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Deep Learning and Partial Differential Equations

Boundary value problem{
F (x , u,∇u,D2u) = 0 on Ω ⊂ Rd

u(x) = g(x) on ∂Ω.
(BVP)

Goal: Approximate the solution of (BVP) by means of a Neural Network.

For a hypothesis set F ⊂ C(Ω), we consider the problem

min
u∈F
J (u), (1)

for some loss functional J (·) : C(Ω)→ R.

Questions:
What hypothesis set F? (NN architecture)

What functional J (·)?
What optimisation algorithm? (SGD or a variant)

What type of solution are we looking for?
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Deep Learning and Partial Differential Equations

Boundary value problem{
F (x , u,∇u,D2u) = 0 on Ω

u(x) = g(x) on ∂Ω.
(BVP)

Hypothesis set: a parametric class of continuous functions

F := {Φ(·; θ) : Ω→ R : θ ∈ Rp}.

Universal approximation of NNs =⇒ F ≈ C(Ω).

Optimisation method: gradient descent

θt+1 = θt − γ∇θJ (Φ(·; θt )) , (GD)

Loss functional: we want the following properties
1 Minimisers of J (·) approximate the solution of (BVP).
2 Stationary points of (GD) are global minimisers.

Carlos Esteve-Yagüe



Deep Learning and Partial Differential Equations

Boundary value problem{
F (x , u,∇u,D2u) = 0 on Ω

u(x) = g(x) on ∂Ω.
(BVP)

Hypothesis set: a parametric class of continuous functions

F := {Φ(·; θ) : Ω→ R : θ ∈ Rp}.

Universal approximation of NNs =⇒ F ≈ C(Ω).

Optimisation method: gradient descent

θt+1 = θt − γ∇θJ (Φ(·; θt )) , (GD)

Loss functional: we want the following properties
1 Minimisers of J (·) approximate the solution of (BVP).
2 Stationary points of (GD) are global minimisers.

Carlos Esteve-Yagüe



Deep Learning and Partial Differential Equations

Let us look at the equation

∇θJ (Φ(·; θ)) = J ′(Φ(·; θ)) · ∇θΦ(·; θ) = 0, θ ∈ Rp.

where J ′(u) ∈ C(Ω)∗ is the Fréchet derivative of J (·) at u.

Stationary points

θ is a critical point if and only if one of the following holds:
J ′ (Φ(·; θ)) = 0

J ′ (Φ(·; θ)) 6= 0 and all the components of ∇θΦ(·; θ) are in the kernel of J ′ (Φ(·; θ)).
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where J ′(u) ∈ C(Ω)∗ is the Fréchet derivative of J (·) at u.
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θ is a critical point if and only if one of the following holds:
J ′ (Φ(·; θ)) = 0

J ′ (Φ(·; θ)) 6= 0 and all the components of ∇θΦ(·; θ) are in the kernel of J ′ (Φ(·; θ)).

The specific form of ∇θΦ(·; θ) depends on the NN architecture.

The form of J ′ (Φ(·; θ)) depends on the choice of the functional.

Carlos Esteve-Yagüe



Deep Learning and Partial Differential Equations

Let us look at the equation

∇θJ (Φ(·; θ)) = J ′(Φ(·; θ)) · ∇θΦ(·; θ) = 0, θ ∈ Rp.

where J ′(u) ∈ C(Ω)∗ is the Fréchet derivative of J (·) at u.

Stationary points

θ is a critical point if and only if one of the following holds:
J ′ (Φ(·; θ)) = 0

J ′ (Φ(·; θ)) 6= 0 and all the components of ∇θΦ(·; θ) are in the kernel of J ′ (Φ(·; θ)).

Goal of the talk: construct J : C(Ω)→ R+ such that
1 any minimiser of J (u) approximates the solution of (BVP).
2 any solution of J ′(u) = 0 approximates the solution of (BVP).

We will only consider Hamilton-Jacobi PDEs.
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Hamilton-Jacobi equations

Boundary value problem{
H(x ,∇u) = 0 on Ω ⊂ Rd

u(x) = g(x) on ∂Ω.
(HJ)

for some (non-linear) Hamiltonian H(x , p) : Ω× Rd → R.

Physics Informed Neural Networks

J (u) :=

∫
Ω

(H(x ,∇u(x)))2 dx +

∫
∂Ω

(u(x)− g(x))2 dx

Which continuous functions minimise J (u)?

What are the critical points? i.e. solutions to J ′(u) = 0?

Is J (·) even Fréchet differentiable in C(Ω)?
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Hamilton-Jacobi equations

Eikonal equation {
(∂x u)2 − 1 = 0 in (0, 1)

u(0) = u(1) = 0
(HJ)

J (u) :=

∫ 1

0

(
(∂x u)2 − 1

)2
dx + u(0)2 + u(1)2

Global minimisers:
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Hamilton-Jacobi equations

Eikonal equation {
(∂x u)2 − 1 = 0 in (0, 1)

u(0) = u(1) = 0
(HJ)

J (u) :=

∫ 1

0

(
(∂x u)2 − 1

)2
dx + u(0)2 + u(1)2

Global minimisers:

...and many more

1 We are interested in the viscosity solution (the first plot above)
2 We need to add some regularity to the functional.

something like J (u) + γR(u)?
3 The regularisation has to single out the first plot from the second.
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Viscosity solutions

Boundary value problem{
H(x ,∇u) = 0 on Ω ⊂ Rd

u(x) = g(x) on ∂Ω.
(HJ)

for some (non-linear) Hamiltonian H(x , p) : Ω× Rd → R.

Viscosity solution {
H(x ,∇uε)− ε∆uε = 0 on Ω ⊂ Rd

uε(x) = g(x) on ∂Ω.
(VHJ)

has a unique classical solution uε ∈ C∞(Ω), for each ε 6= 0.

The viscosity solution of (HJ) is the point wise limit

u(x) = lim
ε→0+

uε(x), ∀x ∈ Ω.
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Finite-difference based functionals

Main idea

Numerical methods (such as F.D.) introduce what is known as numerical
diffusion.

Why don’t we replace H(x ,∇u(x)) in

J (u) :=

∫
Ω

(H(x ,∇u(x)))2 dx +

∫
∂Ω

(u(x)− g(x))2 dx

by a numerical Hamiltonian?

Ĥ(x ,D+
δ u(x),D−δ u(x))

where

D+
δ u(x) =

u(x + δI)− u(x)

δ
and D−δ u(x) =

u(x)− u(x − δI)
δ

.
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Finite-difference based functionals

Theorem (Crandall-Lions, 1984 and Barles-Souganidis, 1991)
For any δ > 0, let Ωδ := δZd ∩ Ω.
If Ĥ is consistent and monotone, then any solution uδ to the discretised
problem

Ĥ(x ,D+
δ u(x),D−δ u(x)) = 0 x ∈ Ωδ (2)

converges, as δ → 0 to a viscosity solution of

H(x ,∇u(x)) = 0 x ∈ Ω.

Goal

Construct a consistent and monotone numerical Hamiltonian such that any
critical point of

R̂(u) :=
∑

x∈Ωδ

[
Ĥ(x ,D+

δ u(x),D−δ u(x))
]2

is a solution of (2).

Loss functional

J (u) := R̂(u) +

∫
∂Ω

(u(x)− g(x))2 dx

Carlos Esteve-Yagüe



Finite-difference based functionals

Theorem (Crandall-Lions, 1984 and Barles-Souganidis, 1991)
For any δ > 0, let Ωδ := δZd ∩ Ω.
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Finite-difference based functionals

Critical points

For δ > 0, let Ωδ := δZd ∩ Ω.
For any u ∈ C(Ω), let U := u|Ωδ = {u(x) : β ∈ I}.

Let us define the function F : R|I| → R given by

F (U) :=
∑
β∈I

[
Ĥ(xβ ,D+

δ Uβ ,D−δ Uβ)
]2

=
∑

x∈Ωδ

[
Ĥ(x ,D+

δ u(x),D−δ u(x))
]2

= R̂(u)

Euler-Lagrange equation
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For δ > 0, let Ωδ := δZd ∩ Ω.
For any u ∈ C(Ω), let U := u|Ωδ = {u(x) : β ∈ I}.

Let us define the function F : R|I| → R given by
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[
Ĥ(xβ ,D+

δ Uβ ,D−δ Uβ)
]2

=
∑

x∈Ωδ

[
Ĥ(x ,D+

δ u(x),D−δ u(x))
]2

= R̂(u)

Euler-Lagrange equation

u is a critical point of R̂(·) if and only if ∇F (U) = 0.

Defining w(x) = Ĥ(x ,D+
δ u(x),D−δ u(x)) and W = w |Ωδ , we have

∇F (U) = Aδ(U)W ,

where Aδ(U) is a linear operator in R|I|.
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Finite-difference based functionals

Critical points

For δ > 0, let Ωδ := δZd ∩ Ω.
For any u ∈ C(Ω), let U := u|Ωδ = {u(x) : β ∈ I}.

Let us define the function F : R|I| → R given by

F (U) :=
∑
β∈I

[
Ĥ(xβ ,D+

δ Uβ ,D−δ Uβ)
]2

=
∑

x∈Ωδ

[
Ĥ(x ,D+

δ u(x),D−δ u(x))
]2

= R̂(u)

Euler-Lagrange equation

Goal: construct Ĥ consistent and monotone and such that Aδ(U) is invertible
for any grid function U on Ωδ.

So ∇F (U) = Aδ(U)W = 0 implies W = 0, and then

Ĥ(x ,D+
δ u(x),D−δ u(x)) = 0 ∀x ∈ Ωδ.
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Lax-Friedrichs numerical scheme

For α > 0, we consider a Lax-Friedrichs numerical Hamiltonian

Ĥα(x ,D+
δ u(x),D−δ u(x)) := H

(
x ,

D+
δ u(x) + D−δ u(x)

2

)
−α

D+
δ u(x)− D−δ u(x)

2

Known properties:
Ĥα is consistent with H for all α ∈ R.
For any L > 0, if

α ≥ CH(L) := max
‖p‖≤L

x∈Ω

‖∇pH(x , p)‖,

then Ĥα is monotone at each function u with Lipschitz constant L.

Euler-Lagrange equation:
The equation ∇F (U) = 0 associated to Ĥα can be written as

−(Aδ(U) + α∆δ)W = 0,

W is the grid function associated to w(x) = Ĥα(x ,D+
δ u(x),D−δ u(x)).

Aδ(U) is a linear operator that can be computed in terms of ∇pH(x , p).
∆δ is the discretised Laplace operator associated to the grid Ωδ.
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Main result

For α > 0, we consider a Lax-Friedrichs numerical Hamiltonian

Ĥα(x ,D+
δ u(x),D−δ u(x)) := H

(
x ,

D+
δ u(x) + D−δ u(x)

2

)
−α

D+
δ u(x)− D−δ u(x)

2

and the functional

R̂(u) :=
∑

x∈Ωδ

[
Ĥα(x ,D+

δ u(x),D−δ u(x))
]2

Theorem

Let u ∈ C(Ω) be a critical point of R̂(·) with Lipschitz constant L > 0. If

α
λ1(Ωδ)

2d
> max

{
‖∇pH(x , p)‖ : ‖p‖ ≤ L, x ∈ Ω

}
then Ĥα(x ,D+

δ u(x),D−δ u(x)) = 0 for all x ∈ Ωδ.

Remark: For regular domains Ω ⊂ Rd , we have λ1(Ωδ) = O(dδ).

δ 7→ λ1(Ωδ) is increasing.
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Main result

Conclusion: Given Ω, H(x , p) and L > 0, if we take the hyperparameters
α > 0 and δ > 0 big enough

α
λ1(Ωδ)

2d
> max

{
‖∇pH(x , p)‖ : ‖p‖ ≤ L, x ∈ Ω

}
then any critical point of R̂(·) with Lipschitz constant ≤ L is a global minimiser
and, therefore, approximates a viscosity solution.

Remarks:
Local result: there might be other critical points with Lipschitz constant
bigger than L.

Optimisation method: SGD

θt+1 := θt − γ
∑
x∈Xt

∇θ
[
Ĥα
(
x ,D+

δ Φ(x ; θt ),D−δ Φ(x , θt )
)]2

,

where Xt ∈ ΩN
δ is an i.i.d. sampling (mini-batch).

No fixed grid: The NN is defined in the entire domain Ω, so we can vary
the grid (e.g. reducing δ).
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Numerical experiments
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Example

We consider the 2D Eikonal equation in Ω := (−3, 3)2{
‖∇u‖2 = 1 in Ω

u(x) = 0 on ∂Ω

The solution is the distance function to the boundary.

Training
We choose α and δ big enough as per Theorem 1

Good! ... but we regularized too much!
Carlos Esteve-Yagüe
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Example

Training

α = 2.5
δ = 0.75

α = 2
δ = 0.5
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Example

Training

α = 2.5
δ = 0.75

α = 2
δ = 0.5

α = 1.5
δ = 0.3

α = 1
δ = 0.1

α = 0.5
δ = 0.05

Error
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Example

Let us start with Φ(x , θ∗) from the previous example

Question: can we recover the negative viscosity solution?
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Question: can we recover the negative viscosity solution?

α = −2.5
δ = 0.1

α = −2.5
δ = 0.75
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Example

Let us start with Φ(x , θ∗) from the previous example

Question: can we recover the negative viscosity solution?

α = −2.5
δ = 0.1

α = −1
δ = 0.1
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Non-trivial examples

We can consider other Eikonal equations in any domain Ω ⊂ Rd{
‖∇u‖2 = f (x) in Ω

u(x) = g(x) on ∂Ω

The solution is the distance function to the boundary in a non-homogeneous
domain, determined by f (x).

Carlos Esteve-Yagüe



Data efficiency

Question: how many collocation points are enough? (related to
generalisation properties of the NN)

Two main observations:
1 Taking δ large is more data efficient.
2 Re-sampling the collocation points ate every iteration improves

generalisation.

MSE and L∞-error with respect to ground truth solution for eikonal equation in
a 5D ball.
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Question: how many collocation points are enough? (related to
generalisation properties of the NN)

Two main observations:
1 Taking δ large is more data efficient.
2 Re-sampling the collocation points ate every iteration improves

generalisation.

MSE and L∞-error of the F.D. residual for eikonal equation in a 5D ball.
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Data efficiency

F.D. residual for eikonal equation in a 2D ball

N0 = 80

N0 = 160

Re-sampling

Carlos Esteve-Yagüe



The sampling distribution

In high dimension, sampling the collocation points from a uniform distribution
might not be the best idea

Eikonal equation in a 20-dimensional ball

Uniform sampling
Good accuracy in terms of MSE

Radially uniform sampling
Good accuracy in terms of L∞-error

Carlos Esteve-Yagüe



Optimal control problems with curvature constrained dynamics

We consider a mode for Reeds-Shepp’s car
ẋ(t) = σa(t) cosω(t)
ẏ(t) = σa(t) sinω(t)

ω̇(t) =
b(t)
ρ

x(0) = x0, y(0) = y0, ω(0) = ω0,

(x , y , ω) ∈ R2 × [0, 2π) represent the car’s
position and orientation.

Problem: shortest path to the origin from the initial position.

HJB equation:

H(x , y , ω,∇u) = σ|∂x u cosω + ∂y u sinω|+ 1
ρ
|∂ωu| − 1 = 0,

Domain: Ω := Ar,R × T0,2π, where Ar,R := {x ∈ R2 : r < ‖x‖2 < R}.
Boundary condition: {

u(x) = 0 ‖x‖ = r
u(x) = R ‖x‖ = R.

Carlos Esteve-Yagüe



Optimal control problems with curvature constrained dynamics
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Pursuit Evasion game for two Reeds-Shepp’s cars

We consider two Reeds-Shepp’s cars (the Evader E and the Pursuer P)
ẋe(t) = σeae(t) cosωe(t)
ẏe(t) = σeae(t) sinωe(t)

ω̇e(t) =
be(t)
ρe

xe(0) = xe, ye(0) = ye, ωe(0) = ωe,

(xe, ye, ωe) ∈ R2 × [0, 2π)
represent the car’s position of E .


ẋp(t) = σpap(t) cosωp(t)
ẏp(t) = σpap(t) sinωp(t)

ω̇p(t) =
bp(t)
ρp

xp(0) = xp, yp(0) = yp, ω(0) = ω0,

(xp, yp, ωp) ∈ R2 × [0, 2π)
represent the car’s position of P.

Problem: P minimises the time to catch E , and E maximises the time until it
gets caught by P.

HJI equation: we define (X ,Y ) ∈ R2 as X = xE − xP and Y = ye − yp

H(X ,Y , ωe, ωp,∇u) := σp |∂X u cosωp + ∂Y u sinωp|+
1
ρp

∣∣∂ωp u
∣∣

−σe |∂X u cosωe + ∂Y u sinωe| −
1
ρe
|∂ωe u| ,

Domain: Ω := Ar,R × T2
0,2π, where Ar,R := {x ∈ R2 : r < ‖x‖2 < R}.

Boundary condition: {
u(x) = 0 ‖x‖ = r
u(x) = R ‖x‖ = R.
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Pursuit Evasion game for two Reeds-Shepp’s cars

Velocities

[σe, ρe] = [0.8, 1]

[σp, ρp] = [1, 1.2]

[σe, ρe] = [0.8, 1]

[σp, ρp] = [1, 1]

[σe, ρe] = [0.8, 1]

[σp, ρp] = [1, 0.8]

Game trajectories Time versus the distance
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Pursuit Evasion game for two Reeds-Shepp’s cars
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Conclusions and perspectives

Conclusions:
1. We address a BVP for a HJ equation through a minimisation problem

min
u
J (u) =

∫
Ω

[
Ĥα(x ,D+

δ u(x)D−δ u(x))
]2

dx +

∫
∂Ω

(u(x)− g(x))2dx

2. By choosing a suitable numerical Hamiltonian Ĥα(x ,D+
δ u(x)D−δ u(x)),

we can ensure that any critical point approximates the viscosity solution.

3. The minimiser can be approximated by a NN trained through SGD.

4. We can start with α and δ large and then reduce them to refine the
numerical solution.
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Conclusions and perspectives

Open questions:
1. What is the best sampling distribution for the collocation points?

In high dimension, uniform sampling is not effective.
Do we need more collocation points near the singular set?
Can we use the causality of the PDE to design a suitable sampling
distribution?

2. Sample complexity: how many collocation points we need to achieve a
good approximation?

for smaller values of δ we need more collocation points.
since the viscosity solution has typically a rather simple structure, we need
less collocation points than grid points.
for more complex NN architectures we need more collocation points.

3. What about the NN architecture?
Is there a specific architecture that uses the structure of the solution to
approximate it with less parameters?

4. Other non-linear PDEs?
We can consider any PDE.
A suitable numerical scheme, e.g. FD, FEM, etc.
Address the discretized problem by means of DL.
Analyse the optimality condition for the associated loss functional.

Thanks for the attention Preprint: arXiv:2406.10758
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