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The Calderon Problem

During his early career, as a research engineer in the geophysical
division at YPF, Alberto Calderén considered the following
question:

Inverse conductivity problem

Can one reconstruct the conductivity from
measurements made only at the boundary of a
conductor?

Motivation: Knowledge of the conductivity function gives an
image of the interior of the conductor. Non-invasive testing
applications: FElectrical impedance tomography (EIT). An
analogous problem can be formulated in the context of
Geophysics.
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The Dirichlet-to-Neumann (DtN) map at energy  defined by
g maps f (Dirichlet datum) to the normal derivative of the
corresponding solution on the boundary (Neumann data):

Npw: fr—Ayuf = 0ulsq.
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If Q C R? is the unit ball then for ¢ =

e lf k=0
d—2\* d—2
Moo = 1/ —A -
0,0 \/ ag+( 7 ) 7

and SpLQ(ag) A()ﬁ =N.

o If x # 0 then Ay, has the same eigenfunctions as Ag
(spherical harmonics) but the spectrum changes:

J£+1+Vd(\/E) ¢ eN

MO = E= VR TR

where
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The Calderon-Gel’fand Problem

The DtN map enjoys a number of interesting properties:

e Aoy =+/—Apq + B where B € L(L*(09)) is a bounded
operator on L?(992).

o Ay, =N, + K where K € K(L*(09)) is a compact
operator on L?(99).

The Calderéon-Gel’fand problem ~’55

Is g uniquely determined by the DtN map A, .7 If so,
reconstruct the potential ¢ from the boundary data A .
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non-linear map
o X — K(L*(00))
q — Aq,n - AO,/@

(called the forward map) where (for instance)
X :={q¢ e L™(QR) : £ €Spyy(-A+q)}.

e The uniqueness aspect. Is the map ®" injective?

e The stability issue. Find a modulus of continuity for
(@)L
lr—aoll= (@) < w(|®"(q1) =P (@)l 2(2)) = W[ Mgy —Agoll2(22)),
at least uniformly for ¢, ¢> in some compact set.

@ The reconstruction aspect. Find an effective formula to

compute ¢ in terms of A, ,. Related to the
characterization of the rance ®*( X )
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for smooth potentials.
e d = 2. First complete result: Bukhgeim ’08, smooth

potentials.

e Proofs involve construction of particular oscillatory solutions
to the elliptic problem: Complex Geometric Optics
(CGO) solutions.

Stability The map (®*)~! is discontinuous but

e d > 3. Conditional stability results (¢ is supposed a priori to
lie on a compact set in LP(f2)). Starting from Alessandrini
'88.

e The (conditional) modulus of continuity is logarithmic and
this is optimal: Mandache '01.

o d = 2. First complete conditional stability result: Novikov
and Santacesaria "10 for smooth potentials.
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Characterization of the range. There are at the moment no
complete characterizations of ®*(X), the set of DtN operators at.
e This is also relevant in numerical applications because the
Calderén problem is ill-posed, i.e. (®%)~! is discontinuous,

and its conditional modulus of continuity is poorly
conditioned.

e Partial characterization for d = 2 for some conductivities:
Ingerman ’00, Sharafutdinov ’11.

e Partial characterization for radial potentials d > 2: Daudé,
M., Merono, Nicoleau '24.
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Important aspects that will not be addressed

e Calderdén’s original approach focuses on reconstructing a
conductivity matrix, a positive definite matrix
A € L*°(Q,R™4) from the Dirichlet-to-Neumann map of the
problem:

{ div(A(z)Vu(z)) — ku(z) =0, =z €,

ulo = f.

or a Riemannian metric on a compact manifold with
boundary. This is the anisotropic Calderén problem.

@ Some of our results have a counterpart in this setting: radial
conductivities. Ongoing work with Daudé, Merono and
Nicoleau.

@ The eigenvalue problem for the DtN map is known as the
Steklov problem. Spectral theory/geometry of DtN maps
is an area of strong active research.
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It allows to transfer information from the boundary 02 to the
interior €.

For every f,g € H'?(0Q) the following holds:

<fa (Aq,n - AO,H)g>H1/2><H—1/2 = /Q(J(IL‘)U(ZE)U(I‘) dx,

where © and v solve:

{Au—kﬁu—qu =0 in €, {Av—i—fw =0 in §,
oo =g Va0 =f

This follows from the weak definition of the DtN map

- Dast)osgove = [ Vula) V(@) o, + [ (alo)=r)ula)ola) .
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Complex Geometric Optics (CGO) solutions are designed to
extract information from €2 via Alessandrini’s identity.

Let ¢ € V3 where
Vea ={CeC: 4. . 4+ =—k [C|=V2}.

Given h > 0, we introduce the k-harmonic linear exponential
functions

A

ec/n(x) = er™™, z € R%
A CGO solution is a family of functions ¢} € H'(Q) that solve

—Aw? + qw? — mﬂ? =0, inQ
such that

h __ 1 =
v =eemtmng), i lracllre) = 0.
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Take any ¢ € R? and chose (i, (& € Vy with (; + ( = —ihé
(d> 3 only!).

Apply the integration by parts formula with f = e¢, ,, and
9=

<6C1/h7 (Aq,fi - AO,H)¢?2>H1/2><H71/2 - /Qq<x>€—i§~x(1 + T‘h(l‘))dl’

Taking limits as h — 0 we obtain the Fourier transform of ¢:

q(§) = lim <641/h7 (g — on”)w?2>H1/2><H—1/2 )

h—0t+

where we make an abuse of notation ¢ := 1/Q\q
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Idea. Linearize (®*)~!'. But (®*)~! is not even continuous.

However... The map ®” is Fréchet differentiable, denote by
d®g its differential at ¢ = 0. One could then try to use as an
approximation of the potential the function:

g = (d®5) " (Agn — No)-
This is the Born approximation referred to in the title.

Huge problem. This is formal, a priori there is no guarantee
that A, — Ao, lies in the range of the differential d®f(L>(€2)).

But still... The Born approximation is widely used as a
computational strategy to reconstruct ¢, with very good results.
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where d®§ has been extended to a space A that contains X.
o ¢5 € Asolves d®§(¢P) = Ay — Ao.  ¢F depends linearly
on Ay, — Mg, although in a discontinuous way.
e The inverse problem is reduced to obtain ¢ from ¢5. That is
solve the non-linear equation

. (q) = q-
One expects that discontinuities cancel out and (®2)~! has
good continuity properties.

as:
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Existence of ¢2 for every ¢ € X yields a factorization of

P X — (X)) g N — Nos

X 2 > (X
g‘ CV
A

where d®§ has been extended to a space A that contains X.

as:

)

e Provides a good computational stategy to reconstruct q.
Decomposition into an ill-conditioned but linear step and
a well-conditioned but non-linear step.

@ One can also define other Born aproximations by linearizing
around different potentials g = ¢:

APy ~ P .
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e Castro, M, Merono, Sinchez-Mendoza ’24. Explicit formulas
in the general non-radial, case (d = 2,3). Numerical methods
based on this approach.



The radial Calderén-Gel'fand problem

We assume:
o O =B%:={reR?: |z| <1}, so that 9Q = SL.
@ ¢ € X;aq, where X,,q consists of those radial potentials ¢ in
L>*(B,R) such that kerpy: (—A + ¢ — x) = {0}.



The radial Calderén-Gel'fand problem

We assume:
o O =B%:={reR?: |z| <1}, so that 9Q = SL.
@ ¢ € X;aq, where X,,q consists of those radial potentials ¢ in
L>*(B,R) such that kerpy: (—A + ¢ — x) = {0}.
Suppose that ¢ € X;.q. In this case, the DtN map A, is
completely determined by its eigenvalues.



The radial Calderén-Gel'fand problem

We assume:
o O =B%:={reR?: |z| <1}, so that 9Q = SL.
@ ¢ € X;aq, where X,,q consists of those radial potentials ¢ in
L>*(B,R) such that kerpy: (—A + ¢ — x) = {0}.
Suppose that ¢ € X;.q. In this case, the DtN map A, is
completely determined by its eigenvalues.

A, is invariant by the action of SO(d) and commutes with Aga-1.
Therefore the eigenspaces of A, , and Ags-1 coincide and are
4, the spherical harmonics of degree /.



The radial Calderén-Gel'fand problem

We assume:
o O =B%:={reR?: |z| <1}, so that 9Q = SL.
@ ¢ € X;aq, where X,,q consists of those radial potentials ¢ in
L>*(B,R) such that kerpy: (—A + ¢ — x) = {0}.
Suppose that ¢ € X;.q. In this case, the DtN map A, is
completely determined by its eigenvalues.

A, is invariant by the action of SO(d) and commutes with Aga-1.
Therefore the eigenspaces of A, , and Ags-1 coincide and are
4, the spherical harmonics of degree /.

In other words
Agrls, = Adlg, 5]1dg, .



Direct problem: Spectrum of the DtN

Theorem (M, Merono, Sanchez-Mendoza 24)
Let d > 2 and k # 0. Define the k-moments of q as:

oelg, K] : e 1|/ z)po(V/klx])? d

where
JZ"‘Vd (T)
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Direct problem: Spectrum of the DtN

Theorem (M, Merono, Sanchez-Mendoza 24)
Let d > 2 and k # 0. Define the k-moments of q as:

oelg, K] : e 1|/ z)po(V/klx])? d

where Teon ()
o
e(r) = —Zj;‘jd :
Then, for all £ > £, > 0,
Uz[qv’f] 2 =3
A 71‘1 _)\ O,K/ - + oo OI{ ‘e .
] = M0, ] = 2L 4 e o On(E)

If dist(supp ¢, S%!) > 0 then A, — Ay, is smoothing to all
orders.



Direct problem: Spectrum of the DtN
The Fréchet differential at the zero potential d®§ turns out to be:

doy . L>®(BY) — K(L*(S))
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where K, = d®{(q) is the operator that has the same
eigenspaces as A, and eigenvalues
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Sp K, = {W g q(a:)Wda:, le N} .



Direct problem: Spectrum of the DtN
The Fréchet differential at the zero potential d®§ turns out to be:

doy . L>®(BY) — K(L*(S))
q — K,

where K, = d®{(q) is the operator that has the same
eigenspaces as A, and eigenvalues

1 pe(VE|x])?
Sp K, = {W g q(az)de, le N} .

In other words, K, is the radial operator whose eigenvalues are
the Hausdorff moments of g¢:

UE[Q) 'Li]
1ds,,.

Kyl = PNOE



A formula for the Born approximation
Theorem (M, Merono, Sanchez-Mendoza ’24)

Suppose q € E,4(BY) with d > 2. Then the Fourier transform of q
(as a distribution in E'(R?)) is

i) = (e 3 el i zes (1~ 51,

where Zy 4 is the zonal harmonic of order (.
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This formula can be used numerically regardless of existence.



A formula for the Born approximation
Theorem (M, Merono, Sanchez-Mendoza ’24)

Suppose q € &, 4(BY) with d > 2. Then the Fourier transform of q
(as a distribution in &' (RY)) is

i) = (e 3 el i zes (1~ 51,

where Zy 4 is the zonal harmonic of order (.
If ¢ € & (BY) exists then

gB(€) = @Y (M, 5] — Ael0, 6)pe(VE)* Zea (1 - @> :

2K
¢

This formula can be used numerically regardless of existence.
There is an analogous formula in the non radial case d = 2, 3.



Numerical results in the radial case

0.6 T~ -
= ey
03
0.0
-0.3
00 02 04 06 08 10 “bo 02 04 06 08 10
r r

Figure: Born approximation of a smooth potential (left) and a step
potential (right).

From Barceld, Castro, M, Merono '24.



Numerical results in the radial case
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Figure: Born approximation of a smooth potential and its Fourier
transform.

From Barceld, Castro, M, Merono ’24.



Numerical results in the radial case

k=0 K= -5

Figure: Plots of ¢(z) = cos(4r|z|) — 5 (blue) and x + (¢ — )2 (orange).

From M, Merono, Sanchez-Mendoza '24.



Numerical results in the radial case
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Figure: Plots of ¢; (solid) their respective Born approximations qfn
(dashed) at kK = —1.

q3(x) == 3,
() = a(@) = xe2)(z)),  alz) = q@) = xe ).



Existence: (d®f§) (A, — M) is well-defined

Theorem (M, Merono, Sanchez-Mendoza ’24)
Assume that ¢ € Xpaa, d > 2, is radial. Then the moment problem

adlag s k] = (Nelg, k] = Ae[0, K])pe(V/K)?  for all £ €N,

has a unique solution ¢& € E!,,(B?).




Existence: (d®f§) (A, — M) is well-defined

Theorem (M, Merono, Sanchez-Mendoza ’24)
Assume that q € X,aq, d > 2, is radial. Then the moment problem

adlag s k] = (Nelg, k] = Ae[0, K])pe(V/K)?  for all £ €N,

has a unique solution ¢° € &' 4(BY). This solution is of the form:

g5 =" dg 5, aq € Lin(B*\ {0}), supps, = {0},
and there exists {4 € N such that

ag € L'(BY, |z|*2dx), s, is of order < 24,




Partial characterization of ®%(X,.q)
Corollary (M, Merono, Séanchez-Mendoza ’24)
There exist £, € N such that

Al[qvﬁ] :)‘Z[Ovﬁ]_’_aga gzéq

where oy is the sequence of moments:

Kk __ 1Jg+,/d(\/ES)2 s) sds
o= Terraly/m)? S 84

of some function f, € L>((0,1)).

One can modify a result of Hausdorff 1922 to characterized those

sequences.
We have analogous results when ¢ € L (BY) with p > d/2.



Uniqueness: (®2)~1 is well defined

The inverse problem amounts to recovering ¢ from ¢5.

Theorem (M, Merono, Sanchez-Mendoza ’24)
The map:

O : Xppg — A= (dOF) 1 (®(Xraa)) : ¢ — ¢°

15 bijective.




Uniqueness: (®5)~1 is well defined

The inverse problem amounts to recovering ¢ from ¢5.

Theorem (M, Merono, Sanchez-Mendoza ’24)
The map:

PPt Xppg — A= (dOF) " (P(Xaa)) : ¢ — g1
is bijective. Moreover for every 0 < b < 1
(a1)2(2) = (). (x) a.e. forb<|z| <1

—

¢1(x) = @) a.e. forb < |z| <1.




Good approximation properties
e ¢° contains the leading singularities of q.

e ¢2 is a good approximation for ¢ close to the boundary

Theorem (M, Merono, Sanchez-Mendoza 24)

Let q € Xiaaq such that esssupp g C B(0; p) for some 0 < p < 1.
Then ¢ — q € C(B*\ {0}) and there exists ay > 0 such that:

(22 — ) (2)| < G (Mf.

|3§"a‘1+1
In addition, if ¢ € C™(B?) with m € N, then

q; —q € C"2(B\ {0}).




Stability: (®2)~1 is Hélder continuous

Theorem (M, Merono, Sanchez-Mendoza 24)

For every R>1 and 0 < b < 1 there exists C = C(b, R) > 0 such

that, for every qi,qs € Xiaq of norm less or equal to R and such
that

/b<| » [(q)R(2) = (@)% (z)| do <1,

the following holds:

/b<|m|<1 |01(2) — g2(2)| dz < C </b<|x|<1 (1) (x) — (02)(2)] dm)l

v




High energy limit

In the high-energy limit, the Born approximation coincides with q.

Theorem (M, Merono, Sanchez-Mendoza ’24)

lim gB(&) =q(€), VEeR%

K——00




High energy limit

In the high-energy limit, the Born approximation coincides with q.

Theorem (M, Merono, Sanchez-Mendoza ’24)

lim gB(&) =q(€), VEeR%

K——00

This holds even when ¢ is not radial, since E(g ) can always be
defined (inversion of the Fourier transform is not proven unless ¢
is radial).

The proof uses fine estimates on the Dirichlet resolvent obtained
by the Feynmann-Kac formula.



Some comments on these results.

@ Some of the proofs rely on the approach to Inverse Spectral
Theory for operators

—02+Q(x), on L*R,)

developed initially by Simon '99 and his notion of
A-amplitude for the Weyl-Titchmarsh function.
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