A fixed energy Born approximation for the Calderón problem

Fabricio Macià

Universidad Politécnica de Madrid/M²ASAI/AGAPI

2nd COPI2A meeting

Almagro, December 2-3, 2024 Based on joint works with C. J. Meroño (UPM), and D. Sánchez-Mendoza (UPM)

KORKA SERKER ORA

The Calderón Problem

During his early career, as a research engineer in the geophysical division at YPF, Alberto Calderón considered the following question:

Inverse conductivity problem

Can one reconstruct the conductivity from measurements made only at the boundary of a conductor?

Motivation: Knowledge of the conductivity function gives an image of the interior of the conductor. Non-invasive testing applications: Electrical impedance tomography (EIT). An analogous problem can be formulated in the context of Geophysics.

Let Ω be a bounded domain of \mathbb{R}^d , $d \geq 2$ with smooth boundary and $q \in L^{\infty}(\Omega, \mathbb{R})$ a real potential and $\kappa \in \mathbb{R}$ the *energy*.

If κ is not a Dirichlet eigenvalue of $-\Delta + q$ then, given $f \in C^{\infty}(\partial \Omega)$, there exists a unique $u \in H^2(\Omega)$ that solves:

$$
\begin{cases}\n(-\Delta - \kappa + q(x))u(x) = 0, & x \in \Omega, \\
u|_{\partial\Omega} = f.\n\end{cases}
$$

The Dirichlet-to-Neumann (DtN) map at energy κ defined by q maps f (Dirichlet datum) to the **normal derivative** of the corresponding solution on the boundary (Neumann data):

$$
\Lambda_{q,\kappa}: f \longmapsto \Lambda_{q,\kappa} f := \partial_{\nu} u|_{\partial \Omega}.
$$

Let Ω be a bounded domain of \mathbb{R}^d , $d \geq 2$ with smooth boundary and $q \in L^{\infty}(\Omega, \mathbb{R})$ a real potential and $\kappa \in \mathbb{R}$ the *energy*.

If κ is not a Dirichlet eigenvalue of $-\Delta + q$ then, given $f \in C^{\infty}(\partial \Omega)$, there exists a unique $u \in H^2(\Omega)$ that solves:

$$
\begin{cases}\n(-\Delta - \kappa + q(x))u(x) = 0, & x \in \Omega, \\
u|_{\partial\Omega} = f.\n\end{cases}
$$

The Dirichlet-to-Neumann (DtN) map at energy κ defined by q maps f (Dirichlet datum) to the **normal derivative** of the corresponding solution on the boundary (Neumann data):

$$
\Lambda_{q,\kappa}: f \longmapsto \Lambda_{q,\kappa} f := \partial_{\nu} u|_{\partial \Omega}.
$$

Let Ω be a bounded domain of \mathbb{R}^d , $d \geq 2$ with smooth boundary and $q \in L^{\infty}(\Omega, \mathbb{R})$ a real potential and $\kappa \in \mathbb{R}$ the *energy*.

If κ is not a Dirichlet eigenvalue of $-\Delta + q$ then, given $f \in C^{\infty}(\partial \Omega)$, there exists a unique $u \in H^2(\Omega)$ that solves:

$$
\begin{cases}\n(-\Delta - \kappa + q(x))u(x) = 0, & x \in \Omega, \\
u|_{\partial\Omega} = f.\n\end{cases}
$$

The Dirichlet-to-Neumann (DtN) map at energy κ defined by q maps f (Dirichlet datum) to the **normal derivative** of the corresponding solution on the boundary (Neumann data):

$$
\Lambda_{q,\kappa}: f \longmapsto \Lambda_{q,\kappa}f := \partial_{\nu}u|_{\partial\Omega}.
$$

If $\Omega \subseteq \mathbb{R}^d$ is the **unit ball** then for $q =$

• If $\kappa = 0$ $\Lambda_{0,0} =$ $\sqrt{2}$ $-\Delta_{\partial\Omega} +$ \int d – 2 2 \setminus^2 $-\frac{d-2}{2}$ 2

and $\text{Sp}_{L^2(\partial\Omega)}$ $\Lambda_{0,\kappa} = \mathbb{N}$.

• If $\kappa \neq 0$ then $\Lambda_{0,\kappa}$ has the same eigenfunctions as $\Lambda_{0,0}$ (spherical harmonics) but the spectrum changes:

$$
\lambda_{\ell}[0,\kappa] = \ell - \sqrt{\kappa} \frac{J_{\ell+1+\nu_d}(\sqrt{\kappa})}{J_{\ell+\nu_d}(\sqrt{\kappa})}, \qquad \ell \in \mathbb{N},
$$

$$
\nu_d:=\frac{d-2}{2}.
$$

If $\Omega \subseteq \mathbb{R}^d$ is the **unit ball** then for $q =$

• If
$$
\kappa = 0
$$

\n
$$
\Lambda_{0,0} = \sqrt{-\Delta_{\partial\Omega} + \left(\frac{d-2}{2}\right)^2} - \frac{d-2}{2}
$$

and $\text{Sp}_{L^2(\partial\Omega)}$ $\Lambda_{0,\kappa} = \mathbb{N}$.

• If $\kappa \neq 0$ then $\Lambda_{0,\kappa}$ has the same eigenfunctions as $\Lambda_{0,0}$ (spherical harmonics) but the spectrum changes:

$$
\lambda_{\ell}[0,\kappa] = \ell - \sqrt{\kappa} \frac{J_{\ell+1+\nu_d}(\sqrt{\kappa})}{J_{\ell+\nu_d}(\sqrt{\kappa})}, \qquad \ell \in \mathbb{N},
$$

where

$$
\nu_d := \frac{d-2}{2}.
$$

The DtN map enjoys a number of interesting properties:

 $\Lambda_{0,0} =$ √ $\overline{-\Delta_{\partial\Omega}} + B$ where $B \in \mathcal{L}(L^2(\partial\Omega))$ is a **bounded** operator on $L^2(\partial\Omega)$.

KORK EXTERNED ARA

 $\Lambda_{q,\kappa} = \Lambda_{0,\kappa} + K \text{ where } K \in \mathcal{K}(L^2(\partial \Omega)) \text{ is a \textbf{compact}}$ operator on $L^2(\partial\Omega)$.

Is q uniquely determined by the DtN map $\Lambda_{a,\kappa}$? If so, reconstruct the potential q from the boundary data $\Lambda_{a,\kappa}$.

The DtN map enjoys a number of interesting properties:

 $\Lambda_{0,0} =$ √ $\overline{-\Delta_{\partial\Omega}} + B$ where $B \in \mathcal{L}(L^2(\partial\Omega))$ is a **bounded** operator on $L^2(\partial\Omega)$.

KORK EXTERNED ARA

 $\Lambda_{q,\kappa} = \Lambda_{0,\kappa} + K$ where $K \in \mathcal{K}(L^2(\partial\Omega))$ is a **compact** operator on $L^2(\partial\Omega)$.

Is q uniquely determined by the DtN map $\Lambda_{a,\kappa}$? If so, reconstruct the potential q from the boundary data $\Lambda_{q,k}$.

The DtN map enjoys a number of interesting properties:

 $\Lambda_{0,0} =$ √ $\overline{-\Delta_{\partial\Omega}} + B$ where $B \in \mathcal{L}(L^2(\partial\Omega))$ is a **bounded** operator on $L^2(\partial\Omega)$.

 $\Lambda_{q,\kappa} = \Lambda_{0,\kappa} + K$ where $K \in \mathcal{K}(L^2(\partial\Omega))$ is a **compact** operator on $L^2(\partial\Omega)$.

The Calderón-Gel'fand problem ∼'55

Is q uniquely determined by the DtN map $\Lambda_{q,\kappa}$? If so, reconstruct the potential q from the boundary data $\Lambda_{q,k}$.

The DtN map enjoys a number of interesting properties:

 $\Lambda_{0,0} =$ √ $\overline{-\Delta_{\partial\Omega}} + B$ where $B \in \mathcal{L}(L^2(\partial\Omega))$ is a **bounded** operator on $L^2(\partial\Omega)$.

 $\Lambda_{q,\kappa} = \Lambda_{0,\kappa} + K$ where $K \in \mathcal{K}(L^2(\partial\Omega))$ is a **compact** operator on $L^2(\partial\Omega)$.

The Calderón-Gel'fand problem ∼'55

Is q uniquely determined by the DtN map $\Lambda_{q,\kappa}$? If so, reconstruct the potential q from the boundary data $\Lambda_{a,\kappa}$.

The Calder_{on} problem can be reformulated in terms of the non-linear map

$$
\Phi^{\kappa}: X \longrightarrow \mathcal{K}(L^2(\partial \Omega))
$$

q \longrightarrow \Lambda_{q,\kappa} - \Lambda_{0,\kappa}

(called the forward map) where (for instance)

$$
X := \{ q \in L^{\infty}(\Omega, \mathbb{R}) \, : \, \kappa \notin \mathrm{Sp}_{H^1_0(\Omega)}(-\Delta + q) \}.
$$

- The uniqueness aspect. Is the map Φ^{κ} injective?
- The stability issue. Find a modulus of continuity for $(\Phi^{\kappa})^{-1}$:

 $||q_1-q_2||_{L^{\infty}(\Omega)} \leq \omega(||\Phi^{\kappa}(q_1) - \Phi^{\kappa}(q_2)||_{\mathcal{L}(L^2)}) = \omega(||\Lambda_{q_1} - \Lambda_{q_2}||_{\mathcal{L}(L^2)}),$

at least uniformly for q_1, q_2 in some compact set.

The Calder_{on} problem can be reformulated in terms of the non-linear map

$$
\Phi^{\kappa}: X \longrightarrow \mathcal{K}(L^2(\partial \Omega))
$$

q \longrightarrow \Lambda_{q,\kappa} - \Lambda_{0,\kappa}

(called the forward map) where (for instance)

$$
X := \{ q \in L^{\infty}(\Omega, \mathbb{R}) : \kappa \notin \mathrm{Sp}_{H^1_0(\Omega)}(-\Delta + q) \}.
$$

- The uniqueness aspect. Is the map Φ^{κ} injective?
- The stability issue. Find a modulus of continuity for $(\Phi^{\kappa})^{-1}$:

 $||q_1-q_2||_{L^{\infty}(\Omega)} \leq \omega(||\Phi^{\kappa}(q_1) - \Phi^{\kappa}(q_2)||_{\mathcal{L}(L^2)}) = \omega(||\Lambda_{q_1} - \Lambda_{q_2}||_{\mathcal{L}(L^2)}),$

at least uniformly for q_1, q_2 in some compact set.

The Calder_{on} problem can be reformulated in terms of the non-linear map

$$
\Phi^{\kappa}: X \longrightarrow \mathcal{K}(L^2(\partial \Omega))
$$

q \longrightarrow \Lambda_{q,\kappa} - \Lambda_{0,\kappa}

(called the forward map) where (for instance)

$$
X := \{ q \in L^{\infty}(\Omega, \mathbb{R}) : \kappa \notin \mathrm{Sp}_{H^1_0(\Omega)}(-\Delta + q) \}.
$$

- The uniqueness aspect. Is the map Φ^{κ} injective?
- The stability issue. Find a modulus of continuity for $(\Phi^{\kappa})^{-1}$:

$$
||q_1 - q_2||_{L^{\infty}(\Omega)} \le \omega(||\Phi^{\kappa}(q_1) - \Phi^{\kappa}(q_2)||_{\mathcal{L}(L^2)}) = \omega(||\Lambda_{q_1} - \Lambda_{q_2}||_{\mathcal{L}(L^2)}),
$$

at least uniformly for q_1, q_2 in some compact set.

The Calder_{on} problem can be reformulated in terms of the non-linear map

$$
\Phi^{\kappa}: X \longrightarrow \mathcal{K}(L^2(\partial \Omega))
$$

q \longrightarrow \Lambda_{q,\kappa} - \Lambda_{0,\kappa}

(called the forward map) where (for instance)

$$
X := \{ q \in L^{\infty}(\Omega, \mathbb{R}) : \kappa \notin \mathrm{Sp}_{H^1_0(\Omega)}(-\Delta + q) \}.
$$

- The uniqueness aspect. Is the map Φ^{κ} injective?
- The stability issue. Find a modulus of continuity for $(\Phi^{\kappa})^{-1}$:

$$
||q_1 - q_2||_{L^{\infty}(\Omega)} \le \omega(||\Phi^{\kappa}(q_1) - \Phi^{\kappa}(q_2)||_{\mathcal{L}(L^2)}) = \omega(||\Lambda_{q_1} - \Lambda_{q_2}||_{\mathcal{L}(L^2)}),
$$

at least uniformly for q_1, q_2 in some compact set.

The Calder_{on} problem can be reformulated in terms of the non-linear map

$$
\Phi^{\kappa}: X \longrightarrow \mathcal{K}(L^2(\partial \Omega))
$$

q \longrightarrow \Lambda_{q,\kappa} - \Lambda_{0,\kappa}

(called the forward map) where (for instance)

$$
X := \{ q \in L^{\infty}(\Omega, \mathbb{R}) : \kappa \notin \mathrm{Sp}_{H^1_0(\Omega)}(-\Delta + q) \}.
$$

- The uniqueness aspect. Is the map Φ^{κ} injective?
- The stability issue. Find a modulus of continuity for $(\Phi^{\kappa})^{-1}$:

$$
||q_1 - q_2||_{L^{\infty}(\Omega)} \le \omega(||\Phi^{\kappa}(q_1) - \Phi^{\kappa}(q_2)||_{\mathcal{L}(L^2)}) = \omega(||\Lambda_{q_1} - \Lambda_{q_2}||_{\mathcal{L}(L^2)}),
$$

at least uniformly for q_1, q_2 in some compact set.

Uniqueness. The map Φ^{κ} is injective:

- $\bullet d > 3$. Starting from the work of Sylvester and Uhlmann '87 for smooth potentials.
- $d = 2$. First complete result: Bukhgeim '08, smooth potentials.
- Proofs involve construction of particular oscillatory solutions to the elliptic problem: Complex Geometric Optics (CGO) solutions.
- **Stability** The map $(\Phi^{\kappa})^{-1}$ is **discontinuous** but
	- $\bullet d \geq 3$. Conditional stability results (q is supposed a priori to lie on a compact set in $L^p(\Omega)$. Starting from Alessandrini '88.
	- The (conditional) modulus of continuity is **logarithmic** and this is optimal: Mandache '01.
	- \bullet $d = 2$. First complete conditional stability result: Novikov and Santacesaria '10 for smooth pote[nti](#page-15-0)[als](#page-17-0)[.](#page-15-0)

Uniqueness. The map Φ^{κ} is injective:

- $\bullet d > 3$. Starting from the work of Sylvester and Uhlmann '87 for smooth potentials.
- $d = 2$. First complete result: Bukhgeim '08, smooth potentials.
- Proofs involve construction of particular oscillatory solutions to the elliptic problem: Complex Geometric Optics (CGO) solutions.

Stability The map $(\Phi^{\kappa})^{-1}$ is **discontinuous** but

- \bullet $d > 3$. Conditional stability results (q is supposed a priori to lie on a compact set in $L^p(\Omega)$. Starting from Alessandrini '88.
- The (conditional) modulus of continuity is **logarithmic** and this is optimal: Mandache '01.
- \bullet $d = 2$. First complete conditional stability result: Novikov and Santacesaria '10 for smooth pote[nti](#page-16-0)[als](#page-18-0)[.](#page-15-0)

Uniqueness. The map Φ^{κ} is injective:

- \bullet $d > 3$. Starting from the work of Sylvester and Uhlmann '87 for smooth potentials.
- $d = 2$. First complete result: Bukhgeim '08, smooth potentials.
- Proofs involve construction of particular oscillatory solutions to the elliptic problem: Complex Geometric Optics (CGO) solutions.

Stability The map $(\Phi^{\kappa})^{-1}$ is discontinuous but

- \bullet d > 3. Conditional stability results (q is supposed a priori to lie on a compact set in $L^p(\Omega)$. Starting from Alessandrini '88.
- The (conditional) modulus of continuity is **logarithmic** and this is optimal: Mandache '01.
- \bullet $d = 2$. First complete conditional stability result: Novikov and Santacesaria '10 for smooth pote[nti](#page-17-0)[als](#page-19-0)[.](#page-15-0)

Reconstruction.

- Uniqueness proofs can be converted after some work into effective algorithms to reconstruct q from $\Lambda_{a,\kappa}$. This was started by Nachmann '88, Novikov '88.
- Many other approaches, for instance: one-step linearization, Harrach, Seo '10.
- Characterization of the range. There are at the moment no complete characterizations of $\Phi^{\kappa}(X)$, the set of DtN operators at.
	- This is also relevant in numerical applications because the Calderón problem is ill-posed, *i.e.* $(\Phi^{\kappa})^{-1}$ is discontinuous, and its conditional modulus of continuity is poorly conditioned.
	- Partial characterization for $d = 2$ for some conductivities: Ingerman '00, Sharafutdinov '11.
	- Partial characterization for radial potentials $d \geq 2$: Daudé, M., Meroño, Nicoleau '24.

Reconstruction.

- Uniqueness proofs can be converted after some work into effective algorithms to reconstruct q from $\Lambda_{a,\kappa}$. This was started by Nachmann '88, Novikov '88.
- Many other approaches, for instance: one-step linearization, Harrach, Seo '10.

- This is also relevant in numerical applications because the Calderón problem is ill-posed, *i.e.* $(\Phi^{\kappa})^{-1}$ is discontinuous, and its conditional modulus of continuity is poorly conditioned.
- Partial characterization for $d = 2$ for some conductivities: Ingerman '00, Sharafutdinov '11.
- Partial characterization for radial potentials $d \geq 2$: Daudé, M., Meroño, Nicoleau '24. KID KA KERKER E VOOR

Reconstruction.

- Uniqueness proofs can be converted after some work into effective algorithms to reconstruct q from $\Lambda_{a,\kappa}$. This was started by Nachmann '88, Novikov '88.
- Many other approaches, for instance: one-step linearization, Harrach, Seo '10.

- This is also relevant in numerical applications because the Calderón problem is ill-posed, *i.e.* $(\Phi^{\kappa})^{-1}$ is discontinuous, and its conditional modulus of continuity is poorly conditioned.
- Partial characterization for $d = 2$ for some conductivities: Ingerman '00, Sharafutdinov '11.
- Partial characterization for radial potentials $d \geq 2$: Daudé, M., Meroño, Nicoleau '24. KID KA KERKER E VOOR

Reconstruction.

- Uniqueness proofs can be converted after some work into effective algorithms to reconstruct q from $\Lambda_{a,\kappa}$. This was started by Nachmann '88, Novikov '88.
- Many other approaches, for instance: one-step linearization, Harrach, Seo '10.

- This is also relevant in numerical applications because the Calderón problem is ill-posed, *i.e.* $(\Phi^{\kappa})^{-1}$ is discontinuous, and its conditional modulus of continuity is poorly conditioned.
- Partial characterization for $d = 2$ for some conductivities: Ingerman '00, Sharafutdinov '11.
- Partial characterization for radial potentials $d \geq 2$: Daudé, M., Meroño, Nicoleau '24. KID KA KERKER E VOOR

Reconstruction.

- Uniqueness proofs can be converted after some work into effective algorithms to reconstruct q from $\Lambda_{q,\kappa}$. This was started by Nachmann '88, Novikov '88.
- Many other approaches, for instance: one-step linearization, Harrach, Seo '10.

- This is also relevant in numerical applications because the Calderón problem is ill-posed, *i.e.* $(\Phi^{\kappa})^{-1}$ is discontinuous, and its conditional modulus of continuity is poorly conditioned.
- Partial characterization for $d = 2$ for some conductivities: Ingerman '00, Sharafutdinov '11.
- Partial characterization for radial potentials $d \geq 2$: Daudé, M., Meroño, Nicoleau '24. KID KA KERKER E VOOR

Important aspects that will not be addressed

• Calderón's original approach focuses on reconstructing a conductivity matrix, a positive definite matrix $A \in L^{\infty}(\Omega, \mathbb{R}^{d \times d})$ from the Dirichlet-to-Neumann map of the problem:

$$
\begin{cases} \operatorname{div}(A(x)\nabla u(x)) - \kappa u(x) = 0, & x \in \Omega, \\ u|_{\partial\Omega} = f. \end{cases}
$$

or a Riemannian metric on a compact manifold with boundary. This is the **anisotropic** Calderon problem.

- Some of our results have a counterpart in this setting: radial conductivities. Ongoing work with Daudé, Meroño and Nicoleau.
- The eigenvalue problem for the DtN map is known as the Steklov problem. Spectral theory/geometry of DtN maps is an area of strong active research.

Important aspects that will not be addressed

• Calderón's original approach focuses on reconstructing a conductivity matrix, a positive definite matrix $A \in L^{\infty}(\Omega, \mathbb{R}^{d \times d})$ from the Dirichlet-to-Neumann map of the problem:

$$
\begin{cases} \operatorname{div}(A(x)\nabla u(x)) - \kappa u(x) = 0, & x \in \Omega, \\ u|_{\partial\Omega} = f. \end{cases}
$$

or a Riemannian metric on a compact manifold with boundary. This is the **anisotropic** Calderon problem.

- Some of our results have a counterpart in this setting: radial conductivities. Ongoing work with Daudé, Meroño and Nicoleau.
- The eigenvalue problem for the DtN map is known as the Steklov problem. Spectral theory/geometry of DtN maps is an area of strong active research.

Important aspects that will not be addressed

• Calderón's original approach focuses on reconstructing a conductivity matrix, a positive definite matrix $A \in L^{\infty}(\Omega, \mathbb{R}^{d \times d})$ from the Dirichlet-to-Neumann map of the problem:

$$
\begin{cases} \operatorname{div}(A(x)\nabla u(x)) - \kappa u(x) = 0, & x \in \Omega, \\ u|_{\partial\Omega} = f. \end{cases}
$$

or a Riemannian metric on a compact manifold with boundary. This is the **anisotropic** Calderon problem.

- Some of our results have a counterpart in this setting: radial conductivities. Ongoing work with Daudé, Meroño and Nicoleau.
- The eigenvalue problem for the DtN map is known as the Steklov problem. Spectral theory/geometry of DtN maps is an area of strong active research.**A ロ ト イ ロ ト イ ヨ ト イ ヨ ト ニ ヨ ー イ ワ く ロ ト**

Classical strategy I. Integration by parts

It allows to transfer information from the boundary $\partial\Omega$ to the interior Ω.

For every $f, g \in H^{1/2}(\partial \Omega)$ the following holds:

$$
\langle f, (\Lambda_{q,\kappa} - \Lambda_{0,\kappa})g \rangle_{H^{1/2} \times H^{-1/2}} = \int_{\Omega} q(x) u(x) v(x) dx,
$$

where u and v solve:

$$
\begin{cases} \Delta u + \kappa u - qu = 0 & \text{in } \Omega, \\ u|_{\partial\Omega} = g \end{cases} \qquad \begin{cases} \Delta v + \kappa v = 0 & \text{in } \Omega, \\ v|_{\partial\Omega} = f \end{cases}
$$

This follows from the weak definition of the DtN map

$$
\langle f, \Lambda_{q,\kappa}g \rangle_{H^{1/2} \times H^{-1/2}} = \int_{\Omega} \nabla u(x) \nabla v(x) dx + \int_{\Omega} (q(x) - \kappa) u(x) v(x) dx.
$$

Classical strategy I. Integration by parts

It allows to transfer information from the boundary $\partial\Omega$ to the interior Ω.

For every $f, g \in H^{1/2}(\partial \Omega)$ the following holds:

$$
\langle f, (\Lambda_{q,\kappa} - \Lambda_{0,\kappa})g \rangle_{H^{1/2} \times H^{-1/2}} = \int_{\Omega} q(x) u(x) v(x) dx,
$$

where u and v solve:

$$
\begin{cases} \Delta u + \kappa u - qu = 0 & \text{in } \Omega, \\ u|_{\partial \Omega} = g \end{cases} \qquad \begin{cases} \Delta v + \kappa v = 0 & \text{in } \Omega, \\ v|_{\partial \Omega} = f \end{cases}
$$

This follows from the weak definition of the DtN map

$$
\langle f, \Lambda_{q,\kappa}g \rangle_{H^{1/2} \times H^{-1/2}} = \int_{\Omega} \nabla u(x) \nabla v(x) \, dx + \int_{\Omega} (q(x) - \kappa) u(x) v(x) \, dx.
$$

Classical strategy II. CGO solutions Complex Geometric Optics (CGO) solutions are designed to extract information from Ω via Alessandrini's identity.

Let $\zeta \in \mathcal{V}_d$ where

$$
\mathcal{V}_{\kappa,d} := \{ \zeta \in \mathbb{C}^d : \zeta_1^2 + \ldots + \zeta_d^2 = -\kappa, \ |\zeta| = \sqrt{2} \}.
$$

Given $h > 0$, we introduce the *κ*-harmonic linear exponential functions

$$
e_{\zeta/h}(x) = e^{\frac{\zeta}{h} \cdot x}, \qquad x \in \mathbb{R}^d.
$$

A CGO solution is a family of functions $\psi_{\zeta}^h \in H^1(\Omega)$ that solve

$$
-\Delta \psi^h_{\zeta} + q\psi^h_{\zeta} - \kappa \psi^h_{\zeta} = 0, \quad \text{ in } \Omega
$$

such that

$$
\psi_{\zeta}^h = e_{\zeta/h}(1 + r_{h,\zeta}), \qquad \lim_{h \to 0^+} ||r_{h,\zeta}||_{L^2(\Omega)} = 0.
$$

Classical strategy II. CGO solutions Complex Geometric Optics (CGO) solutions are designed to extract information from Ω via Alessandrini's identity.

Let $\zeta \in \mathcal{V}_d$ where

$$
\mathcal{V}_{\kappa,d} := \{ \zeta \in \mathbb{C}^d : \zeta_1^2 + \ldots + \zeta_d^2 = -\kappa, \ |\zeta| = \sqrt{2} \}.
$$

Given $h > 0$, we introduce the *κ*-harmonic linear exponential functions

$$
e_{\zeta/h}(x) = e^{\frac{\zeta}{h} \cdot x}, \qquad x \in \mathbb{R}^d.
$$

A CGO solution is a family of functions $\psi_{\zeta}^h \in H^1(\Omega)$ that solve

$$
-\Delta \psi_{\zeta}^h + q\psi_{\zeta}^h - \kappa \psi_{\zeta}^h = 0, \quad \text{in } \Omega
$$

such that

$$
\psi_{\zeta}^h = e_{\zeta/h}(1 + r_{h,\zeta}), \qquad \lim_{h \to 0^+} ||r_{h,\zeta}||_{L^2(\Omega)} = 0.
$$

Classical strategy II. CGO solutions

Complex Geometric Optics (CGO) solutions are designed to extract information from Ω via Alessandrini's identity.

Let $\zeta \in \mathcal{V}_d$ where

$$
\mathcal{V}_{\kappa,d} := \{ \zeta \in \mathbb{C}^d : \zeta_1^2 + \ldots + \zeta_d^2 = -\kappa, \ |\zeta| = \sqrt{2} \}.
$$

Given $h > 0$, we introduce the *κ*-harmonic linear exponential functions

$$
e_{\zeta/h}(x) = e^{\frac{\zeta}{h} \cdot x}, \qquad x \in \mathbb{R}^d.
$$

A CGO solution is a family of functions $\psi_{\zeta}^h \in H^1(\Omega)$ that solve

$$
-\Delta \psi^h_{\zeta} + q\psi^h_{\zeta} - \kappa \psi^h_{\zeta} = 0, \quad \text{in } \Omega
$$

such that

$$
\psi_{\zeta}^h = e_{\zeta/h}(1 + r_{h,\zeta}), \qquad \lim_{h \to 0^+} ||r_{h,\zeta}||_{L^2(\Omega)} = 0.
$$

Classical strategy II. CGO solutions

Complex Geometric Optics (CGO) solutions are designed to extract information from Ω via Alessandrini's identity.

Let $\zeta \in \mathcal{V}_d$ where

$$
\mathcal{V}_{\kappa,d} := \{ \zeta \in \mathbb{C}^d : \zeta_1^2 + \ldots + \zeta_d^2 = -\kappa, \ |\zeta| = \sqrt{2} \}.
$$

Given $h > 0$, we introduce the *κ*-harmonic linear exponential functions

$$
e_{\zeta/h}(x) = e^{\frac{\zeta}{h} \cdot x}, \qquad x \in \mathbb{R}^d.
$$

A CGO solution is a family of functions $\psi_{\zeta}^h \in H^1(\Omega)$ that solve

$$
-\Delta \psi_{\zeta}^h + q\psi_{\zeta}^h - \kappa \psi_{\zeta}^h = 0, \quad \text{ in } \Omega
$$

such that

$$
\psi_{\zeta}^h = e_{\zeta/h}(1 + r_{h,\zeta}),
$$
\n $\lim_{h \to 0^+} ||r_{h,\zeta}||_{L^2(\Omega)} = 0.$

Classical strategy III. Reconstructing q

Take any $\xi \in \mathbb{R}^d$ and chose $\zeta_1, \zeta_2 \in \mathcal{V}_d$ with $\zeta_1 + \zeta_2 = -ih\xi$ $(d > 3$ only!).

Apply the integration by parts formula with $f = e_{\zeta_1/h}$ and

$$
\left\langle e_{\zeta_1/h}, (\Lambda_{q,\kappa} - \Lambda_{0,\kappa}) \psi_{\zeta_2}^h \right\rangle_{H^{1/2} \times H^{-1/2}} = \int_{\Omega} q(x) e^{-i\xi \cdot x} (1 + r_h(x)) dx
$$

Taking limits as $h \to 0$ we obtain the Fourier transform of q:

$$
\widehat{q}(\xi) = \lim_{h \to 0^+} \left\langle e_{\zeta_1/h}, (\Lambda_{q,\kappa} - \Lambda_{0,\kappa}) \psi_{\zeta_2}^h \right\rangle_{H^{1/2} \times H^{-1/2}},
$$

KORKA SERKER ORA

where we make an abuse of notation $\hat{q} := \hat{1}_Q\hat{q}$.

Classical strategy III. Reconstructing q

Take any $\xi \in \mathbb{R}^d$ and chose $\zeta_1, \zeta_2 \in \mathcal{V}_d$ with $\zeta_1 + \zeta_2 = -ih\xi$ $(d > 3$ only!).

Apply the integration by parts formula with $f = e_{\zeta_1/h}$ and $g = \psi_{\zeta_2}^h$:

$$
\left\langle e_{\zeta_1/h}, (\Lambda_{q,\kappa} - \Lambda_{0,\kappa}) \psi_{\zeta_2}^h \right\rangle_{H^{1/2} \times H^{-1/2}} = \int_{\Omega} q(x) e^{-i\xi \cdot x} (1 + r_h(x)) dx
$$

Taking limits as $h \to 0$ we obtain the Fourier transform of q:

$$
\widehat{q}(\xi) = \lim_{h \to 0^+} \left\langle e_{\zeta_1/h}, (\Lambda_{q,\kappa} - \Lambda_{0,\kappa}) \psi_{\zeta_2}^h \right\rangle_{H^{1/2} \times H^{-1/2}},
$$

where we make an abuse of notation $\hat{q} := \hat{1}_\Omega \hat{q}$.

Classical strategy III. Reconstructing q

Take any $\xi \in \mathbb{R}^d$ and chose $\zeta_1, \zeta_2 \in \mathcal{V}_d$ with $\zeta_1 + \zeta_2 = -ih\xi$ $(d > 3$ only!).

Apply the integration by parts formula with $f = e_{\zeta_1/h}$ and $g = \psi_{\zeta_2}^h$:

$$
\left\langle e_{\zeta_1/h}, (\Lambda_{q,\kappa} - \Lambda_{0,\kappa}) \psi_{\zeta_2}^h \right\rangle_{H^{1/2} \times H^{-1/2}} = \int_{\Omega} q(x) e^{-i\xi \cdot x} (1 + r_h(x)) dx
$$

Taking limits as $h \to 0$ we obtain the Fourier transform of q:

$$
\widehat{q}(\xi) = \lim_{h \to 0^+} \left\langle e_{\zeta_1/h}, (\Lambda_{q,\kappa} - \Lambda_{0,\kappa}) \psi_{\zeta_2}^h \right\rangle_{H^{1/2} \times H^{-1/2}},
$$

where we make an abuse of notation $\hat{q} := \widehat{1_{\Omega}q}$.
The approach based on Complex Geometric Optics solutions and its variants has a certain number of limitations.

- CGOs and their variants cannot be used to deal with the general anisotropic Calderón problem.
- CGOs and their variants cannot be defined on any general Riemannian manifold. Strong topological constraints: Angulo, Faraco, Guijarro, Salo '20.
- This strategy is therefore not well-adapted to study the Calderón-Gel'fand problem on a Riemannian manifold of dimension $d > 3$ (OK when $d = 2$: Guillarmou, Tzou '09).
- CGOs only give very indirect information on the range $\Phi^{\kappa}(X)$.

The approach based on Complex Geometric Optics solutions and its variants has a certain number of limitations.

- CGOs and their variants cannot be used to deal with the general anisotropic Calderón problem.
- CGOs and their variants cannot be defined on any general Riemannian manifold. Strong topological constraints: Angulo, Faraco, Guijarro, Salo '20.
- This strategy is therefore not well-adapted to study the Calderón-Gel'fand problem on a Riemannian manifold of dimension $d > 3$ (OK when $d = 2$: Guillarmou, Tzou '09).
- CGOs only give very indirect information on the range $\Phi^{\kappa}(X)$.

The approach based on Complex Geometric Optics solutions and its variants has a certain number of limitations.

- CGOs and their variants cannot be used to deal with the general anisotropic Calderón problem.
- CGOs and their variants cannot be defined on any general Riemannian manifold. Strong topological constraints: Angulo, Faraco, Guijarro, Salo '20.
- This strategy is therefore not well-adapted to study the Calderón-Gel'fand problem on a Riemannian manifold of dimension $d > 3$ (OK when $d = 2$: Guillarmou, Tzou '09).
- CGOs only give very indirect information on the range $\Phi^{\kappa}(X)$.

The approach based on Complex Geometric Optics solutions and its variants has a certain number of limitations.

- CGOs and their variants cannot be used to deal with the general anisotropic Calderón problem.
- CGOs and their variants cannot be defined on any general Riemannian manifold. Strong topological constraints: Angulo, Faraco, Guijarro, Salo '20.
- This strategy is therefore not well-adapted to study the Calderón-Gel'fand problem on a Riemannian manifold of dimension $d > 3$ (OK when $d = 2$: Guillarmou, Tzou '09).
- CGOs only give very indirect information on the range $\Phi^{\kappa}(X)$.

The approach based on Complex Geometric Optics solutions and its variants has a certain number of limitations.

- CGOs and their variants cannot be used to deal with the general anisotropic Calderón problem.
- CGOs and their variants cannot be defined on any general Riemannian manifold. Strong topological constraints: Angulo, Faraco, Guijarro, Salo '20.
- This strategy is therefore not well-adapted to study the Calderón-Gel'fand problem on a Riemannian manifold of dimension $d > 3$ (OK when $d = 2$: Guillarmou, Tzou '09).
- CGOs only give very indirect information on the range $\Phi^{\kappa}(X)$.

The approach based on Complex Geometric Optics solutions and its variants has a certain number of limitations.

- CGOs and their variants cannot be used to deal with the general anisotropic Calderón problem.
- CGOs and their variants cannot be defined on any general Riemannian manifold. Strong topological constraints: Angulo, Faraco, Guijarro, Salo '20.
- This strategy is therefore not well-adapted to study the Calderón-Gel'fand problem on a Riemannian manifold of dimension $d > 3$ (OK when $d = 2$: Guillarmou, Tzou '09).
- CGOs only give very indirect information on the range $\Phi^{\kappa}(X)$.

Idea. Linearize $(\Phi^{\kappa})^{-1}$. But $(\Phi^{\kappa})^{-1}$ is not even continuous.

However... The map Φ^{κ} is Fréchet differentiable, denote by $d\Phi_0^{\kappa}$ its differential at $q=0$. One could then try to use as an approximation of the potential the function:

$$
q_{\kappa}^{\mathbf{B}} := (d\Phi_0^{\kappa})^{-1} (\Lambda_{q,\kappa} - \Lambda_{0,\kappa}).
$$

This is the **Born approximation** referred to in the title.

Huge problem. This is formal, a priori there is no guarantee that $\Lambda_{q,\kappa} - \Lambda_{0,\kappa}$ lies in the range of the differential $d\Phi_0^{\kappa}(L^{\infty}(\Omega)).$

But still... The Born approximation is widely used as a computational strategy to reconstruct q, with very good results.

Idea. Linearize $(\Phi^{\kappa})^{-1}$. But $(\Phi^{\kappa})^{-1}$ is not even continuous.

However... The map Φ^{κ} is Fréchet differentiable, denote by $d\Phi_0^{\kappa}$ its differential at $q=0$. One could then try to use as an approximation of the potential the function:

$$
q_{\kappa}^{\mathcal{B}} := (d\Phi_0^{\kappa})^{-1} (\Lambda_{q,\kappa} - \Lambda_{0,\kappa}).
$$

This is the **Born approximation** referred to in the title.

Huge problem. This is formal, a priori there is no guarantee that $\Lambda_{q,\kappa} - \Lambda_{0,\kappa}$ lies in the range of the differential $d\Phi_0^{\kappa}(L^{\infty}(\Omega)).$

But still... The Born approximation is widely used as a computational strategy to reconstruct q, with very good results.

Idea. Linearize $(\Phi^{\kappa})^{-1}$. But $(\Phi^{\kappa})^{-1}$ is not even continuous.

However... The map Φ^{κ} is Fréchet differentiable, denote by $d\Phi_0^{\kappa}$ its differential at $q=0$. One could then try to use as an approximation of the potential the function:

$$
q_{\kappa}^{\mathbf{B}} := (d\Phi_0^{\kappa})^{-1} (\Lambda_{q,\kappa} - \Lambda_{0,\kappa}).
$$

This is the **Born approximation** referred to in the title.

Huge problem. This is formal, a priori there is no guarantee that $\Lambda_{q,\kappa} - \Lambda_{0,\kappa}$ lies in the range of the differential $d\Phi_0^{\kappa}(L^{\infty}(\Omega)).$

But still... The Born approximation is widely used as a computational strategy to reconstruct q, with very good results.

HO K 4 E K 4 E X A E V 4 O K O K 4 O K P V A C P

Idea. Linearize $(\Phi^{\kappa})^{-1}$. But $(\Phi^{\kappa})^{-1}$ is not even continuous.

However... The map Φ^{κ} is Fréchet differentiable, denote by $d\Phi_0^{\kappa}$ its differential at $q=0$. One could then try to use as an approximation of the potential the function:

$$
q_{\kappa}^{\mathcal{B}} := (d\Phi_0^{\kappa})^{-1} (\Lambda_{q,\kappa} - \Lambda_{0,\kappa}).
$$

This is the Born approximation referred to in the title.

Huge problem. This is formal, a priori there is no guarantee that $\Lambda_{q,\kappa} - \Lambda_{0,\kappa}$ lies in the range of the differential $d\Phi_0^{\kappa}(L^{\infty}(\Omega)).$

But still... The Born approximation is widely used as a computational strategy to reconstruct q, with very good results.

HO K 4 E K 4 E X A E V 4 O K O K 4 O K P V A C P

Idea. Linearize $(\Phi^{\kappa})^{-1}$. But $(\Phi^{\kappa})^{-1}$ is not even continuous.

However... The map Φ^{κ} is Fréchet differentiable, denote by $d\Phi_0^{\kappa}$ its differential at $q=0$. One could then try to use as an approximation of the potential the function:

$$
q_{\kappa}^{\mathcal{B}} := (d\Phi_0^{\kappa})^{-1} (\Lambda_{q,\kappa} - \Lambda_{0,\kappa}).
$$

This is the Born approximation referred to in the title.

Huge problem. This is formal, a priori there is no guarantee that $\Lambda_{q,\kappa} - \Lambda_{0,\kappa}$ lies in the range of the differential $d\Phi_0^{\kappa}(L^{\infty}(\Omega)).$

But still... The Born approximation is widely used as a computational strategy to reconstruct q, with very good results.

HO K 4 E K 4 E X A E V 4 O K O K 4 O K P V A C P

Idea. Linearize $(\Phi^{\kappa})^{-1}$. But $(\Phi^{\kappa})^{-1}$ is not even continuous.

However... The map Φ^{κ} is Fréchet differentiable, denote by $d\Phi_0^{\kappa}$ its differential at $q=0$. One could then try to use as an approximation of the potential the function:

$$
q_{\kappa}^{\mathcal{B}} := (d\Phi_0^{\kappa})^{-1} (\Lambda_{q,\kappa} - \Lambda_{0,\kappa}).
$$

This is the Born approximation referred to in the title.

Huge problem. This is formal, a priori there is no guarantee that $\Lambda_{q,\kappa} - \Lambda_{0,\kappa}$ lies in the range of the differential $d\Phi_0^{\kappa}(L^{\infty}(\Omega)).$

But still... The Born approximation is widely used as a computational strategy to reconstruct q, with very good results.

$$
\Phi^{\kappa}: X \longrightarrow \Phi^{\kappa}(X) : q \longmapsto \Lambda_{q,\kappa} - \Lambda_{0,\kappa}
$$

as:

where $d\Phi_0^{\kappa}$ has been extended to a space $\mathcal A$ that contains X.

- $q_{\kappa}^{\rm B}\in {\cal A} \,\, {\rm solves} \,\, d \Phi_0^\kappa(q_{\kappa}^{\rm B}) = \Lambda_{q,\kappa} \Lambda_{0,\kappa} . \,\,\,\,\, q_{\kappa}^{\rm B} \,\, {\rm depends} \,\, {\rm linearly}$ on $\Lambda_{a,\kappa} - \Lambda_{0,\kappa}$, although in a discontinuous way.
- The inverse problem is reduced to obtain q from q_{κ}^{B} . That is solve the **non-linear** equation

$$
\Phi_{\kappa}^{\mathbf{B}}(q) = q_{\kappa}^{\mathbf{B}}.
$$

$$
\Phi^{\kappa}: X \longrightarrow \Phi^{\kappa}(X) : q \longmapsto \Lambda_{q,\kappa} - \Lambda_{0,\kappa}
$$

as:

where $d\Phi_0^{\kappa}$ has been extended to a space $\mathcal A$ that contains X.

- $q^{\rm B}_\kappa \in \mathcal{A}$ solves $d\Phi_0^\kappa(q^{\rm B}_\kappa)=\Lambda_{q,\kappa}-\Lambda_{0,\kappa}.$ $\;\; q^{\rm B}_\kappa$ depends linearly on $\Lambda_{a,\kappa} - \Lambda_{0,\kappa}$, although in a discontinuous way.
- The inverse problem is reduced to obtain q from q_{κ}^{B} . That is solve the **non-linear** equation

$$
\Phi_{\kappa}^{\mathbf{B}}(q) = q_{\kappa}^{\mathbf{B}}.
$$

$$
\Phi^{\kappa}: X \longrightarrow \Phi^{\kappa}(X) : q \longmapsto \Lambda_{q,\kappa} - \Lambda_{0,\kappa}
$$

as:

where $d\Phi_0^{\kappa}$ has been extended to a space $\mathcal A$ that contains X.

- $q_{\kappa}^{\text{B}} \in \mathcal{A}$ solves $d\Phi_{0}^{\kappa}(q_{\kappa}^{\text{B}}) = \Lambda_{q,\kappa} \Lambda_{0,\kappa}$. q_{κ}^{B} depends linearly on $\Lambda_{q,\kappa} - \Lambda_{0,\kappa}$, although in a discontinuous way.
- The inverse problem is reduced to obtain q from q_{κ}^{B} . That is solve the **non-linear** equation

$$
\Phi_{\kappa}^{\mathbf{B}}(q) = q_{\kappa}^{\mathbf{B}}.
$$

$$
\Phi^{\kappa}: X \longrightarrow \Phi^{\kappa}(X) : q \longmapsto \Lambda_{q,\kappa} - \Lambda_{0,\kappa}
$$

as:

where $d\Phi_0^{\kappa}$ has been extended to a space $\mathcal A$ that contains X.

- $q_{\kappa}^{\text{B}} \in \mathcal{A}$ solves $d\Phi_{0}^{\kappa}(q_{\kappa}^{\text{B}}) = \Lambda_{q,\kappa} \Lambda_{0,\kappa}$. q_{κ}^{B} depends linearly on $\Lambda_{q,\kappa} - \Lambda_{0,\kappa}$, although in a discontinuous way.
- The inverse problem is reduced to obtain q from q_{κ}^{B} . That is solve the non-linear equation

$$
\Phi_{\kappa}^{\mathbf{B}}(q) = q_{\kappa}^{\mathbf{B}}.
$$

$$
\Phi^{\kappa}: X \longrightarrow \Phi^{\kappa}(X) : q \longmapsto \Lambda_{q,\kappa} - \Lambda_{0,\kappa}
$$

as:

where $d\Phi_0^{\kappa}$ has been extended to a space $\mathcal A$ that contains X.

- $q_{\kappa}^{\text{B}} \in \mathcal{A}$ solves $d\Phi_{0}^{\kappa}(q_{\kappa}^{\text{B}}) = \Lambda_{q,\kappa} \Lambda_{0,\kappa}$. q_{κ}^{B} depends linearly on $\Lambda_{q,\kappa} - \Lambda_{0,\kappa}$, although in a discontinuous way.
- The inverse problem is reduced to obtain q from q_{κ}^{B} . That is solve the non-linear equation

$$
\Phi_{\kappa}^{\mathbf{B}}(q) = q_{\kappa}^{\mathbf{B}}.
$$

$$
\Phi^{\kappa}: X \longrightarrow \Phi^{\kappa}(X) : q \longmapsto \Lambda_{q,\kappa} - \Lambda_{0,\kappa}
$$

as:

where $d\Phi_0^{\kappa}$ has been extended to a space $\mathcal A$ that contains X.

- Provides a good computational stategy to reconstruct q . Decomposition into an ill-conditioned but linear step and a well-conditioned but non-linear step.
- One can also define other Born aproximations by **linearizing** around different potentials $q = q_0$:

$$
d\Phi_0^\kappa \leadsto d\Phi_{q_0}^\kappa.
$$

$$
\Phi^{\kappa}: X \longrightarrow \Phi^{\kappa}(X) : q \longmapsto \Lambda_{q,\kappa} - \Lambda_{0,\kappa}
$$

as:

where $d\Phi_0^{\kappa}$ has been extended to a space $\mathcal A$ that contains X.

- \bullet Provides a good computational stategy to reconstruct q. Decomposition into an ill-conditioned but linear step and a well-conditioned but non-linear step.
- One can also define other Born aproximations by **linearizing** around different potentials $q = q_0$:

$$
d\Phi_0^{\kappa} \leadsto d\Phi_{q_0}^{\kappa}.
$$

$$
\Phi^{\kappa}: X \longrightarrow \Phi^{\kappa}(X) : q \longmapsto \Lambda_{q,\kappa} - \Lambda_{0,\kappa}
$$

as:

where $d\Phi_0^{\kappa}$ has been extended to a space $\mathcal A$ that contains X.

- \bullet Provides a good computational stategy to reconstruct q. Decomposition into an ill-conditioned but linear step and a well-conditioned but non-linear step.
- One can also define other Born aproximations by **linearizing** around different potentials $q = q_0$:

$$
d\Phi_0^{\kappa} \leadsto d\Phi_{q_0}^{\kappa}.
$$

- Barceló, Castro, M, Meroño '22, $\kappa = 0$. In case q_{κ}^{B} exists, there are explicit formulas to obtain $q_\kappa^{\rm B}$ from $\Lambda_{q,\kappa}-\Lambda_{0,\kappa}$ in dimensions $d = 2, 3$. **Numerical methods** based on this approach.
- *M, Meroño '23.* Simon's '99 approach to inverse spectral theory for Schrödinger operators on $L^2(\mathbb{R}_+)$ fits into this framework.
- *M, Meroño '24*. Extension of some of Simon's results to linearization around other potentials $q_0 \in L^1(\mathbb{R}_+)$ with $q_0 \neq 0$.
- Daudé, M, Meroño, Nicoleau '24. Existence of $q_{\kappa}^{\mathcal{B}}$ for $\kappa = 0$ for Calderón-Gel'fand in the **radial** case and analysis of $\Phi_{\kappa}^{\mathcal{B}}$. M, Meroño, Sánchez-Mendoza '24 case $\kappa \neq 0$.
- Castro, M, Meroño, Sánchez-Mendoza '24. Explicit formulas in the general non-radial, case $(d = 2, 3)$. Numerical methods based on this approach.

- Barceló, Castro, M, Meroño '22, $\kappa = 0$. In case q_{κ}^{B} exists, there are explicit formulas to obtain $q_\kappa^{\rm B}$ from $\Lambda_{q,\kappa}-\Lambda_{0,\kappa}$ in dimensions $d = 2, 3$. **Numerical methods** based on this approach.
- *M, Meroño* '23. Simon's '99 approach to inverse spectral theory for Schrödinger operators on $L^2(\mathbb{R}_+)$ fits into this framework.
- *M, Meroño '24*. Extension of some of Simon's results to linearization around other potentials $q_0 \in L^1(\mathbb{R}_+)$ with $q_0 \neq 0$.
- Daudé, M, Meroño, Nicoleau '24. Existence of $q_{\kappa}^{\mathcal{B}}$ for $\kappa = 0$ for Calderón-Gel'fand in the **radial** case and analysis of $\Phi_{\kappa}^{\mathcal{B}}$. M, Meroño, Sánchez-Mendoza '24 case $\kappa \neq 0$.
- Castro, M. Meroño, Sánchez-Mendoza '24. Explicit formulas in the general non-radial, case $(d = 2, 3)$. Numerical methods based on this approach.

- Barceló, Castro, M, Meroño '22, $\kappa = 0$. In case q_{κ}^{B} exists, there are explicit formulas to obtain $q_\kappa^{\rm B}$ from $\Lambda_{q,\kappa}-\Lambda_{0,\kappa}$ in dimensions $d = 2, 3$. **Numerical methods** based on this approach.
- *M, Meroño* '23. Simon's '99 approach to inverse spectral theory for Schrödinger operators on $L^2(\mathbb{R}_+)$ fits into this framework.
- M, Meroño '24. Extension of some of Simon's results to linearization around other potentials $q_0 \in L^1(\mathbb{R}_+)$ with $q_0 \neq 0$.
- Daudé, M, Meroño, Nicoleau '24. Existence of $q_{\kappa}^{\mathcal{B}}$ for $\kappa = 0$ for Calderón-Gel'fand in the **radial** case and analysis of $\Phi_{\kappa}^{\mathcal{B}}$. M, Meroño, Sánchez-Mendoza '24 case $\kappa \neq 0$.
- Castro, M. Meroño, Sánchez-Mendoza '24. Explicit formulas in the general non-radial, case $(d = 2, 3)$. Numerical methods based on this approach.KID KA KERKER E VOOR

- Barceló, Castro, M, Meroño '22, $\kappa = 0$. In case q_{κ}^{B} exists, there are explicit formulas to obtain $q_\kappa^{\rm B}$ from $\Lambda_{q,\kappa}-\Lambda_{0,\kappa}$ in dimensions $d = 2, 3$. **Numerical methods** based on this approach.
- *M, Meroño* '23. Simon's '99 approach to inverse spectral theory for Schrödinger operators on $L^2(\mathbb{R}_+)$ fits into this framework.
- *M, Meroño* '24. Extension of some of Simon's results to linearization around other potentials $q_0 \in L^1(\mathbb{R}_+)$ with $q_0 \neq 0$.
- Daudé, M, Meroño, Nicoleau '24. Existence of q_{κ}^{B} for $\kappa = 0$ for Calderón-Gel'fand in the **radial** case and analysis of Φ_{κ}^{B} . M, Meroño, Sánchez-Mendoza '24 case $\kappa \neq 0$.
- Castro, M. Meroño, Sánchez-Mendoza '24. Explicit formulas in the general non-radial, case $(d = 2, 3)$. Numerical methods based on this approach.

- Barceló, Castro, M, Meroño '22, $\kappa = 0$. In case q_{κ}^{B} exists, there are explicit formulas to obtain $q_\kappa^{\rm B}$ from $\Lambda_{q,\kappa}-\Lambda_{0,\kappa}$ in dimensions $d = 2, 3$. **Numerical methods** based on this approach.
- *M, Meroño* '23. Simon's '99 approach to inverse spectral theory for Schrödinger operators on $L^2(\mathbb{R}_+)$ fits into this framework.
- *M, Meroño* '24. Extension of some of Simon's results to linearization around other potentials $q_0 \in L^1(\mathbb{R}_+)$ with $q_0 \neq 0$.
- Daudé, M, Meroño, Nicoleau '24. Existence of q_{κ}^{B} for $\kappa = 0$ for Calderón-Gel'fand in the **radial** case and analysis of Φ_{κ}^{B} . M, Meroño, Sánchez-Mendoza '24 case $\kappa \neq 0$.
- Castro, M, Meroño, Sánchez-Mendoza '24. Explicit formulas in the general non-radial, case $(d = 2, 3)$. Numerical methods based on this approach.KID KA KERKER E VOOR

We assume:

- $\Omega = \mathbb{B}^d := \{x \in \mathbb{R}^d : |x| \le 1\},\$ so that $\partial \Omega = \mathbb{S}^{d-1}.$
- $q \in X_{\text{rad}}$, where X_{rad} consists of those **radial** potentials q in $L^{\infty}(\mathbb{B}^d, \mathbb{R})$ such that $\ker_{H_0^1}(-\Delta + q - \kappa) = \{0\}.$

Suppose that $q \in X_{rad}$. In this case, the DtN map $\Lambda_{q,\kappa}$ is completely determined by its eigenvalues.

 $\Lambda_{q,\kappa}$ is invariant by the action of SO(*d*) and commutes with $\Delta_{\mathbb{S}^{d-1}}$. Therefore the eigenspaces of $\Lambda_{q,\kappa}$ and $\Delta_{\mathbb{S}^{d-1}}$ coincide and are $\mathfrak{H}_{\ell},$ the s pherical harmonics of degree $\ell.$

In other words

$$
\Lambda_{q,\kappa}|_{\mathfrak{H}_{\ell}} = \lambda_{\ell}[q,\kappa] \mathrm{Id}_{\mathfrak{H}_k}.
$$

We assume:

•
$$
\Omega = \mathbb{B}^d := \{x \in \mathbb{R}^d : |x| \le 1\}
$$
, so that $\partial\Omega = \mathbb{S}^{d-1}$.

• $q \in X_{\text{rad}}$, where X_{rad} consists of those **radial** potentials q in $L^{\infty}(\mathbb{B}^d, \mathbb{R})$ such that $\ker_{H_0^1}(-\Delta + q - \kappa) = \{0\}.$

Suppose that $q \in X_{rad}$. In this case, the DtN map $\Lambda_{q,\kappa}$ is completely determined by its eigenvalues.

 $\Lambda_{q,\kappa}$ is invariant by the action of SO(*d*) and commutes with $\Delta_{\mathbb{S}^{d-1}}$. Therefore the eigenspaces of $\Lambda_{q,\kappa}$ and $\Delta_{\mathbb{S}^{d-1}}$ coincide and are $\mathfrak{H}_{\ell},$ the s pherical harmonics of degree $\ell.$

In other words

$$
\Lambda_{q,\kappa}|_{\mathfrak{H}_{\ell}} = \lambda_{\ell}[q,\kappa] \mathrm{Id}_{\mathfrak{H}_k}.
$$

We assume:

- $\Omega = \mathbb{B}^d := \{x \in \mathbb{R}^d : |x| \le 1\},\$ so that $\partial \Omega = \mathbb{S}^{d-1}.$
- $q \in X_{\text{rad}}$, where X_{rad} consists of those **radial** potentials q in $L^{\infty}(\mathbb{B}^d, \mathbb{R})$ such that $\ker_{H_0^1}(-\Delta + q - \kappa) = \{0\}.$

Suppose that $q \in X_{rad}$. In this case, the DtN map $\Lambda_{q,\kappa}$ is completely determined by its eigenvalues.

 $\Lambda_{q,\kappa}$ is invariant by the action of SO(*d*) and commutes with $\Delta_{\mathbb{S}^{d-1}}$. Therefore the eigenspaces of $\Lambda_{q,\kappa}$ and $\Delta_{\mathbb{S}^{d-1}}$ coincide and are \mathfrak{H}_{ℓ} , the spherical harmonics of degree ℓ .

In other words

$$
\Lambda_{q,\kappa}|_{\mathfrak{H}_{\ell}} = \lambda_{\ell}[q,\kappa] \mathrm{Id}_{\mathfrak{H}_k}.
$$

We assume:

•
$$
\Omega = \mathbb{B}^d := \{x \in \mathbb{R}^d : |x| \le 1\}
$$
, so that $\partial\Omega = \mathbb{S}^{d-1}$.

• $q \in X_{\text{rad}}$, where X_{rad} consists of those **radial** potentials q in $L^{\infty}(\mathbb{B}^d, \mathbb{R})$ such that $\ker_{H_0^1}(-\Delta + q - \kappa) = \{0\}.$

Suppose that $q \in X_{rad}$. In this case, the DtN map $\Lambda_{q,\kappa}$ is completely determined by its eigenvalues.

 $\Lambda_{q,\kappa}$ is invariant by the action of SO(*d*) and commutes with $\Delta_{\mathbb{S}^{d-1}}$. Therefore the eigenspaces of $\Lambda_{q,\kappa}$ and $\Delta_{\mathbb{S}^{d-1}}$ coincide and are \mathfrak{H}_{ℓ} , the spherical harmonics of degree ℓ .

In other words

$$
\Lambda_{q,\kappa}|_{\mathfrak{H}_{\ell}} = \lambda_{\ell}[q,\kappa] \mathrm{Id}_{\mathfrak{H}_k}.
$$

Theorem (M, Meroño, Sánchez-Mendoza '24) Let $d > 2$ and $\kappa \neq 0$. Define the κ -moments of q as:

$$
\sigma_{\ell}[q,\kappa]:=\frac{1}{|\mathbb{S}^{d-1}|}\int_{\mathbb{B}^d}q(x)\varphi_{\ell}(\sqrt{\kappa}|x|)^2\,dx,
$$

where

$$
\varphi_\ell(r):=\frac{J_{\ell+\nu_d}(r)}{r^{\nu_d}}.
$$

Then, for all $\ell > \ell_a > 0$,

$$
\lambda_{\ell}[q,\kappa] - \lambda_{\ell}[0,\kappa] = \frac{\sigma_{\ell}[q,\kappa]}{\varphi_{\ell}(\sqrt{\kappa})^2} + ||q||_{L^{\infty}(\mathbb{B}^d)}^2 O_{\kappa}(\ell^{-3}).
$$

If dist(supp $q, \mathbb{S}^{d-1}) > 0$ then $\Lambda_{q,\kappa} - \Lambda_{0,\kappa}$ is smoothing to all orders.

Theorem (M, Meroño, Sánchez-Mendoza '24) Let $d > 2$ and $\kappa \neq 0$. Define the κ -moments of q as:

$$
\sigma_{\ell}[q,\kappa] := \frac{1}{|\mathbb{S}^{d-1}|} \int_{\mathbb{B}^d} q(x) \varphi_{\ell}(\sqrt{\kappa}|x|)^2 dx,
$$

where

$$
\varphi_\ell(r):=\frac{J_{\ell+\nu_d}(r)}{r^{\nu_d}}.
$$

Then, for all $\ell > \ell_a > 0$,

$$
\lambda_{\ell}[q,\kappa] - \lambda_{\ell}[0,\kappa] = \frac{\sigma_{\ell}[q,\kappa]}{\varphi_{\ell}(\sqrt{\kappa})^2} + ||q||_{L^{\infty}(\mathbb{B}^d)}^2 O_{\kappa}(\ell^{-3}).
$$

If dist(supp $q, \mathbb{S}^{d-1}) > 0$ then $\Lambda_{q,\kappa} - \Lambda_{0,\kappa}$ is **smoothing to all** orders.**KORKA SERKER ORA**

The Fréchet differential at the zero potential $d\Phi_0^{\kappa}$ turns out to be:

$$
\begin{array}{cccc} d\Phi_0^{\kappa}: & L^{\infty}(\mathbb{B}^d) & \longrightarrow & \mathcal{K}(L^2(\mathbb{S})) \\ q & \longmapsto & K_q \end{array}
$$

where $K_q = d\Phi_0^{\kappa}(q)$ is the operator that has the **same** eigenspaces as $\Lambda_{a,\kappa}$ and eigenvalues

$$
\operatorname{Sp} K_q = \left\{ \frac{1}{|\mathbb{S}^{d-1}|} \int_{\mathbb{B}^d} q(x) \frac{\varphi_\ell(\sqrt{\kappa}|x|)^2}{\varphi_\ell(\sqrt{\kappa})^2} dx, \quad \ell \in \mathbb{N} \right\}.
$$

In other words, K_q is the radial operator whose eigenvalues are the **Hausdorff moments** of q :

$$
K_q|_{\mathfrak{H}_{\ell}} = \frac{\sigma_{\ell}[q,\kappa]}{\varphi_{\ell}(\sqrt{\kappa})^2} \mathrm{Id}_{\mathfrak{H}_{\ell}}.
$$

The Fréchet differential at the zero potential $d\Phi_0^{\kappa}$ turns out to be:

$$
\begin{array}{cccc} d\Phi_0^{\kappa}:& L^{\infty}(\mathbb{B}^d) & \longrightarrow & \mathcal{K}(L^2(\mathbb{S}))\\ q & \longmapsto & K_q \end{array}
$$

where $K_q = d\Phi_0^{\kappa}(q)$ is the operator that has the **same** eigenspaces as $\Lambda_{a,\kappa}$ and eigenvalues

$$
\operatorname{Sp} K_q = \left\{ \frac{1}{|\mathbb{S}^{d-1}|} \int_{\mathbb{B}^d} q(x) \frac{\varphi_\ell(\sqrt{\kappa}|x|)^2}{\varphi_\ell(\sqrt{\kappa})^2} dx, \quad \ell \in \mathbb{N} \right\}.
$$

In other words, K_q is the radial operator whose eigenvalues are the **Hausdorff** moments of q :

$$
K_q|_{\mathfrak{H}_{\ell}} = \frac{\sigma_{\ell}[q,\kappa]}{\varphi_{\ell}(\sqrt{\kappa})^2} \mathrm{Id}_{\mathfrak{H}_{\ell}}.
$$

A formula for the Born approximation

Theorem (M, Meroño, Sánchez-Mendoza '24)

Suppose $q \in \mathcal{E}'_{\text{rad}}(\mathbb{B}^d)$ with $d \geq 2$. Then the Fourier transform of q (as a distribution in $\mathcal{E}'(\mathbb{R}^d)$) is

$$
\widehat{q}(\xi) = (2\pi)^d \sum_{\ell=0}^{\infty} \sigma_{\ell}[q,\kappa] Z_{\ell,d} \left(1 - \frac{|\xi|^2}{2\kappa}\right),
$$

where $Z_{\ell,d}$ is the zonal harmonic of order ℓ . If $q_{\kappa}^{\mathcal{B}} \in \mathcal{E}'_{\text{rad}}(\mathbb{B}^d)$ exists then

$$
\widehat{q_{\kappa}^{\mathbf{B}}}(\xi) = (2\pi)^d \sum_{\ell=0}^{\infty} (\lambda_{\ell}[q,\kappa] - \lambda_{\ell}[0,\kappa]) \varphi_{\ell}(\sqrt{\kappa})^2 Z_{\ell,d} \left(1 - \frac{|\xi|^2}{2\kappa}\right)
$$

This formula can be used numerically regardless of existence. There is an analogous formula in the non [rad](#page-68-0)[ia](#page-70-0)[l](#page-68-0) [c](#page-69-0)[as](#page-72-0)[e](#page-0-0) $d = 2, 3$ $d = 2, 3$.

A formula for the Born approximation

Theorem (M, Meroño, Sánchez-Mendoza '24)

Suppose $q \in \mathcal{E}'_{\text{rad}}(\mathbb{B}^d)$ with $d \geq 2$. Then the Fourier transform of q (as a distribution in $\mathcal{E}'(\mathbb{R}^d)$) is

$$
\widehat{q}(\xi) = (2\pi)^d \sum_{\ell=0}^{\infty} \sigma_{\ell}[q,\kappa] Z_{\ell,d} \left(1 - \frac{|\xi|^2}{2\kappa}\right),
$$

where $Z_{\ell,d}$ is the zonal harmonic of order ℓ . If $q_{\kappa}^{\mathcal{B}} \in \mathcal{E}'_{\text{rad}}(\mathbb{B}^d)$ exists then

$$
\widehat{q_{\kappa}^{\mathrm{B}}}(\xi) = (2\pi)^d \sum_{\ell=0}^{\infty} \left(\lambda_{\ell}[q,\kappa] - \lambda_{\ell}[0,\kappa] \right) \varphi_{\ell}(\sqrt{\kappa})^2 Z_{\ell,d} \left(1 - \frac{|\xi|^2}{2\kappa} \right).
$$

 -990

This formula can be used numerically regardless of existence. There is an analogous formula in the non [rad](#page-69-0)[ia](#page-71-0)[l](#page-68-0) [c](#page-69-0)[as](#page-72-0)[e](#page-0-0) $d = 2, 3$ $d = 2, 3$.

A formula for the Born approximation

Theorem (M, Meroño, Sánchez-Mendoza '24)

Suppose $q \in \mathcal{E}'_{\text{rad}}(\mathbb{B}^d)$ with $d \geq 2$. Then the Fourier transform of q (as a distribution in $\mathcal{E}'(\mathbb{R}^d)$) is

$$
\widehat{q}(\xi) = (2\pi)^d \sum_{\ell=0}^{\infty} \sigma_{\ell}[q,\kappa] Z_{\ell,d} \left(1 - \frac{|\xi|^2}{2\kappa}\right),
$$

where $Z_{\ell,d}$ is the zonal harmonic of order ℓ . If $q_{\kappa}^{\mathcal{B}} \in \mathcal{E}'_{\text{rad}}(\mathbb{B}^d)$ exists then

$$
\widehat{q_{\kappa}^{\mathrm{B}}}(\xi) = (2\pi)^d \sum_{\ell=0}^{\infty} \left(\lambda_{\ell}[q,\kappa] - \lambda_{\ell}[0,\kappa] \right) \varphi_{\ell}(\sqrt{\kappa})^2 Z_{\ell,d} \left(1 - \frac{|\xi|^2}{2\kappa} \right).
$$

This formula can be used numerically regardless of existence. There is an analogous formula in the non [rad](#page-70-0)[ia](#page-72-0)[l](#page-68-0) [c](#page-69-0)[as](#page-72-0)[e](#page-0-0) $d = 2, 3$ $d = 2, 3$.

Figure: Born approximation of a smooth potential (left) and a step potential (right).

 $\bar{\Xi}$

 2990

From Barceló, Castro, M, Meroño '24.

Figure: Born approximation of a smooth potential and its Fourier transform.

 2990

From Barceló, Castro, M, Meroño '24.

Figure: Plots of $q(x) = \cos(4\pi|x|) - 5$ (blue) and $\kappa + (q - \kappa)_{\kappa}^{B}$ (orange).

 4 ロ) 4 何) 4 ミ) 4 3 \rightarrow

 \equiv

 2990

From M, Meroño, Sánchez-Mendoza '24.

Figure: Plots of q_i (solid) their respective Born approximations $q_{i,\kappa}^{\text{B}}$ (dashed) at $\kappa = -1$.

$$
q_3(x) := 3,
$$

\n
$$
q_2(x) = q_3(x) - \chi_{(0,\frac{2}{3})}(|x|), \qquad q_1(x) = q_2(x) - \chi_{(0,\frac{1}{3})}(|x|).
$$

 \circ

Existence: $(d\Phi_0^{\kappa})$ λ_0^{κ})⁻¹($\Lambda_{q,\kappa}$ – $\Lambda_{0,\kappa}$) is well-defined

Theorem (M, Meroño, Sánchez-Mendoza '24) Assume that $q \in X_{rad}$, $d \geq 2$, is radial. Then the moment problem $\sigma_\ell [q_\kappa^{\rm B},\kappa] = (\lambda_\ell [q,\kappa] - \lambda_\ell [0,\kappa]) \varphi_\ell($ √ $(\overline{\kappa})^2$ for all $\ell \in \mathbb{N}$, has a unique solution $q_{\kappa}^{\mathbf{B}} \in \mathcal{E}'_{\text{rad}}(\mathbb{B}^d)$. This solution is of the form: $q_{\kappa}^{\mathbf{B}\prime\prime} = "a_q + s_q, \qquad a_q \in L^1_{\text{loc}}(\mathbb{B}^d \setminus \{0\}), \quad \text{supp } s_q = \{0\},$ and there exists $\ell_q \in \mathbb{N}$ such that $a_q \in L^1(\mathbb{B}^d, |x|^{2\ell_q}dx), \quad s_q \text{ is of order } < 2\ell_q.$

KORKAR KERKER DRAG

Existence: $(d\Phi_0^{\kappa})$ λ_0^{κ})⁻¹($\Lambda_{q,\kappa}$ – $\Lambda_{0,\kappa}$) is well-defined

Theorem (M, Meroño, Sánchez-Mendoza '24) Assume that $q \in X_{rad}$, $d \geq 2$, is radial. Then the moment problem $\sigma_\ell [q_\kappa^{\rm B},\kappa] = (\lambda_\ell [q,\kappa] - \lambda_\ell [0,\kappa]) \varphi_\ell($ √ $(\overline{\kappa})^2$ for all $\ell \in \mathbb{N}$, has a unique solution $q_{\kappa}^{\mathcal{B}} \in \mathcal{E}'_{\text{rad}}(\mathbb{B}^d)$. This solution is of the form: $q_{\kappa}^{\mathbf{B}\prime\prime} = "a_q + s_q, \quad a_q \in L^1_{\text{loc}}(\mathbb{B}^d \setminus \{0\}), \text{ supp } s_q = \{0\},$ and there exists $\ell_q \in \mathbb{N}$ such that $a_q \in L^1(\mathbb{B}^d, |x|^{2\ell_q}dx), \quad s_q \text{ is of order } < 2\ell_q.$

KORKAR KERKER EL POLO

Partial characterization of $\Phi^{\kappa}(X_{\text{rad}})$

Corollary (M, Meroño, Sánchez-Mendoza '24) There exist $\ell_q \in \mathbb{N}$ such that

$$
\lambda_{\ell}[q,\kappa] = \lambda_{\ell}[0,\kappa] + \sigma_{\ell}^{\kappa}, \qquad \ell \geq \ell_q
$$

where σ_{ℓ}^{κ} is the sequence of moments:

$$
\sigma_{\ell}^{\kappa} = \int_0^1 \frac{J_{\ell+\nu_d}(\sqrt{\kappa}s)^2}{J_{\ell+\nu_d}(\sqrt{\kappa})^2} f_q(s) \, s \, ds
$$

of some function $f_q \in L^{\infty}((0,1)).$

One can modify a result of Hausdorff 1922 to characterized those sequences.

-
◆ ロ ▶ → ⋳⋑ ▶ → 草 ▶ → 草 ▶ │ 草 │ ◆) ٩, ⊙

We have analogous results when $q \in L_{\text{rad}}^p(\mathbb{B}^d)$ with $p > d/2$.

Uniqueness: $(\Phi_{\kappa}^{B})^{-1}$ is well defined

The inverse problem amounts to recovering q from q_{κ}^{B} .

Theorem (M, Meroño, Sánchez-Mendoza '24) The map:

$$
\Phi_{\kappa}^{\mathcal{B}}: X_{\text{rad}} \longrightarrow \mathcal{A} := (d\Phi_{0}^{\kappa})^{-1}(\Phi(X_{\text{rad}})) : q \longmapsto q_{\kappa}^{\mathcal{B}}
$$

is bijective. Moreover for every $0 < b < 1$

 $(q_1)^{\text{B}}_{\kappa}(x) = (q_2)^{\text{B}}_{\kappa}(x)$ a.e. for $b < |x| < 1$

$$
q_1(x) = q_2(x) \ a.e. \ \text{for } b < |x| < 1.
$$

Uniqueness: $(\Phi_{\kappa}^{B})^{-1}$ is well defined

The inverse problem amounts to recovering q from q_{κ}^{B} .

Theorem (M, Meroño, Sánchez-Mendoza '24) The map:

$$
\Phi_{\kappa}^{\mathcal{B}}: X_{\text{rad}} \longrightarrow \mathcal{A} := (d\Phi_{0}^{\kappa})^{-1}(\Phi(X_{\text{rad}})) : q \longmapsto q_{\kappa}^{\mathcal{B}}
$$

is bijective. Moreover for every $0 < b < 1$

$$
(q_1)_\kappa^{\mathcal{B}}(x) = (q_2)_\kappa^{\mathcal{B}}(x) \quad a.e. \text{ for } b < |x| < 1
$$
\n
$$
\iff
$$
\n
$$
q_1(x) = q_2(x) \text{ a.e. for } b < |x| < 1.
$$

KORKA SERKER ORA

Good approximation properties

- q_{κ}^{B} contains the leading singularities of q.
- q_{κ}^{B} is a good approximation for q close to the boundary

Theorem (M, Meroño, Sánchez-Mendoza '24)

Let $q \in X_{rad}$ such that ess supp $q \subset B(0;\rho)$ for some $0 < \rho \leq 1$. Then $q_{\kappa}^{\mathcal{B}} - q \in \mathcal{C}(\mathbb{B}^d \setminus \{0\})$ and there exists $\alpha_q \geq 0$ such that:

$$
\left| (q_{\kappa}^{B} - q)(x) \right| \leq C_q \left(\frac{(\rho^{2} - |x|^{2})_{+}}{|x|^{\alpha_q + 1}} \right)^{2}
$$

.

KEIN KALA SEN KEN EL POLO

In addition, if $q \in \mathcal{C}^m(\mathbb{B}^d)$ with $m \in \mathbb{N}$, then

$$
q_{\kappa}^{\mathcal{B}} - q \in \mathcal{C}^{m+2}(\mathbb{B}^d \setminus \{0\}).
$$

Stability: $(\Phi_{\kappa}^{B})^{-1}$ is Hölder continuous

Theorem (M, Meroño, Sánchez-Mendoza '24)

For every $R \geq 1$ and $0 < b < 1$ there exists $C = C(b, R) > 0$ such that, for every $q_1, q_2 \in X_{rad}$ of norm less or equal to R and such that

$$
\int_{b < |x| < 1} \left| (q_1)^{\mathcal{B}}_{\kappa}(x) - (q_2)^{\mathcal{B}}_{\kappa}(x) \right| \, dx < 1,
$$

the following holds:

$$
\int_{b<|x|<1} |q_1(x) - q_2(x)| dx \le C \left(\int_{b<|x|<1} |(q_1)_\kappa^{\mathcal{B}}(x) - (q_2)_\kappa^{\mathcal{B}}(x)| dx \right)^{1/2}
$$

KORK EXTERNED ARA

High energy limit

In the high-energy limit, the Born approximation coincides with q .

Theorem (M, Meroño, Sánchez-Mendoza '24)

$$
\lim_{\kappa \to -\infty} \widehat{q_{\kappa}^{\mathbf{B}}}(\xi) = \widehat{q}(\xi), \qquad \forall \xi \in \mathbb{R}^d.
$$

This holds even when q is not radial, since $q_{\kappa}^{\text{B}}(\xi)$ can always be defined (inversion of the Fourier transform is not proven unless q is radial).

The proof uses fine estimates on the Dirichlet resolvent obtained by the Feynmann-Kac formula.

High energy limit

In the high-energy limit, the Born approximation coincides with q .

Theorem (M, Meroño, Sánchez-Mendoza '24)

$$
\lim_{\kappa \to -\infty} \widehat{q_{\kappa}^{\mathbf{B}}}(\xi) = \widehat{q}(\xi), \qquad \forall \xi \in \mathbb{R}^d.
$$

This holds even when q is not radial, since $q_{\kappa}^{\text{B}}(\xi)$ can always be defined (inversion of the Fourier transform is not proven unless q is radial).

The proof uses fine estimates on the Dirichlet resolvent obtained by the Feynmann-Kac formula.

Some of the proofs rely on the approach to Inverse Spectral Theory for operators

$$
-\partial_x^2 + Q(x), \quad \text{ on } L^2(\mathbb{R}_+)
$$

developed initially by Simon '99 and his notion of A-amplitude for the Weyl-Titchmarsh function.

- This approach allows to establish uniqueness for the Calderon problem, at least in the radial case, without relying on CGO solutions.
- We also have an algorithm form computing q in terms of q_{κ}^{B} involving solving a non linear integro-differential equation.

KORKAR KERKER EL POLO

• Some of the proofs rely on the approach to Inverse Spectral Theory for operators

$$
-\partial_x^2 + Q(x), \quad \text{ on } L^2(\mathbb{R}_+)
$$

developed initially by Simon '99 and his notion of A-amplitude for the Weyl-Titchmarsh function.

- This approach allows to establish uniqueness for the Calderon problem, at least in the radial case, without relying on CGO solutions.
- We also have an algorithm form computing q in terms of q_{κ}^{B} involving solving a non linear integro-differential equation.

• Some of the proofs rely on the approach to Inverse Spectral Theory for operators

$$
-\partial_x^2 + Q(x), \quad \text{ on } L^2(\mathbb{R}_+)
$$

developed initially by Simon '99 and his notion of A-amplitude for the Weyl-Titchmarsh function.

- This approach allows to establish uniqueness for the Calderon problem, at least in the radial case, without relying on CGO solutions.
- We also have an algorithm form computing q in terms of q_{κ}^{B} involving solving a non linear integro-differential equation.

• Some of the proofs rely on the approach to Inverse Spectral Theory for operators

$$
-\partial_x^2 + Q(x), \quad \text{ on } L^2(\mathbb{R}_+)
$$

developed initially by Simon '99 and his notion of A-amplitude for the Weyl-Titchmarsh function.

- This approach allows to establish uniqueness for the Calderon problem, at least in the radial case, without relying on CGO solutions.
- We also have an algorithm form computing q in terms of q_{κ}^{B} involving solving a non linear integro-differential equation.