uniqueness. The map Φκ is injective:

d ≥ 3. Starting from the work of Sylvester and Uhlmann ’87
for smooth potentials.

d = 2. First complete result: Bukhgeim ’08, smooth
potentials.

Proofs involve construction of particular oscillatory solutions
to the elliptic problem: Complex Geometric Optics
(CGO) solutions.

Stability The map (Φκ)−1 is discontinuous but

d ≥ 3. Conditional stability results (q is supposed a priori to
lie on a compact set in Lp(Ω)). Starting from Alessandrini
’88.

The (conditional) modulus of continuity is logarithmic and
this is optimal: Mandache ’01.

d = 2. First complete conditional stability result: Novikov
and Santacesaria ’10 for smooth potentials.
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Sketch of known results
Reconstruction.

Uniqueness proofs can be converted after some work into
effective algorithms to reconstruct q from Λq,κ. This was
started by Nachmann ’88, Novikov ’88.

Many other approaches, for instance: one-step linearization,
Harrach, Seo ’10.

Characterization of the range. There are at the moment no
complete characterizations of Φκ(X), the set of DtN operators at.

This is also relevant in numerical applications because the
Calderón problem is ill-posed, i.e. (Φκ)−1 is discontinuous,
and its conditional modulus of continuity is poorly
conditioned.

Partial characterization for d = 2 for some conductivities:
Ingerman ’00, Sharafutdinov ’11.

Partial characterization for radial potentials d ≥ 2: Daudé,
M., Meroño, Nicoleau ’24.
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Important aspects that will not be addressed
Calderón’s original approach focuses on reconstructing a
conductivity matrix, a positive definite matrix
A ∈ L∞(Ω,Rd×d) from the Dirichlet-to-Neumann map of the
problem: {

div(A(x)∇u(x))− κu(x) = 0, x ∈ Ω,

u|∂Ω = f.

or a Riemannian metric on a compact manifold with
boundary. This is the anisotropic Calderón problem.

Some of our results have a counterpart in this setting: radial
conductivities. Ongoing work with Daudé, Meroño and
Nicoleau.

The eigenvalue problem for the DtN map is known as the
Steklov problem. Spectral theory/geometry of DtN maps
is an area of strong active research.
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Classical strategy I. Integration by parts
It allows to transfer information from the boundary ∂Ω to the
interior Ω.

For every f, g ∈ H1/2(∂Ω) the following holds:

〈f, (Λq,κ − Λ0,κ)g〉H1/2×H−1/2 =

∫
Ω

q(x)u(x)v(x) dx,

where u and v solve:{
∆u+ κu− qu = 0 in Ω,
u|∂Ω = g

{
∆v + κv = 0 in Ω,
v|∂Ω = f

This follows from the weak definition of the DtN map

〈f,Λq,κg〉H1/2×H−1/2 =

∫
Ω

∇u(x)∇v(x) dx,+

∫
Ω

(q(x)−κ)u(x)v(x) dx.
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Classical strategy II. CGO solutions
Complex Geometric Optics (CGO) solutions are designed to
extract information from Ω via Alessandrini’s identity.

Let ζ ∈ Vd where

Vκ,d := {ζ ∈ Cd : ζ2
1 + . . .+ ζ2

d = −κ, |ζ| =
√

2}.

Given h > 0, we introduce the κ-harmonic linear exponential
functions

eζ/h(x) = e
ζ
h
·x, x ∈ Rd.

A CGO solution is a family of functions ψhζ ∈ H1(Ω) that solve

−∆ψhζ + qψhζ − κψhζ = 0, in Ω

such that

ψhζ = eζ/h(1 + rh,ζ), lim
h→0+

‖rh,ζ‖L2(Ω) = 0.
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Classical strategy III. Reconstructing q

Take any ξ ∈ Rd and chose ζ1, ζ2 ∈ Vd with ζ1 + ζ2 = −ihξ
( d ≥ 3 only!).

Apply the integration by parts formula with f = eζ1/h and
g = ψhζ2 :〈

eζ1/h, (Λq,κ − Λ0,κ)ψ
h
ζ2

〉
H1/2×H−1/2 =

∫
Ω

q(x)e−iξ·x(1 + rh(x))dx

Taking limits as h→ 0 we obtain the Fourier transform of q:

q̂(ξ) = lim
h→0+

〈
eζ1/h, (Λq,κ − Λ0,κ)ψ

h
ζ2

〉
H1/2×H−1/2 ,

where we make an abuse of notation q̂ := 1̂Ωq.
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Limitations of CGOs

The approach based on Complex Geometric Optics solutions and
its variants has a certain number of limitations.

CGOs and their variants cannot be used to deal with the
general anisotropic Calderón problem.

CGOs and their variants cannot be defined on any general
Riemannian manifold. Strong topological constraints:
Angulo, Faraco, Guijarro, Salo ’20.

This strategy is therefore not well-adapted to study the
Calderón-Gel’fand problem on a Riemannian manifold of
dimension d ≥ 3 (OK when d = 2: Guillarmou, Tzou ’09).

CGOs only give very indirect information on the range
Φκ(X).
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Approach based on the Born Approximation

Idea. Linearize (Φκ)−1. But (Φκ)−1 is not even continuous.

However... The map Φκ is Fréchet differentiable, denote by
dΦκ

0 its differential at q = 0. One could then try to use as an
approximation of the potential the function:

qB
κ := (dΦκ

0)−1(Λq,κ − Λ0,κ).

This is the Born approximation referred to in the title.

Huge problem. This is formal, a priori there is no guarantee
that Λq,κ − Λ0,κ lies in the range of the differential dΦκ

0(L∞(Ω)).

But still... The Born approximation is widely used as a
computational strategy to reconstruct q, with very good results.
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Born approximation =⇒ Factorization of Φκ

Existence of qB
κ for every q ∈ X yields a factorization of

Φκ : X −→ Φκ(X) : q 7−→ Λq,κ − Λ0,κ

as:
X Φκ(X)

A

ΦB
κ

Φκ

dΦκ0

where dΦκ
0 has been extended to a space A that contains X.

qB
κ ∈ A solves dΦκ

0(qB
κ ) = Λq,κ − Λ0,κ. qB

κ depends linearly
on Λq,κ − Λ0,κ, although in a discontinuous way.
The inverse problem is reduced to obtain q from qB

κ . That is
solve the non-linear equation

ΦB
κ (q) = qB

κ .

One expects that discontinuities cancel out and (ΦB
κ )−1 has

good continuity properties.



Born approximation =⇒ Factorization of Φκ

Existence of qB
κ for every q ∈ X yields a factorization of

Φκ : X −→ Φκ(X) : q 7−→ Λq,κ − Λ0,κ

as:
X Φκ(X)

A

ΦB
κ

Φκ

dΦκ0

where dΦκ
0 has been extended to a space A that contains X.

qB
κ ∈ A solves dΦκ

0(qB
κ ) = Λq,κ − Λ0,κ. qB

κ depends linearly
on Λq,κ − Λ0,κ, although in a discontinuous way.
The inverse problem is reduced to obtain q from qB

κ . That is
solve the non-linear equation

ΦB
κ (q) = qB

κ .

One expects that discontinuities cancel out and (ΦB
κ )−1 has

good continuity properties.



Born approximation =⇒ Factorization of Φκ

Existence of qB
κ for every q ∈ X yields a factorization of

Φκ : X −→ Φκ(X) : q 7−→ Λq,κ − Λ0,κ

as:
X Φκ(X)

A

ΦB
κ

Φκ

dΦκ0

where dΦκ
0 has been extended to a space A that contains X.

qB
κ ∈ A solves dΦκ

0(qB
κ ) = Λq,κ − Λ0,κ. qB

κ depends linearly
on Λq,κ − Λ0,κ, although in a discontinuous way.
The inverse problem is reduced to obtain q from qB

κ . That is
solve the non-linear equation

ΦB
κ (q) = qB

κ .

One expects that discontinuities cancel out and (ΦB
κ )−1 has

good continuity properties.



Born approximation =⇒ Factorization of Φκ

Existence of qB
κ for every q ∈ X yields a factorization of

Φκ : X −→ Φκ(X) : q 7−→ Λq,κ − Λ0,κ

as:
X Φκ(X)

A

ΦB
κ

Φκ

dΦκ0

where dΦκ
0 has been extended to a space A that contains X.

qB
κ ∈ A solves dΦκ

0(qB
κ ) = Λq,κ − Λ0,κ. qB

κ depends linearly
on Λq,κ − Λ0,κ, although in a discontinuous way.
The inverse problem is reduced to obtain q from qB

κ . That is
solve the non-linear equation

ΦB
κ (q) = qB

κ .

One expects that discontinuities cancel out and (ΦB
κ )−1 has

good continuity properties.



Born approximation =⇒ Factorization of Φκ

Existence of qB
κ for every q ∈ X yields a factorization of

Φκ : X −→ Φκ(X) : q 7−→ Λq,κ − Λ0,κ

as:
X Φκ(X)

A

ΦB
κ

Φκ

dΦκ0

where dΦκ
0 has been extended to a space A that contains X.

qB
κ ∈ A solves dΦκ

0(qB
κ ) = Λq,κ − Λ0,κ. qB

κ depends linearly
on Λq,κ − Λ0,κ, although in a discontinuous way.
The inverse problem is reduced to obtain q from qB

κ . That is
solve the non-linear equation

ΦB
κ (q) = qB

κ .

One expects that discontinuities cancel out and (ΦB
κ )−1 has

good continuity properties.



Born approximation =⇒ Factorization of Φκ

Existence of qB
κ for every q ∈ X yields a factorization of

Φκ : X −→ Φκ(X) : q 7−→ Λq,κ − Λ0,κ

as:
X Φκ(X)

A

ΦB
κ

Φκ

dΦκ0

where dΦκ
0 has been extended to a space A that contains X.

Provides a good computational stategy to reconstruct q.
Decomposition into an ill-conditioned but linear step and
a well-conditioned but non-linear step.

One can also define other Born aproximations by linearizing
around different potentials q = q0:

dΦκ
0  dΦκ

q0
.
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Overview of the results

Barceló, Castro, M, Meroño ’22, κ = 0. In case qB
κ exists,

there are explicit formulas to obtain qB
κ from Λq,κ − Λ0,κ

in dimensions d = 2, 3. Numerical methods based on this
approach.

M, Meroño ’23. Simon’s ’99 approach to inverse spectral
theory for Schrödinger operators on L2(R+) fits into this
framework.

M, Meroño ’24. Extension of some of Simon’s results to
linearization around other potentials q0 ∈ L1(R+) with q0 6= 0.

Daudé, M, Meroño, Nicoleau ’24. Existence of qB
κ for κ = 0

for Calderón-Gel’fand in the radial case and analysis of ΦB
κ .

M, Meroño, Sánchez-Mendoza ’24 case κ 6= 0.

Castro, M, Meroño, Sánchez-Mendoza ’24. Explicit formulas
in the general non-radial, case (d = 2, 3). Numerical methods
based on this approach.
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The radial Calderón-Gel’fand problem

We assume:

Ω = Bd := {x ∈ Rd : |x| ≤ 1}, so that ∂Ω = Sd−1.

q ∈ Xrad, where Xrad consists of those radial potentials q in
L∞(Bd,R) such that kerH1

0
(−∆ + q − κ) = {0}.

Suppose that q ∈ Xrad. In this case, the DtN map Λq,κ is
completely determined by its eigenvalues.

Λq,κ is invariant by the action of SO(d) and commutes with ∆Sd−1 .
Therefore the eigenspaces of Λq,κ and ∆Sd−1 coincide and are
H`, the spherical harmonics of degree `.

In other words
Λq,κ|H` = λ`[q, κ]IdHk .
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Direct problem: Spectrum of the DtN

Theorem (M, Meroño, Sánchez-Mendoza ’24)

Let d ≥ 2 and κ 6= 0. Define the κ-moments of q as:

σ`[q, κ] :=
1

|Sd−1|

∫
Bd
q(x)ϕ`(

√
κ|x|)2 dx,

where

ϕ`(r) :=
J`+νd(r)

rνd
.

Then, for all ` > `q ≥ 0,

λ`[q, κ]− λ`[0, κ] =
σ`[q, κ]

ϕ`(
√
κ)2

+ ‖q‖2
L∞(Bd)Oκ(`

−3).

If dist(supp q,Sd−1) > 0 then Λq,κ − Λ0,κ is smoothing to all
orders.
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Direct problem: Spectrum of the DtN
The Fréchet differential at the zero potential dΦκ

0 turns out to be:

dΦκ
0 : L∞(Bd) −→ K(L2(S))

q 7−→ Kq

where Kq = dΦκ
0(q) is the operator that has the same

eigenspaces as Λq,κ and eigenvalues

SpKq =

{
1

|Sd−1|

∫
Bd
q(x)

ϕ`(
√
κ|x|)2

ϕ`(
√
κ)2

dx, ` ∈ N
}
.

In other words, Kq is the radial operator whose eigenvalues are
the Hausdorff moments of q:

Kq|H` =
σ`[q, κ]

ϕ`(
√
κ)2

IdH` .
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A formula for the Born approximation

Theorem (M, Meroño, Sánchez-Mendoza ’24)

Suppose q ∈ E ′rad(Bd) with d ≥ 2. Then the Fourier transform of q
(as a distribution in E ′(Rd)) is

q̂(ξ) = (2π)d
∞∑
`=0

σ`[q, κ]Z`,d

(
1− |ξ|

2

2κ

)
,

where Z`,d is the zonal harmonic of order `.
If qB

κ ∈ E ′rad(Bd) exists then

q̂B
κ (ξ) = (2π)d

∞∑
`=0

(λ`[q, κ]− λ`[0, κ])ϕ`(
√
κ)2Z`,d

(
1− |ξ|

2

2κ

)
.

This formula can be used numerically regardless of existence.
There is an analogous formula in the non radial case d = 2, 3.
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Numerical results in the radial case

Figure: Born approximation of a smooth potential (left) and a step
potential (right).

From Barceló, Castro, M, Meroño ’24.



Numerical results in the radial case

Potential Fourier transforms

Figure: Born approximation of a smooth potential and its Fourier
transform.

From Barceló, Castro, M, Meroño ’24.



Numerical results in the radial case

κ = 0 κ = −5

Figure: Plots of q(x) = cos(4π|x|)− 5 (blue) and κ+ (q − κ)B
κ (orange).

From M, Meroño, Sánchez-Mendoza ’24.



Numerical results in the radial case

Figure: Plots of qi (solid) their respective Born approximations qB
i,κ

(dashed) at κ = −1.

q3(x) := 3,

q2(x) = q3(x)− χ(0, 2
3

)(|x|), q1(x) = q2(x)− χ(0, 1
3

)(|x|).



Existence: (dΦκ
0)−1(Λq,κ − Λ0,κ) is well-defined

Theorem (M, Meroño, Sánchez-Mendoza ’24)

Assume that q ∈ Xrad, d ≥ 2, is radial. Then the moment problem

σ`[q
B
κ , κ] = (λ`[q, κ]− λ`[0, κ])ϕ`(

√
κ)2 for all ` ∈ N,

has a unique solution qB
κ ∈ E ′rad(Bd). This solution is of the form:

qB
κ ” = ”aq + sq, aq ∈ L1

loc(Bd \ {0}), supp sq = {0},

and there exists `q ∈ N such that

aq ∈ L1(Bd, |x|2`qdx), sq is of order < 2`q.
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Partial characterization of Φκ(Xrad)

Corollary (M, Meroño, Sánchez-Mendoza ’24)

There exist `q ∈ N such that

λ`[q, κ] = λ`[0, κ] + σκ` , ` ≥ `q

where σκ` is the sequence of moments:

σκ` =

∫ 1

0

J`+νd(
√
κs)2

J`+νd(
√
κ)2

fq(s) s ds

of some function fq ∈ L∞((0, 1)).

One can modify a result of Hausdorff 1922 to characterized those
sequences.
We have analogous results when q ∈ Lprad(Bd) with p > d/2.



Uniqueness: (ΦB
κ )−1 is well defined

The inverse problem amounts to recovering q from qB
κ .

Theorem (M, Meroño, Sánchez-Mendoza ’24)

The map:

ΦB
κ : Xrad −→ A := (dΦκ

0)−1(Φ(Xrad)) : q 7−→ qB
κ

is bijective. Moreover for every 0 < b < 1

(q1)B
κ (x) = (q2)B

κ (x) a.e. for b < |x| < 1

⇐⇒

q1(x) = q2(x) a.e. for b < |x| < 1.
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Good approximation properties

qB
κ contains the leading singularities of q.

qB
κ is a good approximation for q close to the boundary

Theorem (M, Meroño, Sánchez-Mendoza ’24)

Let q ∈ Xrad such that ess supp q ⊂ B(0; ρ) for some 0 < ρ ≤ 1.
Then qB

κ − q ∈ C(Bd \ {0}) and there exists αq ≥ 0 such that:

∣∣(qB
κ − q)(x)

∣∣ ≤ Cq

(
(ρ2 − |x|2)+

|x|αq+1

)2

.

In addition, if q ∈ Cm(Bd) with m ∈ N, then

qB
κ − q ∈ Cm+2(Bd \ {0}).



Stability: (ΦB
κ )−1 is Hölder continuous

Theorem (M, Meroño, Sánchez-Mendoza ’24)

For every R ≥ 1 and 0 < b < 1 there exists C = C(b, R) > 0 such
that, for every q1, q2 ∈ Xrad of norm less or equal to R and such
that ∫

b<|x|<1

∣∣(q1)B
κ (x)− (q2)B

κ (x)
∣∣ dx < 1,

the following holds:∫
b<|x|<1

|q1(x)− q2(x)| dx ≤ C

(∫
b<|x|<1

∣∣(q1)B
κ (x)− (q2)B

κ (x)
∣∣ dx)1/2

.



High energy limit

In the high-energy limit, the Born approximation coincides with q.

Theorem (M, Meroño, Sánchez-Mendoza ’24)

lim
κ→−∞

q̂B
κ (ξ) = q̂(ξ), ∀ξ ∈ Rd.

This holds even when q is not radial, since q̂B
κ (ξ) can always be

defined (inversion of the Fourier transform is not proven unless q
is radial).
The proof uses fine estimates on the Dirichlet resolvent obtained
by the Feynmann-Kac formula.
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Some comments on these results.

Some of the proofs rely on the approach to Inverse Spectral
Theory for operators

−∂2
x +Q(x), on L2(R+)

developed initially by Simon ’99 and his notion of
A-amplitude for the Weyl-Titchmarsh function.

This approach allows to establish uniqueness for the Calderón
problem, at least in the radial case, without relying on CGO
solutions.

We also have an algorithm form computing q in terms of qB
κ

involving solving a non linear integro-differential equation.
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