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Control and ML: two neighboring fields

CYBERNETICS: the science of communication and
control in animals and machines.

Norbert Wiener, 1948

Two essential conceptual binomials involved in this definition

control-communication: sufficient and quality information about the state of
a system is needed to make the right decisions, to reach a given objective or
simply to avoid risky regimes to be eluded.

animal-machine: the human being, a rational animal, aims to build machines
to carry out those tasks that prevent him from dedicating his time and energy
to more sublime activities.

The close link between control and/or cybernetics and Machine Learning is
built in Wiener’s own definition.
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Control and ML: two neighboring fields

It is often hard to observe the interconnections between different mathematical
disciplines since they are split by conceptual and technical mountain ranges, and
often have evolved in different communities. Building the connecting paths requires
an important effort of abstraction.

Exploring the notion of controllability helps disclosing one of those gateways.

CONTROLLABILITY: driving a dy-
namical system from an initial con-
figuration to a final one, in a given
time horizon, using skillfully de-
signed and viable controls.

LINEAR FINITE DIMENSIONAL=KALMAN

ẋ(t) = Ax(t) + Bu(t)

⇒

rank
[
B|AB|A2B| . . . |AN−1B

]
= N

The size of the control depends on the length of the time horizon: in short time hori-
zons the control is enormous while in longer time horizons it has a smaller amplitude.

Are these ideas and methods relevant at all in Machine Learning?
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Supervised learning

Goal: classification

Match points (images) to re-
spective labels.

Technique

Approximate a function fθ : Rd → Rd , depending on some unknown parameters
θ ∈ Θ, using a dataset

{(xi, yi)}
N
i=1 ⊂ Rd × Rd s.t. yi = fθ(xi)

This is typically done by training a neural network. We will do it through
simultaneous or ensemble control of Neural Ordinary Differential Equa-
tions(NODEs).
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Supervised learning

Residual Neural Network (ResNet)

For each item i ∈ {1, . . . ,N}

xk+1
i = xki + hWkσ(Akxki + bk), k ∈ {1, . . . , L− 1}

(Wk,Ak,bk) ∈ Rd×p × Rp×d × Rp : parameters

σ: (nonlinear) activation function

L > 1: number of layers (depth)

p ≥ 1: neurons per layer (width)

GOAL: find (Wk,Ak,bk) such that xLi = yi

In the limit L→ +∞, this constitutes a simultaneous control problem for the Neural
Ordinary Differential Equation

ẋi(t) = W(t)σ
(
A(t)xi(t) + b(t)

)
, t ∈ (0, T)

where (W,A,b) ∈ L∞((0, T),Rd×p×R×d×Rp) are control functions that must steer
each data point to its corresponding label: xi(T) = yi for all i ∈ {1, . . . ,N}.
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Supervised learning

How do we achieve that? Empirical risk minimization: minimize under the
ResNet dynamics

1

N

N∑
i=1

loss(xi, yi)︸ ︷︷ ︸
empirical risk

+λ
L∑

k=1

‖(Wk,Ak,bk)‖2

︸ ︷︷ ︸
regularization−→ L→ +∞

1

N

N∑
i=1

loss(xi(T), yi)︸ ︷︷ ︸
empirical risk

+λ

∫ T

0
‖(W(t),A(t),b(t))‖2 dt︸ ︷︷ ︸

regularization

Difficult problem due to

computational complexity: N is most-often very large

lack of convexity coming form the non-linearity of the neural network

curse of dimensionality: as the data dimension increases, the amount of data
needed to properly minimize empirical risk grows exponentially.
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Supervised learning

Why does it work? The answer is universal approximation: finite combina-
tions of rescaled and shifted activation functions

L∑
k=1

Wkσ
(
Akx + bk

)
← Cybenko ansatz

are dense in a variety of functional classes.
G. Cybenko, Approximation by superpositions of a sigmoidal function, 1989.

By universal approximation, whatever the data set is, it can be classified simply
because we can approximate with the Cybenko ansatz any characteristic function
taking value 1 in one set of items and 0 in the complementary one, allocating in this
way the right label to each item.

Given that universal approximation guarantees that all goals can be achieved by
identifying the right parameters in Cybenko’s ansatz, we may adopt the least squares
point of view and look for those parameter values minimizing the distance to the
needed function, in the so-called training phase.
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Classification by simultaneous control

Theorem

Consider the NODE ẋ(t) = w(t)σ
(
a(t) · x(t) + b(t)

)
with t ∈ (0, T), w,a ∈ Rd ,

b ∈ R and ReLU activation function

σ(x) = ReLU(x) = max{x,0}

Then, in any time horizon [0,T], a finite arbitrary number N of items can
be driven to an arbitrary number of open subsets of the Euclidean space
corresponding to its labels. Moreover

• Controls are piecewise constant with at most O(N) switches.

• The control time T > 0 can be made arbitrarily small (absorbed into
‖w‖ by scaling).

D. Ruíz-Balet and E. Zuazua, Neural ODE control for classification, approximation, and transport, SIAM Rev., 2023
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What is the ResNet doing? Basic control actions

ẋ(t) = w(t)σ
(
a(t) · x(t) + b(t)

)
→ flow map φT : Rd → Rd

• Control functions (w,a,b) −→ piecewise constant

• Each time discontinuity ∼ one change of layer

• a(t) and b(t) define a hyperplane H(x) = a(t) · x(t) + b(t) = 0 in Rd

• σ(x) = max{x,0} activates H(x) > 0 and freezes H(x) ≤ 0

• w(t) gives the direction of the field inside the half-space H(x) > 0
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What is the ResNet doing? Basic control actions

The very features of the ReLU enable the realization of the simultaneous
control goal. The fact that σ preserves one half-space invariant while de-
forming the other half-space introduces dynamics not found in mechanics,
where such simultaneous control is unlikely.

The NODE driven by the ReLU behaves like a Rubik Cube, solvable
in a finite number of smart operations in which part of the cube is
frozen, while the other one rotates in the appropriate direction and
sense. The goal in the Rubik Cube game is to ensure that all faces
are homogeneous in color, similar to the task that NODEs have to
perform: drive each initial item to a given target.

A strategic inductive choice of the different hyperplanes (via the
controls a and b) and of the direction of the dynamics, through the
control w, guarantees classification in a finite number of steps
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Can we do better?

Key idea for an optimal classification: identifying aminimal set of hyper-
planes that can separate the points in the dataset according to their labels.
The required number of hyperplanes is ameasure of the complexity of the
classifier.

Two possible way of reducing complexity:

Optimize the classification algorithm:

define sharply the hyperplanes
and controls that accomplish the
classification task

Increase the width p: use more neurons
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Optimize the classification algorithm

Classification through NODEs is intrinsically related with organizing the data points
according to their labels using hyper-planes.

WARNING!!

Not all hyper-planes families is adequate for classification. For example, if
we were to divied our domain in polygonal cells separating the points of
different classes, it would be not at all clear how to move them.

Classification via NODEs ismore restrictive than separating the points and must be
done properly. Actually, we can ensure the existence of an effective control w only
when the hyper-planes have an appropriate structure.
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Optimize the classification algorithm

Theorem

Let 2 ≤ d ≤ 2N. Consider a datasetD = {(xi, yi)}2Ni=1 ⊂ Rd × {1,0} such that
{xi}Ni=1⊂ Rd and {xi+N}Ni=i⊂ Rd are in general position. Then

• For any T > 0, there exists piecewise constant controls

(w,a,b) ∈ L∞((0, T);Rd × Rd × R)

such that

φT(xi) > 1 and φT(xi+N) < 1, for all i =∈ {1, . . . ,N}

• The number of discontinuities of (w,a,b) is of the order O
(
1 + N

d

)
.

A. Alvarez-López, R. Orive and E. Zuazua, Optimized classification with neural ODEs via separability, 2023
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Optimize the classification algorithm

General position

A set X of N points in Rd , with N ≥ d, is in general position if no hyperplane
of dimension d − 1 contains more than d points of X .

X is in general position in R2 if no
three points lie on the same line

X is in general position in R3 if
there are no four points on the
same plane

A dataset D = {(xi, yi)}2Ni=1 ⊂ Rd × {1,0}
such that {xi}Ni=1⊂ Rd and {xi+N}Ni=i⊂ Rd

are in general position can be separated
with at most 2 dN/2de hyperplanes.
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Optimize the classification algorithm

Strategy

Step 1 - isolate points according to their classes: find a family of pairwise
parallel hyperplanes

H =
{
H′1,H

′′
2 , . . . ,H

′
dN/de,H

′′
dN/de

}
so that the region bounded by the pair (H′i ,H

′′
i ) contains only points of the

same class. This corresponds to find suitable controls a and b.
Step 2 - control: move each group of point to its corresponding region by
means of suitable designed controls w.

To move the two red points between
H′1 and H′′1 to the red region TR :

1. we move in direction w1 the
region defined by a1 .

2. we move in direction w2 the
region defined by a2 .
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Optimize the classification algorithm

The proposed methodology can classify any set of points, independently of their dis-
tribution. At the same time, it may not be useful in real-world classification problems.

The algorithm characterizes the capacity of a NODE model to classify 2N points
in the worst-case scenario. It provides an upper bound of the controls complexity
sufficient to induce overfitting. Said differently, the algorithm can serve to know when
overfitting arises, depending on the model and dataset dimensions.

Overfitting happens when a model learns
the training data too well, capturing not
only the underlying patterns but also the
noise and outliers. This leads to poor per-
formance on new unseen data, because
the model is too complex.

The good functioning of any real-life algo-
rithm requires avoiding overfitting.
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Increase the network’s width

1 neuron (p=1) multiple neurons (p>1)

ẋ(t) = w(t)σ(a(t) · x(t) + b(t)) −→ ẋ(t) =

p∑
j=1

wj(t)σ(aj(t) · x + bj) (1)

wj : columns ofW ∈ Rd×p

aj : rows of A ∈ Rp×d

bj : coordinates of b ∈ Rd

Theorem

Let d ≥ 2 and T > 0 be fixed. Consider a datasetD = {(xi, yi)}Ni=1 ⊂ Rd×Rd

such that xi 6= xj and yi 6= yj for all i, j ∈ {1, . . . ,N}. Then
• For any p ≥ 1, there exists piecewise constant controls

(W,A,b) ∈ L∞((0, T);Rd×p × Rp×d × Rp)

such that the flow φT generated by (1) interpolates D, i.e., φT(xi) = yi ,
for all i ∈ {1, . . . ,N}.

• The number of discontinuities of (W,A,b) is of the order O
(
N
p − 1

)
.

A. Alvarez-López, A. Slimaneb and E. Zuazua, Interplay between depth and width for interpolation in neural ODEs, 2024
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Increase the network’s width

Strategy

Step 1 - control d − 1 coordinates: for all j ∈ {1, . . . ,p} we take aj = e1 and bj ∈ R
satisfying −b1 < x(1)

1 < −b2 < x(1)
2 < . . . < −bp < x(1)

p . This selection is possible up
to a change of coordinates.

These controls confine the trajectory of each data point xi within the hyperplane
x(1)
j = bj . By properly choosing the velocities wj , we can control d − 1 coordinates of

these points using O
(
N
p

)
switches.

Step 2 - control the last coordinate: use the controlled coordinates and suitable

designed velocities wj to adjust x(1)
i . This also can be done with O

(
N
p

)
switches.

Control d − 1 coordinates Control the remaining coordinate

17 /21



Increase the network’s width

Remark

If the target points {yi}Ni=1 are not distinct, interpolation is not achievable
due to the uniqueness of solutions in the NODE. In such cases, we can relax
the statement from exact to approximate controllability by applying the
theorem to an ε-perturbation of the targets.
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ERC Advanced Grant CoDeFeL
PI: Enrique Zuazua
Universidad de Deusto
Friedrich-Alexander-Universität
Universidad Autónoma de Madrid

Develop new toolswith a solidmathematical foundation suitable for data-aware/physics-
inspired modeling, combining ML and control theoretical ideas.

Four Work Packages:

WP1: Asymptotics and Turnpike for Deep Neural Networks

WP2: Complexity of ResNet dynamics

WP3: Federated Learning

WP4: Modelling through Control and Machine Learning

Pre-doc and postdoc students applications are welcome.
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