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Deep Learning and Partial Differential Equations

Boundary value problem

2 _ d
{F(x, u,Vu,D’u)=0 onQ CR (BVP)

u(x) = g(x) on 0R2.
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Deep Learning and Partial Differential Equations

Boundary value problem

2 _ d
{F(x, u,Vu,D’u)=0 onQ CR (BVP)

u(x) = g(x) on 0R2.

Goal: Approximate the solution of (BVP) by means of a Neural Network.

For a hypothesis set 7 C C(2), we consider the problem
min 7 (), (1)

for some loss functional 7 (-) : C(2) — R.
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Deep Learning and Partial Differential Equations

Boundary value problem

2 _ d
{F(x, u,Vu,D’u)=0 onQ CR (BVP)

u(x) = g(x) on 0R2.

Goal: Approximate the solution of (BVP) by means of a Neural Network.

For a hypothesis set 7 C C(2), we consider the problem
min 7 (), (1)

for some loss functional 7 (-) : C(2) — R.

Questions:
@ What hypothesis set 7? (NN architecture)
@ What functional J7(-)?
@ What optimisation algorithm? (SGD or a variant)
@ What type of solution are we looking for?
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Deep Learning and Partial Differential Equations

Boundary value problem

[rusuma=o oo
Hypothesis set: a parametric class of continuous functions
F={®(;0): Q=R : 0cR’}
Universal approximation of NNs = F ~ C(Q).
Optimisation method: gradient descent
Ori1 = 0t = 7Vo T (®(01)), (GD)
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Deep Learning and Partial Differential Equations

Boundary value problem

[rusuma=o oo
Hypothesis set: a parametric class of continuous functions
F={®(;0): Q=R : 0cR’}
Universal approximation of NNs = F ~ C(Q).
Optimisation method: gradient descent
Ori1 = 0t = 7Vo T (®(01)), (GD)

Loss functional: we want the following properties
@ Minimisers of J(-) approximate the solution of (BVP).
© Stationary points of (GD) are global minimisers.
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Deep Learning and Partial Differential Equations

Let us look at the equation
VoT (¢(50)) = T'(®(50)) - Vo®(-:0) =0, 0 €R”.

where J'(u) € C(Q)* is the Fréchet derivative of J(-) at u.
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Deep Learning and Partial Differential Equations

Let us look at the equation
VoT (¢(50)) = T'(®(50)) - Vo®(-:0) =0, 0 €R”.

where J'(u) € C(Q)* is the Fréchet derivative of J(-) at u.

Stationary points

0 is a critical point if and only if one of the following holds:
@ J/'(®(0)=0
@ J'(®(-;0)) # 0 and all the components of Vy®(-; 6) are in the kernel of 7’ (®(+; 9)).

@ The specific form of Vo®(-; §) depends on the NN architecture.
@ The form of 7’ (®(-; #)) depends on the choice of the functional.
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Deep Learning and Partial Differential Equations

Let us look at the equation
VoT (¢(50)) = T'(®(50)) - Vo®(-:0) =0, 0 €R”.

where J'(u) € C(Q)* is the Fréchet derivative of J(-) at u.

Stationary points

0 is a critical point if and only if one of the following holds:
@ J/'(®(0)=0
@ J'(®(-;0)) # 0 and all the components of Vy®(-; 6) are in the kernel of 7’ (®(+; 9)).

Goal of the talk: construct 7 : C(2) — R" such that

@ any minimiser of J(u) approximates the solution of (BVP).

@ any solution of J’(u) = 0 approximates the solution of (BVP).
We will only consider Hamilton-Jacobi PDEs.

Carlos Esteve-Yagiie



Hamilton-Jacobi equations

Boundary value problem

H(x,Vu)=0 onQ CR?
u(x)=g(x) onoQ.

for some (non-linear) Hamiltonian H(x, p) : @ x R? — R.

Physics Informed Neural Networks

J(U) = /Q (H(x, Vu(x)))? dx + /8 (ux) — gx))*
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Hamilton-Jacobi equations

Boundary value problem

H(x,Vu)=0 onQ CR?
u(x)=g(x) onoQ.

for some (non-linear) Hamiltonian H(x, p) : @ x R? — R.

Physics Informed Neural Networks
J() = / (H(x, Vu(x)))? dx+/ (u(x) — g(x))? dx
Q o
@ Which continuous functions minimise J(u)?

@ What are the critical points? i.e. solutions to J'(u) = 0?
@ Is J(-) even Fréchet differentiable in C(2)?
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Hamilton-Jacobi equations

Eikonal equation

(Bxu)>—1=0 in(0,1)
u(0)=u(1)=0

J(u) = /O1 (@) 1) o + u(0)? + u(1)?
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Hamilton-Jacobi equations

Eikonal equation

(Bxu)>—=1=0 in(0,1)

{U(O) =u(1)=0 (HJ)

T(W) = /01 (@) 1) o + u(0)? + u(1)?

Global minimisers:

= = ...and many more

@ We are interested in the viscosity solution (the first plot above)

© We need to add some regularity to the functional.
something like 7 (u) + vR(u)?
© The regularisation has to single out the first plot from the second.
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Viscosity solutions

Boundary value problem

{H(x, Vu)=0 onQcCR? (HJ)

u(x) =g(x) onoQ.

for some (non-linear) Hamiltonian H(x, p) : Q x RY — R.

4

Viscosity solution

H(x,Vu.) —eAu. =0 onQc R’
u-(x) = g(x) on 0R2.

(VHJ)

has a unique classical solution u. € C*°(2), for each ¢ # 0.

The viscosity solution of (HJ) is the point wise limit

u(x) = ai% u-(x), Vx € Q.
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Finite-difference based functionals

Main idea

Numerical methods (such as F.D.) introduce what is known as numerical
diffusion.

Why don’t we replace H(x, Vu(x)) in
()= [ (HOxTu0)) e+ [ (utx) - 9(0)° o
Q o
by a numerical Hamiltonian?
H(x, Dy u(x), D u(x))

where

u(x + o6l — u(x)
)

(x) —u(x — 5/).

Df u(x) = and Dju(x) = y =
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Finite-difference based functionals

Theorem (Crandall-Lions, 1984 and Barles-Souganidis, 1991)
Forany 6 > 0, let Qs := 629 N Q.
If H is consistent and monotone, then any solution us to the discretised
problem N
H(x,Dfu(x),D; u(x))=0  x€Qs 2)

converges, as § — 0 to a viscosity solution of

H(x,Vu(x))=0 x € Q.
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Finite-difference based functionals

Theorem (Crandall-Lions, 1984 and Barles-Souganidis, 1991)
Forany 6 > 0, let Qs := 629 N Q.
If H is consistent and monotone, then any solution us to the discretised
problem N
H(x,Dfu(x),D; u(x))=0  x€Qs 2)

converges, as § — 0 to a viscosity solution of

H(x,Vu(x))=0 x € Q.

Construct a consistent and monotone numerical Hamiltonian such that any
critical point of

R(w):= Y [A(x,Dfu(x), D5 u(x))]

XEQs

is a solution of (2).
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Finite-difference based functionals

Theorem (Crandall-Lions, 1984 and Barles-Souganidis, 1991)
Forany 6 > 0, let Qs := 629 N Q.
If H is consistent and monotone, then any solution us to the discretised
problem N
H(x,Dfu(x),D; u(x))=0  x€Qs 2)

converges, as § — 0 to a viscosity solution of

H(x,Vu(x))=0 x € Q.

Construct a consistent and monotone numerical Hamiltonian such that any
critical point of

R(w):= Y [A(x,Dfu(x), D5 u(x))]

XEQs

is a solution of (2).

Loss functional
() =R+ | (0 - g))* e
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Finite-difference based functionals

Critical points

Fors >0, let Qs := 629 N Q.
Forany u € C(Q), let U := ulo; = {u(x) : B €I}

Let us define the function F : RZ! — R given by

F(U) = > [A(xs,D;Us, D5 UB)]Z

BeT

= 3 [Atx, 0; u(x), Dy u(x))]” = R(w)

XEQs
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Finite-difference based functionals

Critical points

Fors >0, let Qs := 629 N Q.
Forany u € C(Q), let U := ulo; = {u(x) : B €I}

Let us define the function F : RZ! — R given by

W) = 3 [Aee. 03 Us, 05 U)]

BeT

= 3 [Atx, 0; u(x), Dy u(x))]” = R(w)

XEQs

Euler-Lagrange equation

u is a critical point of R(-) if and only if VF(U) = 0.

Defining w(x) = H(x, D u(x), Dy u(x)) and W = w/|q,, we have

VFE(U) = As(U)W,

where As;(U) is a linear operator in RIZ.

<
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Finite-difference based functionals

Critical points

Fors >0, let Qs := 629 N Q.
Forany u € C(Q), let U := ulo; = {u(x) : B €I}

Let us define the function F : RZ! — R given by

W) = 3 [Aee. 03 Us, 05 U)]

BeT

= 3 [Atx, 0; u(x), Dy u(x))]” = R(w)

XEQs

Euler-Lagrange equation

Goal: construct H consistent and monotone and such that As(U) is invertible
for any grid function U on Qs.

So VF(U) = As(U)W = 0 implies W = 0, and then

H(x, Dj u(x), Dy u(x)) =0  Vx € Qs.

<
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Lax-Friedrichs numerical scheme

For o« > 0, we consider a Lax-Friedrichs numerical Hamiltonian

Dfu(x) + Dy u(x) Dfu(x) — Dy u(x)
x, s ) —a .

H.(x, Df u(x), Dy u(x)) :== H (

Known properties:
-} Ifla is consistent with H for all o € R.
@ Forany L >0, if

o> Cu(L) == max [[VoH(x,p).
el <L
xeQ

then H,, is monotone at each function u with Lipschitz constant L.
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Lax-Friedrichs numerical scheme

For o« > 0, we consider a Lax-Friedrichs numerical Hamiltonian

X Dfu(x) + Dy u(x)) . Dfu(x) — Dy u(x)

Pl (x, D u(x), Dy u(x) := H( : >

Known properties:
-} Ifla is consistent with H for all o € R.
@ Forany L >0, if

o> Cu(L) == max [[VoH(x,p).
el <L
xeQ

then H,, is monotone at each function u with Lipschitz constant L.

Euler-Lagrange equation:
The equation VF(U) = 0 associated to H, can be written as

—(Ag(U) + QA5)W =0,

~

@ W is the grid function associated to w(x) = H.(x, Df u(x), Dy u(x)).
@ A;s(U) is a linear operator that can be computed in terms of V,H(x, p).
@ A; is the discretised Laplace operator associated to the grid Q5.
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Main result

For o > 0, we consider a Lax-Friedrichs numerical Hamiltonian

Dfu(x) + Dy u(x)> . Dfu(x) — Dy u(x)
2 2

H.(x, D} u(x), Dy u(x)) := H (x,
and the functional

R(u) = > [Falx, D} u(x), D5 u(x))]2

XEQs

Let u € C(Q) be a critical point of R(-) with Lipschitz constant L > 0. If

A1(Qs5)
2d

«

> max {[[VoH(x, p)|| : oIl < L, x € Q}

then Ha(x, D} u(x), Dy u(x)) = 0 for all x € Qs.

Remark: For regular domains Q C R?, we have \{(Q;) = O(d9).

0 — A1(Qs5) is increasing.
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Main result

Conclusion: Given Q, H(x, p) and L > 0, if we take the hyperparameters
a > 0and d§ > 0 big enough

A(Qs)

od > max {[|VoH(x,p)|| : Pl <L, x€Q}

«

then any critical point of ﬁ(-) with Lipschitz constant < L is a global minimiser
and, therefore, approximates a viscosity solution.
Remarks:

@ Local result: there might be other critical points with Lipschitz constant
bigger than L.

@ Optimisation method: SGD
—~ 2
O =0~ Y Vo [Ha (x, Df &(x; 0;), Dy b(x, 9,))] ,
XEX;

where X; € Q(SN is an i.i.d. sampling (mini-batch).

@ No fixed grid: The NN is defined in the entire domain , so we can vary
the grid (e.g. reducing 9).
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Numerical experiments




We consider the 2D Eikonal equation in Q := (—3, 3)?

[Vul®=1 inQ
uix)=0 onoQ
The solution is the distance function to the boundary.

Training
We choose « and ¢ big enough as per Theorem 1
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We consider the 2D Eikonal equation in Q := (—3, 3)?

[Vul®=1 inQ
uix)=0 onoQ
The solution is the distance function to the boundary.

Training
We choose « and ¢ big enough as per Theorem 1

Good! ... but we regularized too much!

Carlos Esteve-Yagiie



Training

a=25 a=2
0 =0.75 0=05
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Training
a=25 a=2 a=15
6=0.75 0=0.5 6=0.3
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Training
a=25 a=2 a=15 a=1
0=0.75 0=05 0=0.3 6=0.1
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Example

Training

a=25 a=2 «
6=0.75 6=0.5 1)

Il

O 4

w
e
I
-

1o 10910 (MSE) 10g1(E..)
0.0

-15

20 05

-25

30 -1.0

-35

-4.0 =15

-45

-5.0 -2.0

1 2 3 4 5 1 2 3 a 5

Carlos Esteve-Yagiie



Let us start with ®(x, 8*) from the previous example

Question: can we recover the negative viscosity solution?
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Let us start with ®(x, 8*) from the previous example

Question: can we recover the negative viscosity solution?

a=-25
6=0.75
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Let us start with ®(x, 8*) from the previous example

Question: can we recover the negative viscosity solution?

a=-15
6=0.3
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Let us start with ®(x, 8*) from the previous example

Question: can we recover the negative viscosity solution?

a=-—1

6=0.1
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Non-trivial examples

We can consider other Eikonal equations in any domain Q ¢ R

[Vul? = f(x) inQ
u(x) =9g(x) onoQ

The solution is the distance function to the boundary in a non-homogeneous
domain, determined by f(x).
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Data efficiency

Question: how many collocation points are enough? (related to
generalisation properties of the NN)
Two main observations:

@ Taking § large is more data efficient.

© Re-sampling the collocation points ate every iteration improves
generalisation.

logio (MSE) 10910 (E=)

-2.0 0.3
25 \ 0.2
-3.0 0.1
-35 0.0
—4.0 -0.1
—4.51 — Np =200 —0.2
Zso No = 400 o3

—— Re-sampling

0.7 0.5 0.2 0.1 0.05 0.7 0.5 0.2 0.1 0.05

MSE and L*°-error with respect to ground truth solution for eikonal equation in
a 5D ball.
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Data efficiency

Question: how many collocation points are enough? (related to
generalisation properties of the NN)
Two main observations:

@ Taking § large is more data efficient.

© Re-sampling the collocation points ate every iteration improves
generalisation.

Mean square F.D. residual Maximum of the F.D. residual

—— Np=200
No =400
—— Re-sampling

002 0] ———— oy

0.7 0.5 0.2 0.1 0.05 0.7 0.5 0.2 0.1 0.05

MSE and L*°-error of the F.D. residual for eikonal equation in a 5D ball.
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Data efficiency

F.D. residual for eikonal equation in a 2D ball

5-07 505 =02 5-01 5-0.05
2 B 2 : 2 as
s ) : - L )
‘ o
o B 3 o o
» 04
o N ;I ' - -
2 - -2 2 -2 oz
E T a0 13 3 S oo 1 s oo i3 s a0 13
o-01 5=0.05

2 08
as
04

2 a0 o1 2 s

Re-sampling

5-07 5-0.05

@




The sampling distribution

In high dimension, sampling the collocation points from a uniform distribution
might not be the best idea

Eikonal equation in a 20-dimensional ball

Uniform sampling Radially uniform sampling
Good accuracy in terms of MSE Good accuracy in terms of L>-error
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Optimal control problems with curvature constrained dynamics

We consider a mode for Reeds-Shepp’s car

x(t) = oa(t) cosw(t)
y( t) = (;Jagt) sinw(t)
(

P .
x(0) = Xp, ¥(0) = yo, w(0) = wp, y

(x,y,w) € R? x [0, 27) represent the car's
position and orientation.

Problem: shortest path to the origin from the initial position.

HJB equation:
H(x,y,w,VUu) = o|Oxucosw + dyusinw| + %|E)Wu\ -1=0,

Domain: Q := A, g x To 2., Where A, g .= {x € R : r < ||x||? < R}.
Boundary condition:

ux)=0 xll=r
ux)=R |xl =R
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Pursuit Evasion game for two Reeds-Shepp’s cars

We consider two Reeds-Shepp’s cars (the Evader E and the Pursuer P)

Xe(t) = oeae(t) coswe(t) Xp(t) = opap(t) coswp(t)

ye(t) :Ueae(t) sin We(t) yp(t) :O'pap(t) SinLUp(t)

. be(t . bp(t

we(t) = be(t) wp(t) = Bp(t)

Pe Pp

Xe(0) = Xe, ¥e(0) = Ye, we(0) = we, Xp(0) = Xp, Yp(0) = ¥p, w(0) = wy,
(Xe, Ve, we) € R? x [0,27) (Xp, Yp, wp) € R? x [0,27)
represent the car’s position of E. represent the car’s position of P.

Problem: P minimises the time to catch E, and E maximises the time until it
gets caught by P.

HJI equation: we define (X,Y) € R?as X =xe —xpand Y = ye — p
1
H(X,Y,we,wp,VU) = op|OxUcoswp+ dyUsinwp|+ — |Bwpu|
Pp

1
—0e |OxUcoswe + JyuUsinwe| — — |Owe U],
Pe

Domain: Q := A, g x T ,,., where A, g := {x € R® : r < ||x|* < R}.
Boundary condition:

ux)=0 |xl=r

ux)=R x| =R
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Pursuit Evasion game for two Reeds-Shepp’s cars

- Game trajectories Time versus the distance
Velocities .
. < -
[oe,pe] =[0.8,1] |- J/Q;ED
[UP7 pP] = [1 ) 1 2] * ::
e p =108,1] 1 .
[Up7 pﬁ] = [1 ) 1] 4 \C ) :z
[o0,pe] = 0.8,1] @ .
[O'pvpp] = [1708] - :::
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Pursuit Evasion game for two Reeds-Shepp’s cars
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Conclusions and perspectives

Conclusions:
1. We address a BVP for a HJ equation through a minimisation problem

min 7 () = /ﬂ [/f/a(x, Dg’u(x)Dgu(x))]zdx—&- /B Q(u(x)—g(x))zdx

2. By choosing a suitable numerical Hamiltonian lfla(x, Dfu(x)Dj u(x)),
we can ensure that any critical point approximates the viscosity solution.

3. The minimiser can be approximated by a NN trained through SGD.

4. We can start with o and ¢ large and then reduce them to refine the
numerical solution.
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Conclusions and perspectives

Open questions:

1. What is the best sampling distribution for the collocation points?
@ In high dimension, uniform sampling is not effective.
@ Do we need more collocation points near the singular set?
e Can we use the causality of the PDE to design a suitable sampling
distribution?

2. Sample complexity: how many collocation points we need to achieve a

good approximation?

o for smaller values of § we need more collocation points.

@ since the viscosity solution has typically a rather simple structure, we need
less collocation points than grid points.

e for more complex NN architectures we need more collocation points.

3. What about the NN architecture?
o Is there a specific architecture that uses the structure of the solution to
approximate it with less parameters?
4. Other non-linear PDEs?

e We can consider any PDE.

A suitable numerical scheme, e.g. FD, FEM, etc.

Address the discretized problem by means of DL.

Analyse the optimality condition for the associated loss functional.
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Conclusions and perspectives

Open questions:

1. What is the best sampling distribution for the collocation points?

@ In high dimension, uniform sampling is not effective.

@ Do we need more collocation points near the singular set?

e Can we use the causality of the PDE to design a suitable sampling
distribution?

2. Sample complexity: how many collocation points we need to achieve a

good approximation?

o for smaller values of § we need more collocation points.

@ since the viscosity solution has typically a rather simple structure, we need
less collocation points than grid points.

e for more complex NN architectures we need more collocation points.

3. What about the NN architecture?
o Is there a specific architecture that uses the structure of the solution to
approximate it with less parameters?
4. Other non-linear PDEs?

e We can consider any PDE.

@ A suitable numerical scheme, e.g. FD, FEM, etc.

o Address the discretized problem by means of DL.

o Analyse the optimality condition for the associated loss functional.

Thanks for the attention Preprint: arXiv:2406.10758
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