Funtional and Numerical Analysis, Control of PDEs and Deep Learning

Francisco Periago

Universidad Politécnica de Cartagena
http://www.upct.es/mc3/en/dr-francisco-periago-esparza/

First meeting of the network COPI2A

Sevilla, january, 16-18, 2024

Goals and outline of the presentation

- Part I: Machine Learning basis. Where and why Machine-Learning-based methods may be useful in the numerical approximation of PDEs-based models?

Goals and outline of the presentation

■ Part I: Machine Learning basis. Where and why Machine-Learning-based methods may be useful in the numerical approximation of PDEs-based models?

- Part II: Functional Analysis and Machine Learning. Are there solid Funcional and Numerical frameworks behind Machine Learning? What's known and what isn't known?

Goals and outline of the presentation

■ Part I: Machine Learning basis. Where and why Machine-Learning-based methods may be useful in the numerical approximation of PDEs-based models?

- Part II: Functional Analysis and Machine Learning. Are there solid Funcional and Numerical frameworks behind Machine Learning? What's known and what isn't known?
- Part III: Control of PDEs and Machine Learning. A toy control problem solved by using Deep-Learning to begin with...

Goals and outline of the presentation

■ Part I: Machine Learning basis. Where and why Machine-Learning-based methods may be useful in the numerical approximation of PDEs-based models?

- Part II: Functional Analysis and Machine Learning. Are there solid Funcional and Numerical frameworks behind Machine Learning? What's known and what isn't known?
- Part III: Control of PDEs and Machine Learning. A toy control problem solved by using Deep-Learning to begin with...

■ Propose a list of open problems related to this topic.

Part I

Machine Learning Basis

Introduction: the set up of supervised learning

Introduction: the set up of supervised learning

Main Goal:

Introduction: the set up of supervised learning

Main Goal: approximate (as accurately as we can) an unknown function $f^{*}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{N}$ from a dataset $S=\left\{\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}=f^{*}\left(\boldsymbol{x}_{i}\right)\right), 1 \leq i \leq n\right\}$

Introduction: the set up of supervised learning

Main Goal: approximate (as accurately as we can) an unknown function $f^{*}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{N}$ from a dataset $S=\left\{\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}=f^{*}\left(\boldsymbol{x}_{i}\right)\right), 1 \leq i \leq n\right\}$
Two cases:

Introduction: the set up of supervised learning

Main Goal: approximate (as accurately as we can) an unknown function $f^{*}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{N}$ from a dataset $S=\left\{\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}=f^{*}\left(\boldsymbol{x}_{i}\right)\right), 1 \leq i \leq n\right\}$
Two cases:
1 regression: f^{*} takes continuous values, and

Introduction: the set up of supervised learning

Main Goal: approximate (as accurately as we can) an unknown function $f^{*}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{N}$ from a dataset $S=\left\{\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}=f^{*}\left(\boldsymbol{x}_{i}\right)\right), 1 \leq i \leq n\right\}$
Two cases:
1 regression: f^{*} takes continuous values, and
2 classification: f^{*} takes discrete values.

Introduction: the set up of supervised learning

Main Goal: approximate (as accurately as we can) an unknown function $f^{*}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{N}$ from a dataset $S=\left\{\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}=f^{*}\left(\boldsymbol{x}_{i}\right)\right), 1 \leq i \leq n\right\}$
Two cases:
1 regression: f^{*} takes continuous values, and
2 classification: f^{*} takes discrete values.
Standard procedure for supervised learning(regression)

Introduction: the set up of supervised learning

Main Goal: approximate (as accurately as we can) an unknown function $f^{*}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{N}$ from a dataset $S=\left\{\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}=f^{*}\left(\boldsymbol{x}_{i}\right)\right), 1 \leq i \leq n\right\}$
Two cases:
1 regression: f^{*} takes continuous values, and
2 classification: f^{*} takes discrete values.
Standard procedure for supervised learning(regression)
1 Choose a hypothesis space \mathcal{H}_{m}.

Introduction: the set up of supervised learning

Main Goal: approximate (as accurately as we can) an unknown function $f^{*}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{N}$ from a dataset $S=\left\{\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}=f^{*}\left(\boldsymbol{x}_{i}\right)\right), 1 \leq i \leq n\right\}$
Two cases:
1 regression: f^{*} takes continuous values, and
2 classification: f^{*} takes discrete values.
Standard procedure for supervised learning(regression)
1 Choose a hypothesis space \mathcal{H}_{m}. Artificial neural networks is the model of choice in Machine Learning.

Introduction: the set up of supervised learning

Main Goal: approximate (as accurately as we can) an unknown function $f^{*}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{N}$ from a dataset $S=\left\{\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}=f^{*}\left(\boldsymbol{x}_{i}\right)\right), 1 \leq i \leq n\right\}$
Two cases:
1 regression: f^{*} takes continuous values, and
$\left[2\right.$ classification: f^{*} takes discrete values.

Standard procedure for supervised learning(regression)

1 Choose a hypothesis space \mathcal{H}_{m}. Artificial neural networks is the model of choice in Machine Learning.
2 Choose a loss function. If we are interested in fitting the data, a popular choice is the so-called training error

$$
\begin{equation*}
\hat{\mathcal{R}}_{n}(f)=\frac{1}{n} \sum_{i=1}^{n}\left(f\left(\boldsymbol{\theta} ; \boldsymbol{x}_{i}\right)-f^{*}\left(\boldsymbol{x}_{i}\right)\right)^{2}, \quad f \in \mathcal{H}_{m} \tag{1}
\end{equation*}
$$

Introduction: the set up of supervised learning

Main Goal: approximate (as accurately as we can) an unknown function $f^{*}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{N}$ from a dataset $S=\left\{\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}=f^{*}\left(\boldsymbol{x}_{i}\right)\right), 1 \leq i \leq n\right\}$
Two cases:
1 regression: f^{*} takes continuous values, and
$\left[2\right.$ classification: f^{*} takes discrete values.

Standard procedure for supervised learning(regression)

1 Choose a hypothesis space \mathcal{H}_{m}. Artificial neural networks is the model of choice in Machine Learning.
2 Choose a loss function. If we are interested in fitting the data, a popular choice is the so-called training error

$$
\begin{equation*}
\hat{\mathcal{R}}_{n}(f)=\frac{1}{n} \sum_{i=1}^{n}\left(f\left(\boldsymbol{\theta} ; \boldsymbol{x}_{i}\right)-f^{*}\left(\boldsymbol{x}_{i}\right)\right)^{2}, \quad f \in \mathcal{H}_{m} \tag{1}
\end{equation*}
$$

3 Choose an optimization algorithm for computing the optimal parameters $\boldsymbol{\theta}$ that minimize the loss function.

Introduction: the set up of supervised learning

Main Goal: approximate (as accurately as we can) an unknown function $f^{*}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{N}$ from a dataset $S=\left\{\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}=f^{*}\left(\boldsymbol{x}_{i}\right)\right), 1 \leq i \leq n\right\}$
Two cases:
1 regression: f^{*} takes continuous values, and
$\left[2\right.$ classification: f^{*} takes discrete values.

Standard procedure for supervised learning(regression)

1 Choose a hypothesis space \mathcal{H}_{m}. Artificial neural networks is the model of choice in Machine Learning.
2 Choose a loss function. If we are interested in fitting the data, a popular choice is the so-called training error

$$
\begin{equation*}
\hat{\mathcal{R}}_{n}(f)=\frac{1}{n} \sum_{i=1}^{n}\left(f\left(\boldsymbol{\theta} ; \boldsymbol{x}_{i}\right)-f^{*}\left(\boldsymbol{x}_{i}\right)\right)^{2}, \quad f \in \mathcal{H}_{m} \tag{1}
\end{equation*}
$$

3 Choose an optimization algorithm for computing the optimal parameters $\boldsymbol{\theta}$ that minimize the loss function.
The overall objective is to minimize the generalization error

$$
\begin{equation*}
\mathcal{R}(f)=\mathbb{E}_{\boldsymbol{x} \sim \mathbb{P}}\left(f\left(\boldsymbol{\theta} ; \boldsymbol{x}_{i}\right)-f^{*}\left(\boldsymbol{x}_{i}\right)\right)^{2}, \quad f \in \mathcal{H}_{m} \tag{2}
\end{equation*}
$$

Introduction: the set up of supervised learning

Main Goal: approximate (as accurately as we can) an unknown function $f^{*}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{N}$ from a dataset $S=\left\{\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}=f^{*}\left(\boldsymbol{x}_{i}\right)\right), 1 \leq i \leq n\right\}$
Two cases:
1 regression: f^{*} takes continuous values, and
$\left[2\right.$ classification: f^{*} takes discrete values.

Standard procedure for supervised learning(regression)

1 Choose a hypothesis space \mathcal{H}_{m}. Artificial neural networks is the model of choice in Machine Learning.
2 Choose a loss function. If we are interested in fitting the data, a popular choice is the so-called training error

$$
\begin{equation*}
\hat{\mathcal{R}}_{n}(f)=\frac{1}{n} \sum_{i=1}^{n}\left(f\left(\boldsymbol{\theta} ; \boldsymbol{x}_{i}\right)-f^{*}\left(\boldsymbol{x}_{i}\right)\right)^{2}, \quad f \in \mathcal{H}_{m} \tag{1}
\end{equation*}
$$

3 Choose an optimization algorithm for computing the optimal parameters $\boldsymbol{\theta}$ that minimize the loss function.
The overall objective is to minimize the generalization error

$$
\begin{equation*}
\mathcal{R}(f)=\mathbb{E}_{\boldsymbol{x} \sim \mathbb{P}}\left(f\left(\boldsymbol{\theta} ; \boldsymbol{x}_{i}\right)-f^{*}\left(\boldsymbol{x}_{i}\right)\right)^{2}, \quad f \in \mathcal{H}_{m} \tag{2}
\end{equation*}
$$

with \mathbb{P} the (unknown) distribution of \boldsymbol{x}.

1. Hypothesis space: an example

A canonical example of an hypothesis space \mathcal{H}_{m} (or a neural network architecture) is the so-called multi-layer perceptron (MLP).

To each input $\boldsymbol{x} \in \mathbb{R}^{d}$ it associates the output $\boldsymbol{y}=f_{m}(\boldsymbol{x}):=\boldsymbol{x}^{m}$ defined by

$$
\left\{\begin{array}{l}
x^{k+1}=\sigma\left(\omega^{k} x^{k}+b^{k}\right) \quad \text { for } k=0,1, \cdots, m-1 \tag{3}\\
x^{0}=x,
\end{array}\right.
$$

1. Hypothesis space: an example

A canonical example of an hypothesis space \mathcal{H}_{m} (or a neural network architecture) is the so-called multi-layer perceptron (MLP).

To each input $\boldsymbol{x} \in \mathbb{R}^{d}$ it associates the output $\boldsymbol{y}=f_{m}(\boldsymbol{x}):=\boldsymbol{x}^{m}$ defined by

$$
\left\{\begin{array}{l}
\boldsymbol{x}^{k+1}=\sigma\left(\omega^{k} \boldsymbol{x}^{k}+b^{k}\right) \quad \text { for } k=0,1, \cdots, m-1 \tag{3}\\
\boldsymbol{x}^{0}=\boldsymbol{x}
\end{array}\right.
$$

or in compositional form $\boldsymbol{x}^{m}=\left(\sigma \circ \Lambda^{m-1} \circ \cdots \circ \sigma \circ \Lambda^{0}\right)(\boldsymbol{x}), \Lambda^{k} \boldsymbol{x}=\omega^{k} \boldsymbol{x}+b^{k}$,

1. Hypothesis space: an example

A canonical example of an hypothesis space \mathcal{H}_{m} (or a neural network architecture) is the so-called multi-layer perceptron (MLP).

To each input $\boldsymbol{x} \in \mathbb{R}^{d}$ it associates the output $\boldsymbol{y}=f_{m}(\boldsymbol{x}):=\boldsymbol{x}^{m}$ defined by

$$
\left\{\begin{array}{l}
\boldsymbol{x}^{k+1}=\sigma\left(\omega^{k} \boldsymbol{x}^{k}+b^{k}\right) \quad \text { for } k=0,1, \cdots, m-1 \tag{3}\\
\boldsymbol{x}^{0}=\boldsymbol{x}
\end{array}\right.
$$

or in compositional form $\boldsymbol{x}^{m}=\left(\sigma \circ \Lambda^{m-1} \circ \cdots \circ \sigma \circ \Lambda^{0}\right)(\boldsymbol{x}), \Lambda^{k} \boldsymbol{x}=\omega^{k} \boldsymbol{x}+b^{k}$,

- optimizable parameters $\boldsymbol{\theta}$: weights $\omega^{k} \in \mathbb{R}^{d_{k+1} \times d_{k}}$ and biases $b^{k} \in \mathbb{R}^{d_{k}}$

1. Hypothesis space: an example

A canonical example of an hypothesis space \mathcal{H}_{m} (or a neural network architecture) is the so-called multi-layer perceptron (MLP).

To each input $\boldsymbol{x} \in \mathbb{R}^{d}$ it associates the output $\boldsymbol{y}=f_{m}(\boldsymbol{x}):=\boldsymbol{x}^{m}$ defined by

$$
\left\{\begin{array}{l}
\boldsymbol{x}^{k+1}=\sigma\left(\omega^{k} \boldsymbol{x}^{k}+b^{k}\right) \quad \text { for } k=0,1, \cdots, m-1 \tag{3}\\
\boldsymbol{x}^{0}=\boldsymbol{x}
\end{array}\right.
$$

or in compositional form $\boldsymbol{x}^{m}=\left(\sigma \circ \Lambda^{m-1} \circ \cdots \circ \sigma \circ \Lambda^{0}\right)(\boldsymbol{x}), \Lambda^{k} \boldsymbol{x}=\omega^{k} \boldsymbol{x}+b^{k}$,
■ optimizable parameters $\boldsymbol{\theta}$: weights $\omega^{k} \in \mathbb{R}^{d_{k+1} \times d_{k}}$ and biases $b^{k} \in \mathbb{R}^{d_{k}}$

- m is the depth of the neural network,

1. Hypothesis space: an example

A canonical example of an hypothesis space \mathcal{H}_{m} (or a neural network architecture) is the so-called multi-layer perceptron (MLP).

To each input $\boldsymbol{x} \in \mathbb{R}^{d}$ it associates the output $\boldsymbol{y}=f_{m}(\boldsymbol{x}):=\boldsymbol{x}^{m}$ defined by

$$
\left\{\begin{array}{l}
\boldsymbol{x}^{k+1}=\sigma\left(\omega^{k} \boldsymbol{x}^{k}+b^{k}\right) \quad \text { for } k=0,1, \cdots, m-1 \tag{3}\\
\boldsymbol{x}^{0}=\boldsymbol{x}
\end{array}\right.
$$

or in compositional form $\boldsymbol{x}^{m}=\left(\sigma \circ \Lambda^{m-1} \circ \cdots \circ \sigma \circ \Lambda^{0}\right)(\boldsymbol{x}), \Lambda^{k} \boldsymbol{x}=\omega^{k} \boldsymbol{x}+b^{k}$,

- optimizable parameters $\boldsymbol{\theta}$: weights $\omega^{k} \in \mathbb{R}^{d_{k+1} \times d_{k}}$ and biases $b^{k} \in \mathbb{R}^{d_{k}}$
- m is the depth of the neural network,
- for any k, the vector $\boldsymbol{x}^{k} \in \mathbb{R}^{d_{k}}$ and d_{k} is the width of the layer k,

1. Hypothesis space: an example

A canonical example of an hypothesis space \mathcal{H}_{m} (or a neural network architecture) is the so-called multi-layer perceptron (MLP).

Input layer

Hidden
layer 1

Hidden
Hidden
layer 3

To each input $\boldsymbol{x} \in \mathbb{R}^{d}$ it associates the output $\boldsymbol{y}=f_{m}(\boldsymbol{x}):=\boldsymbol{x}^{m}$ defined by

$$
\left\{\begin{array}{l}
\boldsymbol{x}^{k+1}=\sigma\left(\omega^{k} \boldsymbol{x}^{k}+b^{k}\right) \quad \text { for } k=0,1, \cdots, m-1 \tag{3}\\
\boldsymbol{x}^{0}=\boldsymbol{x}
\end{array}\right.
$$

or in compositional form $\boldsymbol{x}^{m}=\left(\sigma \circ \Lambda^{m-1} \circ \cdots \circ \sigma \circ \Lambda^{0}\right)(\boldsymbol{x}), \Lambda^{k} \boldsymbol{x}=\omega^{k} \boldsymbol{x}+b^{k}$,

- optimizable parameters $\boldsymbol{\theta}$: weights $\omega^{k} \in \mathbb{R}^{d_{k+1} \times d_{k}}$ and biases $b^{k} \in \mathbb{R}^{d_{k}}$
- m is the depth of the neural network,

■ for any k, the vector $x^{k} \in \mathbb{R}^{d_{k}}$ and d_{k} is the width of the layer k,

- σ is a fixed nonlinear activation function (denoted by φ in the figure)

1. Hypothesis space: an example

More on the activation function:

1. Hypothesis space: an example

More on the activation function:
By abuse of notation, $\sigma: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is defined component-wise by

$$
\sigma(x)_{j}:=\sigma\left(x_{j}\right), \quad 1 \leq j \leq d
$$

1. Hypothesis space: an example

More on the activation function:
By abuse of notation, $\sigma: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is defined component-wise by

$$
\sigma(x)_{j}:=\sigma\left(x_{j}\right), \quad 1 \leq j \leq d
$$

Common choices include sigmoids such as $\sigma(x)=\tanh (x)$, rectifiers such as ReLU: $\sigma(x)=\max \{x, 0\}$ or smooth ReLU: $\sigma(x)=\max \left\{x^{3}, 0\right\}$ and Leaky ReLU: $\sigma(x)=\max \{x, 0.1 x\}$.

Important parameters to keep in mind

Important parameters to keep in mind

- m: number of free parameters

Important parameters to keep in mind

- m: number of free parameters
- n : size of the training dataset

Important parameters to keep in mind

- m: number of free parameters
- n : size of the training dataset
- t : number of training steps

Important parameters to keep in mind

- m: number of free parameters
- n : size of the training dataset
- t : number of training steps
- d : input dimension

Important parameters to keep in mind

- m: number of free parameters
- n : size of the training dataset
- t : number of training steps
- d : input dimension

Typically, $m, n, t \rightarrow \infty$ and $d \gg 1$.

Important parameters to keep in mind

- m: number of free parameters
- n : size of the training dataset
- t : number of training steps
- d : input dimension

Typically, $m, n, t \rightarrow \infty$ and $d \gg 1$.
Examples where d is large include:

Important parameters to keep in mind

- m: number of free parameters
- n : size of the training dataset
- t : number of training steps
- d : input dimension

Typically, $m, n, t \rightarrow \infty$ and $d \gg 1$.
Examples where d is large include:

- radiactive transport equation $(d \geq 5)$

Important parameters to keep in mind

- m: number of free parameters
- n : size of the training dataset
- t : number of training steps
- d : input dimension

Typically, $m, n, t \rightarrow \infty$ and $d \gg 1$.
Examples where d is large include:

- radiactive transport equation $(d \geq 5)$
- Boltzmann kinetic equations $(d=6)$

Important parameters to keep in mind

- m: number of free parameters
- n : size of the training dataset
- t : number of training steps
- d : input dimension

Typically, $m, n, t \rightarrow \infty$ and $d \gg 1$.
Examples where d is large include:

- radiactive transport equation $(d \geq 5)$
- Boltzmann kinetic equations $(d=6)$
- nonlinear Schrödinger equation in the quantum many-body problem $(d \gg 1)$

Important parameters to keep in mind

- m: number of free parameters
- n : size of the training dataset
- t : number of training steps
- d : input dimension

Typically, $m, n, t \rightarrow \infty$ and $d \gg 1$.
Examples where d is large include:

- radiactive transport equation $(d \geq 5)$
- Boltzmann kinetic equations $(d=6)$
- nonlinear Schrödinger equation in the quantum many-body problem $(d \gg 1)$
- parameter-dependent (random) PDEs

Important parameters to keep in mind

- m: number of free parameters
- n : size of the training dataset
- t : number of training steps
- d : input dimension

Typically, $m, n, t \rightarrow \infty$ and $d \gg 1$.
Examples where d is large include:

- radiactive transport equation $(d \geq 5)$
- Boltzmann kinetic equations $(d=6)$
- nonlinear Schrödinger equation in the quantum many-body problem $(d \gg 1)$
- parameter-dependent (random) PDEs
- nonlinear Black- Scholes equation for pricing derivatives

Deep Learning opens a door to deal with real-world control problems

More situations that lead to very large d:

- turbulence modeling,
- plasticity models,
- multiscale,
- multiphysics,
- etc.

Deep Learning opens a door to deal with real-world control problems

More situations that lead to very large d :

- turbulence modeling,
- plasticity models,
- multiscale,
- multiphysics,
- etc.

The heart of the matter for the difficulties described above is our limited ability to handle functions of many variables, and this is exactly where machine learning can make a difference.
Weinan E. The dawning of a new era in applied mathematics, Notice of the AMS, 2021.
https://web.math.princeton.edu/~weinan/

Deep Learning opens a door to deal with real-world control problems

More situations that lead to very large d:

- turbulence modeling,
- plasticity models,
- multiscale,
- multiphysics,
- etc.

The heart of the matter for the difficulties described above is our limited ability to handle functions of many variables, and this is exactly where machine learning can make a difference.
Weinan E. The dawning of a new era in applied mathematics, Notice of the AMS, 2021.
https://web.math.princeton.edu/~weinan/

Machine learning is a promising tool to deal with high-dimensional problems

Part II

Functional Analysis and ML

Functional and numerical analysis

■ Function to be approximated (learned): f^{*}

Functional and numerical analysis

■ Function to be approximated (learned): f^{*}
■ Hypothesis space: \mathcal{H}_{m}

Functional and numerical analysis

- Function to be approximated (learned): f^{*}
- Hypothesis space: \mathcal{H}_{m}
- Training error: $\hat{\mathcal{R}}_{n}(f)=\frac{1}{n} \sum_{i=1}^{n}\left(f\left(\boldsymbol{\theta}, \boldsymbol{x}_{i}\right)-f^{*}\left(\boldsymbol{x}_{i}\right)\right)^{2}, \quad f \in \mathcal{H}_{m}$

Functional and numerical analysis

- Function to be approximated (learned): f^{*}

■ Hypothesis space: \mathcal{H}_{m}

- Training error: $\hat{\mathcal{R}}_{n}(f)=\frac{1}{n} \sum_{i=1}^{n}\left(f\left(\boldsymbol{\theta}, \boldsymbol{x}_{i}\right)-f^{*}\left(\boldsymbol{x}_{i}\right)\right)^{2}, \quad f \in \mathcal{H}_{m}$
- Output of the ML model: $\hat{f}\left(\boldsymbol{\theta}^{\star}\right)=\arg \min _{f \in \mathcal{H}_{m}} \hat{\mathcal{R}}_{n}(f)$

Functional and numerical analysis

- Function to be approximated (learned): f^{*}

■ Hypothesis space: \mathcal{H}_{m}

- Training error: $\hat{\mathcal{R}}_{n}(f)=\frac{1}{n} \sum_{i=1}^{n}\left(f\left(\boldsymbol{\theta}, \boldsymbol{x}_{i}\right)-f^{*}\left(\boldsymbol{x}_{i}\right)\right)^{2}, \quad f \in \mathcal{H}_{m}$
- Output of the ML model: $\hat{f}\left(\boldsymbol{\theta}^{\star}\right)=\arg \min _{f \in \mathcal{H}_{m}} \hat{\mathcal{R}}_{n}(f)$
- Generalization error: $\mathcal{R}(f)=\mathbb{E}_{\boldsymbol{x} \sim \mathbb{P}}\left(f\left(\boldsymbol{x}_{i}\right)-f^{*}\left(\boldsymbol{x}_{i}\right)\right)^{2}, \quad f \in \mathcal{H}_{m}$

Functional and numerical analysis

- Function to be approximated (learned): f^{*}
- Hypothesis space: \mathcal{H}_{m}
- Training error: $\hat{\mathcal{R}}_{n}(f)=\frac{1}{n} \sum_{i=1}^{n}\left(f\left(\boldsymbol{\theta}, \boldsymbol{x}_{i}\right)-f^{*}\left(\boldsymbol{x}_{i}\right)\right)^{2}, \quad f \in \mathcal{H}_{m}$
- Output of the ML model: $\hat{f}\left(\boldsymbol{\theta}^{\star}\right)=\arg \min _{f \in \mathcal{H}_{m}} \hat{\mathcal{R}}_{n}(f)$
- Generalization error: $\mathcal{R}(f)=\mathbb{E}_{x \sim \mathbb{P}}\left(f\left(\boldsymbol{x}_{i}\right)-f^{*}\left(\boldsymbol{x}_{i}\right)\right)^{2}, \quad f \in \mathcal{H}_{m}$
- Best approximation in $\mathcal{H}_{m}: f_{m}=\arg \min _{f \in \mathcal{H}_{m}} \mathcal{R}(f)$

Functional and numerical analysis

- Function to be approximated (learned): f^{*}

■ Hypothesis space: \mathcal{H}_{m}

- Training error: $\hat{\mathcal{R}}_{n}(f)=\frac{1}{n} \sum_{i=1}^{n}\left(f\left(\boldsymbol{\theta}, \boldsymbol{x}_{i}\right)-f^{*}\left(\boldsymbol{x}_{i}\right)\right)^{2}, \quad f \in \mathcal{H}_{m}$
- Output of the ML model: $\hat{f}\left(\boldsymbol{\theta}^{\star}\right)=\arg \min _{f \in \mathcal{H}_{m}} \hat{\mathcal{R}}_{n}(f)$
- Generalization error: $\mathcal{R}(f)=\mathbb{E}_{\boldsymbol{x} \sim \mathbb{P}}\left(f\left(\boldsymbol{x}_{i}\right)-f^{*}\left(\boldsymbol{x}_{i}\right)\right)^{2}, \quad f \in \mathcal{H}_{m}$
- Best approximation in $\mathcal{H}_{m}: f_{m}=\arg \min _{f \in \mathcal{H}_{m}} \mathcal{R}(f)$
- Error $\equiv f^{*}-\hat{f}$

Functional and numerical analysis

- Function to be approximated (learned): f^{*}
- Hypothesis space: \mathcal{H}_{m}
- Training error: $\hat{\mathcal{R}}_{n}(f)=\frac{1}{n} \sum_{i=1}^{n}\left(f\left(\boldsymbol{\theta}, \boldsymbol{x}_{i}\right)-f^{*}\left(\boldsymbol{x}_{i}\right)\right)^{2}, \quad f \in \mathcal{H}_{m}$
- Output of the ML model: $\hat{f}\left(\boldsymbol{\theta}^{\star}\right)=\arg \min _{f \in \mathcal{H}_{m}} \hat{\mathcal{R}}_{n}(f)$
- Generalization error: $\mathcal{R}(f)=\mathbb{E}_{\mathbf{x} \sim \mathbb{P}}\left(f\left(\boldsymbol{x}_{i}\right)-f^{*}\left(\boldsymbol{x}_{i}\right)\right)^{2}, \quad f \in \mathcal{H}_{m}$
- Best approximation in $\mathcal{H}_{m}: f_{m}=\arg \min _{f \in \mathcal{H}_{m}} \mathcal{R}(f)$

Error $\equiv f^{*}-\hat{f}=\underbrace{f^{*}-f_{m}}_{\text {approximation error }}+\underbrace{f_{m}-\hat{f}}_{\text {estimation error }}$

Functional and numerical analysis

- Function to be approximated (learned): f^{*}

■ Hypothesis space: \mathcal{H}_{m}

- Training error: $\hat{\mathcal{R}}_{n}(f)=\frac{1}{n} \sum_{i=1}^{n}\left(f\left(\boldsymbol{\theta}, \boldsymbol{x}_{i}\right)-f^{*}\left(\boldsymbol{x}_{i}\right)\right)^{2}, \quad f \in \mathcal{H}_{m}$
- Output of the ML model: $\hat{f}\left(\boldsymbol{\theta}^{\star}\right)=\arg \min _{f \in \mathcal{H}_{m}} \hat{\mathcal{R}}_{n}(f)$
- Generalization error: $\mathcal{R}(f)=\mathbb{E}_{x \sim \mathbb{P}}\left(f\left(\boldsymbol{x}_{i}\right)-f^{*}\left(\boldsymbol{x}_{i}\right)\right)^{2}, \quad f \in \mathcal{H}_{m}$
- Best approximation in $\mathcal{H}_{m}: f_{m}=\arg \min _{f \in \mathcal{H}_{m}} \mathcal{R}(f)$
- Error $\equiv f^{*}-\hat{f}=\underbrace{f^{*}-f_{m}}_{\text {approximation error }}+\underbrace{f_{m}-\hat{f}}_{\text {estimation error }}$

Approximation error (due to the choice of \mathcal{H}_{m}): typically

$$
\left\|f-f_{m}\right\|_{L^{2}} \leq C m^{-\alpha / d}\|f\|_{H^{\alpha}}
$$

If $m^{-\alpha / d}=0.1$, then $m=10^{d / \alpha}=10^{d}$, if $\alpha=1$. Curse of Dimensionality (CoD).

Functional and numerical analysis

- Function to be approximated (learned): f^{*}
- Hypothesis space: \mathcal{H}_{m}
- Training error: $\hat{\mathcal{R}}_{n}(f)=\frac{1}{n} \sum_{i=1}^{n}\left(f\left(\boldsymbol{\theta}, \boldsymbol{x}_{i}\right)-f^{*}\left(\boldsymbol{x}_{i}\right)\right)^{2}, \quad f \in \mathcal{H}_{m}$
- Output of the ML model: $\hat{f}\left(\boldsymbol{\theta}^{\star}\right)=\arg \min _{f \in \mathcal{H}_{m}} \hat{\mathcal{R}}_{n}(f)$
- Generalization error: $\mathcal{R}(f)=\mathbb{E}_{\boldsymbol{x} \sim \mathbb{P}}\left(f\left(\boldsymbol{x}_{i}\right)-f^{*}\left(\boldsymbol{x}_{i}\right)\right)^{2}, \quad f \in \mathcal{H}_{m}$
- Best approximation in $\mathcal{H}_{m}: f_{m}=\arg \min _{f \in \mathcal{H}_{m}} \mathcal{R}(f)$
- Error $\equiv f^{*}-\hat{f}=\underbrace{f^{*}-f_{m}}_{\text {approximation error }}+\underbrace{f_{m}-\hat{f}}_{\text {estimation error }}$

Approximation error (due to the choice of \mathcal{H}_{m}): typically

$$
\left\|f-f_{m}\right\|_{L^{2}} \leq C m^{-\alpha / d}\|f\|_{H^{\alpha}}
$$

If $m^{-\alpha / d}=0.1$, then $m=10^{d / \alpha}=10^{d}$, if $\alpha=1$. Curse of Dimensionality (CoD). In ML we look for approximation errors that overcome (or at least mitigate) CoD.

Functional and numerical analysis

- Function to be approximated (learned): f^{*}
- Hypothesis space: \mathcal{H}_{m}
- Training error: $\hat{\mathcal{R}}_{n}(f)=\frac{1}{n} \sum_{i=1}^{n}\left(f\left(\boldsymbol{\theta}, \boldsymbol{x}_{i}\right)-f^{*}\left(\boldsymbol{x}_{i}\right)\right)^{2}, \quad f \in \mathcal{H}_{m}$
- Output of the ML model: $\hat{f}\left(\boldsymbol{\theta}^{\star}\right)=\arg \min _{f \in \mathcal{H}_{m}} \hat{\mathcal{R}}_{n}(f)$
- Generalization error: $\mathcal{R}(f)=\mathbb{E}_{\boldsymbol{x} \sim \mathbb{P}}\left(f\left(\boldsymbol{x}_{i}\right)-f^{*}\left(\boldsymbol{x}_{i}\right)\right)^{2}, \quad f \in \mathcal{H}_{m}$
- Best approximation in $\mathcal{H}_{m}: f_{m}=\arg \min _{f \in \mathcal{H}_{m}} \mathcal{R}(f)$
- Error $\equiv f^{*}-\hat{f}=\underbrace{f^{*}-f_{m}}_{\text {approximation error }}+\underbrace{f_{m}-\hat{f}}_{\text {estimation error }}$

Approximation error (due to the choice of \mathcal{H}_{m}): typically

$$
\left\|f-f_{m}\right\|_{L^{2}} \leq C m^{-\alpha / d}\|f\|_{H^{\alpha}}
$$

If $m^{-\alpha / d}=0.1$, then $m=10^{d / \alpha}=10^{d}$, if $\alpha=1$. Curse of Dimensionality (CoD). In ML we look for approximation errors that overcome (or at least mitigate) CoD. A result that stands out CoD is the following one proven by Barron

$$
\inf _{f_{m} \in \mathcal{H}_{m}}\left\|f^{*}-f_{m}\right\|_{L^{2}}^{2} \lesssim \frac{\left\|f^{*}\right\|_{*}^{2}}{m}, \quad\|\cdot\|_{*} \text { a suitable norm. }
$$

Functional and numerical analysis

Estimation error (due to the fact that we have a finite dataset): typically Monte Carlo type estimates

$$
I(g)=\int_{X} g(x) d x=\underbrace{\frac{1}{n} \sum_{i=1}^{n} g\left(x_{i}\right)}_{l_{n}(g)}+O(1 / \sqrt{n})
$$

Functional and numerical analysis

Estimation error (due to the fact that we have a finite dataset): typically Monte Carlo type estimates

$$
I(g)=\int_{X} g(x) d x=\underbrace{\frac{1}{n} \sum_{i=1}^{n} g\left(x_{i}\right)}_{l_{n}(g)}+O(1 / \sqrt{n})
$$

We would like to accomplish the following:
Given an hypothesis space \mathcal{H}_{m}, identify a natural function space and a norm $\|\cdot\|_{*}$ that satisfies:

Functional and numerical analysis

Estimation error (due to the fact that we have a finite dataset): typically Monte Carlo type estimates

$$
I(g)=\int_{X} g(x) d x=\underbrace{\frac{1}{n} \sum_{i=1}^{n} g\left(x_{i}\right)}_{l_{n}(g)}+O(1 / \sqrt{n})
$$

We would like to accomplish the following:
Given an hypothesis space \mathcal{H}_{m}, identify a natural function space and a norm $\|\cdot\|_{*}$ that satisfies:

$$
\text { error de generalización } \lesssim \frac{\left\|f^{*}\right\|_{*}^{2}}{m}+\frac{\left\|f^{*}\right\|_{*}}{\sqrt{n}} \text {. }
$$

Two-layer neural networks and Barron space

Two-layer neural networks and Barron space

A two-layer neural network may be represented as

$$
\begin{equation*}
f_{m}(x)=\frac{1}{m} \sum_{j=1}^{m} a_{j} \sigma\left(\boldsymbol{\omega}_{j}^{T} \boldsymbol{x}+b_{j}\right) \tag{4}
\end{equation*}
$$

where $\left(a_{j}, \boldsymbol{\omega}_{j}, b_{j}\right)$ are the parameters and σ is the activation function.

Two-layer neural networks and Barron space

A two-layer neural network may be represented as

$$
\begin{equation*}
f_{m}(\boldsymbol{x})=\frac{1}{m} \sum_{j=1}^{m} a_{j} \sigma\left(\boldsymbol{\omega}_{j}^{T} \boldsymbol{x}+b_{j}\right) \tag{4}
\end{equation*}
$$

where $\left(a_{j}, \boldsymbol{\omega}_{j}, b_{j}\right)$ are the parameters and σ is the activation function. Where does this expression come from?

Two-layer neural networks and Barron space

A two-layer neural network may be represented as

$$
\begin{equation*}
f_{m}(\boldsymbol{x})=\frac{1}{m} \sum_{j=1}^{m} a_{j} \sigma\left(\boldsymbol{\omega}_{j}^{T} \boldsymbol{x}+b_{j}\right) \tag{4}
\end{equation*}
$$

where $\left(a_{j}, \boldsymbol{\omega}_{j}, b_{j}\right)$ are the parameters and σ is the activation function.
Where does this expression come from?
Starting from the Fourier transform-type representation

$$
f(x)=\int_{\mathbb{R}^{d}} a(\omega) e^{i(\omega x)} \rho(d \omega)
$$

with ρ a probability measure on \mathbb{R}^{d}, and by independently sample $\left\{\boldsymbol{\omega}_{j}\right\}_{j=1}^{m}$ we obtain the dimension-independent approximation

$$
f(x) \approx f_{m}(x)=\frac{1}{m} \sum_{j=1}^{m} a\left(\boldsymbol{\omega}_{j}\right) \sigma\left(\boldsymbol{\omega}_{j}^{T} \boldsymbol{x}\right)=\frac{1}{m} \sum_{j=1}^{m} a_{j} \sigma\left(\boldsymbol{\omega}_{j}^{T} \boldsymbol{x}\right), \quad \sigma(z)=e^{i z}
$$

which is of the same type as in (4).

Two-layer neural networks and Barron space

A two-layer neural network may be represented as

$$
\begin{equation*}
f_{m}(\boldsymbol{x})=\frac{1}{m} \sum_{j=1}^{m} a_{j} \sigma\left(\boldsymbol{\omega}_{j}^{T} \boldsymbol{x}+b_{j}\right) \tag{4}
\end{equation*}
$$

where $\left(a_{j}, \boldsymbol{\omega}_{j}, b_{j}\right)$ are the parameters and σ is the activation function.
Where does this expression come from?
Starting from the Fourier transform-type representation

$$
f(x)=\int_{\mathbb{R}^{d}} a(\omega) e^{i(\omega x)} \rho(d \omega)
$$

with ρ a probability measure on \mathbb{R}^{d}, and by independently sample $\left\{\boldsymbol{\omega}_{j}\right\}_{j=1}^{m}$ we obtain the dimension-independent approximation

$$
f(\boldsymbol{x}) \approx f_{m}(\boldsymbol{x})=\frac{1}{m} \sum_{j=1}^{m} a\left(\boldsymbol{\omega}_{j}\right) \sigma\left(\boldsymbol{\omega}_{j}^{T} \boldsymbol{x}\right)=\frac{1}{m} \sum_{j=1}^{m} a_{j} \sigma\left(\boldsymbol{\omega}_{j}^{T} \boldsymbol{x}\right), \quad \sigma(z)=e^{i z}
$$

which is of the same type as in (4). Passing to the limit when the with of the hidden layer goes to infinity in (4) we get the representation formula

$$
f_{\rho}(\boldsymbol{x})=\int_{\mathbb{R}^{d+2}} a \sigma\left(\boldsymbol{\omega}^{T} \boldsymbol{x}+b\right) \rho(d a, d \boldsymbol{\omega}, d b)=\mathbb{E}_{\rho}\left[a \sigma\left(\boldsymbol{\omega}^{T} \boldsymbol{x}\right)\right]
$$

Two-layer neural networks and Barron space

For the case of ReLU- activation function, the space for two-layer NN is that so-called Barron space \mathcal{B}, which is composed of functions $f: D \subset \mathbb{R}^{d} \rightarrow \mathbb{R}$ for which the following norm is finite

$$
\|f\|_{\mathcal{B}}:=\inf \left\{\int_{\mathbb{R}^{d+2}}|a|[|\boldsymbol{\omega}|+|b|] \rho(d a, d \boldsymbol{\omega}, d b): \rho \text { s.t. } f=f_{\rho}\right\}
$$

Two-layer neural networks and Barron space

For the case of ReLU- activation function, the space for two-layer NN is that so-called Barron space \mathcal{B}, which is composed of functions $f: D \subset \mathbb{R}^{d} \rightarrow \mathbb{R}$ for which the following norm is finite

$$
\|f\|_{\mathcal{B}}:=\inf \left\{\int_{\mathbb{R}^{d+2}}|a|[|\boldsymbol{\omega}|+|b|] \rho(d a, d \boldsymbol{\omega}, d b): \rho \text { s.t. } f=f_{\rho}\right\}
$$

Basic properties of Barron space

Two-layer neural networks and Barron space

For the case of ReLU- activation function, the space for two-layer NN is that so-called Barron space \mathcal{B}, which is composed of functions $f: D \subset \mathbb{R}^{d} \rightarrow \mathbb{R}$ for which the following norm is finite

$$
\|f\|_{\mathcal{B}}:=\inf \left\{\int_{\mathbb{R}^{d+2}}|a|[|\boldsymbol{\omega}|+|b|] \rho(d a, d \boldsymbol{\omega}, d b): \rho \text { s.t. } f=f_{\rho}\right\}
$$

Basic properties of Barron space

- If $f \in H^{s}\left(\mathbb{R}^{d}\right)$ for $s>d / 2+2$, then $f \in \mathcal{B}$.

Two-layer neural networks and Barron space

For the case of ReLU- activation function, the space for two-layer NN is that so-called Barron space \mathcal{B}, which is composed of functions $f: D \subset \mathbb{R}^{d} \rightarrow \mathbb{R}$ for which the following norm is finite

$$
\|f\|_{\mathcal{B}}:=\inf \left\{\int_{\mathbb{R}^{d+2}}|a|[|\boldsymbol{\omega}|+|b|] \rho(d a, d \boldsymbol{\omega}, d b): \rho \text { s.t. } f=f_{\rho}\right\}
$$

Basic properties of Barron space

- If $f \in H^{s}\left(\mathbb{R}^{d}\right)$ for $s>d / 2+2$, then $f \in \mathcal{B}$.

■ Barron space embeds into the space of Lipschitz-continuous functions.

Two-layer neural networks and Barron space

For the case of ReLU- activation function, the space for two-layer NN is that so-called Barron space \mathcal{B}, which is composed of functions $f: D \subset \mathbb{R}^{d} \rightarrow \mathbb{R}$ for which the following norm is finite

$$
\|f\|_{\mathcal{B}}:=\inf \left\{\int_{\mathbb{R}^{d+2}}|a|[|\boldsymbol{\omega}|+|b|] \rho(d a, d \boldsymbol{\omega}, d b): \rho \text { s.t. } f=f_{\rho}\right\}
$$

Basic properties of Barron space

- If $f \in H^{s}\left(\mathbb{R}^{d}\right)$ for $s>d / 2+2$, then $f \in \mathcal{B}$.
- Barron space embeds into the space of Lipschitz-continuous functions.
- If $f \in \mathcal{B}$, then $f=\sum_{i=1}^{\infty} f_{i}$, where $f_{i}(\boldsymbol{x})=g_{i}\left(P_{i} \boldsymbol{x}+b_{i}\right)$ and
- g_{i} is C^{1} except at the origin, b_{i} is a shift vector, and
- P_{i} is an orthogonal projection on a k_{i}-dimensional subspace, $0 \leq k_{i} \leq d-1$.

Two-layer neural networks and Barron space

For the case of ReLU- activation function, the space for two-layer NN is that so-called Barron space \mathcal{B}, which is composed of functions $f: D \subset \mathbb{R}^{d} \rightarrow \mathbb{R}$ for which the following norm is finite

$$
\|f\|_{\mathcal{B}}:=\inf \left\{\int_{\mathbb{R}^{d+2}}|a|[|\boldsymbol{\omega}|+|b|] \rho(d a, d \boldsymbol{\omega}, d b): \rho \text { s.t. } f=f_{\rho}\right\}
$$

Basic properties of Barron space

- If $f \in H^{s}\left(\mathbb{R}^{d}\right)$ for $s>d / 2+2$, then $f \in \mathcal{B}$.
- Barron space embeds into the space of Lipschitz-continuous functions.
- If $f \in \mathcal{B}$, then $f=\sum_{i=1}^{\infty} f_{i}$, where $f_{i}(\boldsymbol{x})=g_{i}\left(P_{i} \boldsymbol{x}+b_{i}\right)$ and
- g_{i} is C^{1} except at the origin, b_{i} is a shift vector, and
- P_{i} is an orthogonal projection on a k_{i}-dimensional subspace, $0 \leq k_{i} \leq d-1$.
- Approximation error. For any $f \in \mathcal{B}$ and $m \in \mathbb{N}$, there exists a two-layer neural network f_{m}, with m neurons $\left(a_{j}, \omega_{j}, b_{j}\right)$ such that

$$
\left\|f-f_{m}\right\|_{L^{2}} \lesssim \frac{\left\|f^{*}\right\|_{*}^{2}}{m}
$$

Two-layer neural networks and Barron space

For the case of ReLU- activation function, the space for two-layer NN is that so-called Barron space \mathcal{B}, which is composed of functions $f: D \subset \mathbb{R}^{d} \rightarrow \mathbb{R}$ for which the following norm is finite

$$
\|f\|_{\mathcal{B}}:=\inf \left\{\int_{\mathbb{R}^{d+2}}|a|[|\boldsymbol{\omega}|+|b|] \rho(d a, d \boldsymbol{\omega}, d b): \rho \text { s.t. } f=f_{\rho}\right\}
$$

Basic properties of Barron space

- If $f \in H^{s}\left(\mathbb{R}^{d}\right)$ for $s>d / 2+2$, then $f \in \mathcal{B}$.

■ Barron space embeds into the space of Lipschitz-continuous functions.

- If $f \in \mathcal{B}$, then $f=\sum_{i=1}^{\infty} f_{i}$, where $f_{i}(\boldsymbol{x})=g_{i}\left(P_{i} \boldsymbol{x}+b_{i}\right)$ and
- g_{i} is C^{1} except at the origin, b_{i} is a shift vector, and
- P_{i} is an orthogonal projection on a k_{i}-dimensional subspace, $0 \leq k_{i} \leq d-1$.
- Approximation error. For any $f \in \mathcal{B}$ and $m \in \mathbb{N}$, there exists a two-layer neural network f_{m}, with m neurons $\left(a_{j}, \omega_{j}, b_{j}\right)$ such that

$$
\left\|f-f_{m}\right\|_{L^{2}} \lesssim \frac{\left\|f^{*}\right\|_{*}^{2}}{m}
$$

■ Estimation error in Barron spaces is controlled by a Monte Carlo type ratio.

Function spaces for neural networks architectures

■ Residual networks \Longrightarrow flow-induced spaces

- Multilayer networks \Longrightarrow tree-like spaces

Function spaces for neural networks architectures

■ Residual networks \Longrightarrow flow-induced spaces

- Multilayer networks \Longrightarrow tree-like spaces

■ Convolutional networks \Longrightarrow ???

Function spaces for neural networks architectures

■ Residual networks \Longrightarrow flow-induced spaces

- Multilayer networks \Longrightarrow tree-like spaces

■ Convolutional networks \Longrightarrow ???

- DenseNets \Longrightarrow ???

Function spaces for neural networks architectures

■ Residual networks \Longrightarrow flow-induced spaces
■ Multilayer networks \Longrightarrow tree-like spaces
■ Convolutional networks \Longrightarrow ???

- DenseNets \Longrightarrow ???

國 Weinan E. et al.: Towards a mathematical understanding of Neural Network-based Machine Learning: what we know and we don't known Preprint (2020). Available at https://web.math.princeton.edu/~weinan/
R Weinan E, Chao Ma and Lei Wu, "Machine Learning from a Continuous Viewpoint" , 2019. Available at https://web.math.princeton.edu/~weinan/

Function spaces for neural networks architectures

Proposition

Let $\sigma(z)=\max \{z, 0\}$ and $g(x)=\sigma\left(x_{1}\right)$ be a Barron function on $\mathbb{R}^{d}, d \geq 2$. Denote by B^{d} the unit ball in \mathbb{R}^{d} and by u the solution to

$$
\left\{\begin{array}{lll}
-\Delta u=0 & \text { in } \quad B^{d} \\
u=g & \text { on } \quad \partial B^{d}
\end{array}\right.
$$

If $d \geq 3$, then u is not a Barron function on B^{d}.
國 Weinan E. and S. Wojtowytsch: Some observations on high-dimensional PDEs with Barron data. (2021) Available at https://web.math.princeton.edu/~weinan/

Function spaces for neural networks architectures

Proposition

Let $\sigma(z)=\max \{z, 0\}$ and $g(x)=\sigma\left(x_{1}\right)$ be a Barron function on $\mathbb{R}^{d}, d \geq 2$. Denote by B^{d} the unit ball in \mathbb{R}^{d} and by u the solution to

$$
\left\{\begin{array}{lll}
-\Delta u=0 & \text { in } \quad B^{d} \\
u=g & \text { on } \quad \partial B^{d}
\end{array}\right.
$$

If $d \geq 3$, then u is not a Barron function on B^{d}.
國 Weinan E. and S. Wojtowytsch: Some observations on high-dimensional PDEs with Barron data. (2021) Available at https://web.math.princeton.edu/~weinan/

Open problem: regularity theory for PDEs in high dimension

Part III

Control of PDEs and ML

A toy model: null control of the wave equation

$$
\begin{cases}y_{t t}-\Delta y=0, & \text { in } Q_{T} \\ y(x, 0)=y^{0}(x), & \text { in } \Omega \\ y_{t}(x, 0)=y^{1}(x) & \text { in } \Omega \\ y(x, t)=0, & \text { on } \Gamma_{D} \times(0, T) \\ y(x, t)=u(x, t) & \text { on } \Gamma_{C} \times(0, T)\end{cases}
$$

Goal: Compute $u(x, t)$ such that

$$
y(x, T)=y_{t}(x, T)=0 \quad x \in \Omega
$$

图
Raisi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686-707 (2019)

Numerical approximation using ML

A Physics-informed neural networks (PINNs) algorithm

Numerical approximation using ML

A Physics-informed neural networks (PINNs) algorithm

Step 1: Neural network

A surrogate $\hat{y}(x, t ; \boldsymbol{\theta})$ of the state variable $y(x, t)$ is constructed as input layer hidden layers output layer

$\begin{cases}\text { input layer: } & \mathcal{N}^{0}(\boldsymbol{x})=\boldsymbol{x}=(x, t) \in \mathbb{R}^{d+1} \\ \text { hidden layers: } & \mathcal{N}^{\ell}(\boldsymbol{x})=\sigma\left(\boldsymbol{W}^{\ell} \mathcal{N}^{\ell-1}(\boldsymbol{x})+\boldsymbol{b}^{\ell}\right) \in \mathbb{R}^{N_{\ell}}, \quad \ell=1, \cdots, L-1 \\ \text { output layer: } & \hat{y}(\boldsymbol{x} ; \boldsymbol{\theta})=\mathcal{N}^{L}(\boldsymbol{x})=\boldsymbol{W}^{L} \mathcal{N}^{L-1}(\boldsymbol{x})+\boldsymbol{b}^{L} \in \mathbb{R}\end{cases}$

- $\mathcal{N}^{\ell}: \mathbb{R}^{d_{i n}} \rightarrow \mathbb{R}^{d_{\text {out }}}$ is the ℓ layer with N_{ℓ} neurons,
- $\boldsymbol{W}^{\ell} \in \mathbb{R}^{N_{\ell} \times N_{\ell-1}}$ and $\boldsymbol{b}^{\ell} \in \mathbb{R}^{N_{\ell}}$ are, respectively, the weights and biases so that $\boldsymbol{\theta}=\left\{\boldsymbol{W}^{\ell}, \boldsymbol{b}^{\ell}\right\}_{1 \leq \ell \leq L}$ are the parameters of the neural network, and
- σ is an activation function, e.g. $\sigma(s)=\tanh (s)$

Numerical approximation using ML

A Physics-informed neural networks (PINNs) algorithm

Step 2: Training dataset

Figure: Illustration of a training dataset (based on Sobol points) in the domain $Q_{2}=(0,1) \times(0,2)$. Interior points are marked with circles and boundary points in blue color. $\left(x_{j}, t_{j}\right)$ are the features.

Numerical approximation using ML

A Physics-informed neural networks (PINNs) algorithm

Step 3: Loss function. Labels equal zero

$$
\begin{array}{lll}
\mathcal{L}_{\text {int }}\left(\boldsymbol{\theta} ; \mathcal{T}_{\text {int }}\right) & =\sum_{j=1}^{N_{\text {int }}} w_{j, \text { int }}\left|\hat{y}_{t t}\left(\boldsymbol{x}_{j} ; \boldsymbol{\theta}\right)-\Delta \hat{y}\left(\boldsymbol{x}_{j} ; \boldsymbol{\theta}\right)\right|^{2}, & \boldsymbol{x}_{j} \in \mathcal{T}_{\text {int }} \\
\mathcal{L}_{\Gamma_{D}}\left(\boldsymbol{\theta} ; \mathcal{T}_{\Gamma_{D}}\right) & =\sum_{j=1}^{N_{b}} w_{j, b}\left|\hat{y}\left(\boldsymbol{x}_{j} ; \boldsymbol{\theta}\right)\right|^{2}, & \boldsymbol{x}_{j} \in \mathcal{T}_{\Gamma_{D}} \\
\mathcal{L}_{t=0}^{\text {pos }}\left(\boldsymbol{\theta} ; \mathcal{T}_{t=0}\right) & =\sum_{j=1}^{N_{0}} w_{j, 0}\left|\hat{y}\left(\boldsymbol{x}_{j} ; \boldsymbol{\theta}\right)-y^{0}\left(\boldsymbol{x}_{j}\right)\right|^{2}, & \boldsymbol{x}_{j} \in \mathcal{T}_{t=0} \\
\mathcal{L}_{t=0}^{\text {vel }}\left(\boldsymbol{\theta} ; \mathcal{T}_{t=0}\right) & =\sum_{j=1}^{N_{0}} w_{j, 0}\left|\hat{y}_{t}\left(\boldsymbol{x}_{j} ; \boldsymbol{\theta}\right)-y^{1}\left(\boldsymbol{x}_{j}\right)\right|^{2}, & \boldsymbol{x}_{j} \in \mathcal{T}_{t=0} \\
\mathcal{L}_{t=T}^{\text {pos }}\left(\boldsymbol{\theta} ; \mathcal{T}_{t=T}\right) & =\sum_{j=1}^{N_{T}} w_{j, T}\left|\hat{y}\left(\boldsymbol{x}_{j} ; \boldsymbol{\theta}\right)\right|^{2}, & \boldsymbol{x}_{j} \in \mathcal{T}_{t=T} \\
\mathcal{L}_{t=T}^{\text {vel }}\left(\boldsymbol{\theta} ; \mathcal{T}_{t=T}\right) & =\sum_{j=1}^{N_{T}} w_{j, T}\left|\hat{y}_{t}\left(\boldsymbol{x}_{j} ; \boldsymbol{\theta}\right)\right|^{2}, & \boldsymbol{x}_{j} \in \mathcal{T}_{t=T},
\end{array}
$$

where $w_{j, \text { int }}, w_{j, b}, w_{j, 0}$ and $w_{j, T}$ are the weights of suitable quadrature rules.

$$
\begin{aligned}
\mathcal{L}(\boldsymbol{\theta} ; \mathcal{T}) & =\mathcal{L}_{\text {int }}\left(\boldsymbol{\theta} ; \mathcal{T}_{\text {int }}\right) \\
& +\mathcal{L}_{\Gamma_{D}}\left(\boldsymbol{\theta} ; \mathcal{T}_{\Gamma_{D}}\right) \\
& +\mathcal{L}_{t=0}^{\text {pos }}\left(\boldsymbol{\theta} ; \mathcal{T}_{t=0}\right)+\mathcal{L}_{t=0}^{\text {vel }}\left(\boldsymbol{\theta} ; \mathcal{T}_{t=0}\right) \\
& +\mathcal{L}_{t=T}^{\text {pos }}\left(\boldsymbol{\theta} ; \mathcal{T}_{t=T}\right)+\mathcal{L}_{t=T}^{\text {vel }}\left(\boldsymbol{\theta} ; \mathcal{T}_{t=T}\right) .
\end{aligned}
$$

Numerical approximation using ML

A Physics-informed neural networks (PINNs) algorithm
Step 4: Training process

$$
\boldsymbol{\theta}^{*}=\arg \min _{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta} ; \mathcal{T})
$$

The approximation $\hat{u}\left(t ; \boldsymbol{\theta}^{*}\right)$ of the control $u(x, t)$ is

$$
\hat{u}\left(x, t ; \boldsymbol{\theta}^{*}\right)=\hat{y}\left(x, t ; \boldsymbol{\theta}^{*}\right), \quad x \in \Gamma_{C}, 0 \leq t \leq T
$$

Numerical approximation using ML

A Physics-informed neural networks (PINNs) algorithm

Step 4: Training process

$$
\boldsymbol{\theta}^{*}=\arg \min _{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta} ; \mathcal{T})
$$

The approximation $\hat{u}\left(t ; \boldsymbol{\theta}^{*}\right)$ of the control $u(x, t)$ is

$$
\hat{u}\left(x, t ; \boldsymbol{\theta}^{*}\right)=\hat{y}\left(x, t ; \boldsymbol{\theta}^{*}\right), \quad x \in \Gamma_{C}, 0 \leq t \leq T
$$

To sump up:

Numerical approximation using ML

Estimates on generalization error

Numerical approximation using ML

Estimates on generalization error

Training error

$$
\begin{aligned}
\mathcal{E}_{\text {train }} & :=\mathcal{E}_{\text {train, int }}+\mathcal{E}_{\text {train, boundary }}+\mathcal{E}_{\text {train, initialpos }}+\mathcal{E}_{\text {train, initialvel }} \\
& +\mathcal{E}_{\text {train, finalpos }}+\mathcal{E}_{\text {train, finalvel }},
\end{aligned}
$$

$$
\begin{cases}\mathcal{E}_{\text {train, int }} & =\left(\mathcal{L}_{\text {int }}\left(\boldsymbol{\theta}^{*} ; \mathcal{T}_{\text {int }}\right)\right)^{1 / 2} \\ \mathcal{E}_{\text {train, boundary }} & =\left(\mathcal{L}_{\Gamma_{D}}\left(\boldsymbol{\theta}^{*} ; \mathcal{T}_{\Gamma_{D}}\right)\right)^{1 / 2} \\ \mathcal{E}_{\text {train, initialpos }} & =\left(\mathcal{L}_{t=0}^{\text {pos }}\left(\boldsymbol{\theta}^{*} ; \mathcal{T}_{t=0}\right)\right)^{1 / 2} \\ \mathcal{E}_{\text {train, initialvel }} & =\left(\mathcal{L}_{t=0}^{\text {vel }}\left(\boldsymbol{\theta}^{*} ; \mathcal{T}_{t=0}\right)\right)^{1 / 2} \\ \mathcal{E}_{\text {train, finalpos }} & =\left(\mathcal{L}_{t=T}^{\text {pos }}\left(\boldsymbol{\theta}^{*} ; \mathcal{T}_{t=T}\right)\right)^{1 / 2} \\ \mathcal{E}_{\text {train, finalvel }} & =\left(\mathcal{L}_{t=T}^{\text {vel }}\left(\boldsymbol{\theta}^{*} ; \mathcal{T}_{t=T}\right)\right)^{1 / 2}\end{cases}
$$

Numerical approximation using ML

Estimates on generalization error

Training error

$$
\begin{aligned}
\mathcal{E}_{\text {train }} & :=\mathcal{E}_{\text {train, int }}+\mathcal{E}_{\text {train, boundary }}+\mathcal{E}_{\text {train, initialpos }}+\mathcal{E}_{\text {train, initialvel }} \\
& +\mathcal{E}_{\text {train, finalpos }}+\mathcal{E}_{\text {train, finalvel }},
\end{aligned}
$$

$$
\begin{cases}\mathcal{E}_{\text {train, int }} & =\left(\mathcal{L}_{\text {int }}\left(\boldsymbol{\theta}^{*} ; \mathcal{T}_{\text {int }}\right)\right)^{1 / 2} \\ \mathcal{E}_{\text {train, boundary }} & =\left(\mathcal{L}_{\Gamma_{D}}\left(\boldsymbol{\theta}^{*} ; \mathcal{T}_{\Gamma_{D}}\right)\right)^{1 / 2} \\ \mathcal{E}_{\text {train, initialpos }} & =\left(\mathcal{L}_{t=0}^{\text {pos }}\left(\boldsymbol{\theta}^{*} ; \mathcal{T}_{t=0}\right)\right)^{1 / 2} \\ \mathcal{E}_{\text {train, initialvel }} & =\left(\mathcal{L}_{t=0}^{\text {vel }}\left(\boldsymbol{\theta}^{*} ; \mathcal{T}_{t=0}\right)\right)^{1 / 2} \\ \mathcal{E}_{\text {train, finalpos }} & =\left(\mathcal{L}_{t=T}^{\text {pos }}\left(\boldsymbol{\theta}^{*} ; \mathcal{T}_{t=T}\right)\right)^{1 / 2} \\ \mathcal{E}_{\text {train, finalvel }} & =\left(\mathcal{L}_{t=T}^{\text {vel }}\left(\boldsymbol{\theta}^{*} ; \mathcal{T}_{t=T}\right)\right)^{1 / 2},\end{cases}
$$

Generalization error for control and state

$$
\left\{\begin{array}{l}
\mathcal{E}_{\text {gener }}(u):=\|u-\hat{u}\|_{L^{2}\left(\Gamma_{C} ;(0, T)\right)} \\
\mathcal{E}_{\text {gener }}(y):=\|y-\hat{y}\|_{C\left(0, T ; L^{2}(\Omega)\right) \cap C^{1}\left(0, T ; H^{-1}(\Omega)\right)}
\end{array}\right.
$$

Numerical approximation using ML

Theorem (Estimates on generalization error)

Assume that both $y, \hat{y} \in C^{2}\left(\overline{Q_{T}}\right)$. Then

$$
\begin{aligned}
\mathcal{E}_{\text {gener }}(u) & \leq C\left(\mathcal{E}_{\text {train, int }}+C_{q_{i n t}}^{1 / 2} N_{\text {int }}^{-\alpha_{i n t} / 2}\right. \\
& +\mathcal{E}_{\text {train, boundary }}+C_{q b}^{1 / 2} N_{b}^{-\alpha_{b} / 2} \\
& +\mathcal{E}_{\text {train, initialpos }}+C_{q i p}^{1 / 2} N_{0}^{-\alpha_{i p} / 2} \\
& +\mathcal{E}_{\text {train, initialvel }}+C_{q i v}^{1 / 2} N_{0}^{-\alpha_{i v} / 2} \\
& +\mathcal{E}_{\text {train, finalpos }}+C_{q f p}^{1 / 2} N_{T}^{-\alpha_{f p} / 2} \\
& \left.+\mathcal{E}_{\text {train, finalvel }}+C_{f v}^{1 / 2} N_{T}^{-\alpha_{f v} / 2}\right),
\end{aligned}
$$

where $C=C(\Omega, T)$, and consequently $C=C(d)$ also depends on the spatial dimension d. A similar estimate holds for the state variable.
Moreover, training errors converge to zero as the size of the NN and the number of training points go to infinity.

García-Cervera, C., Kessler, M., Periago, F.: Control of Partial Differential Equations via Physics-Informed Neural Networks J. Optim. Th. Appl.(2023) 196:391-414

Numerical approximation using ML

Idea of the proof. Let $\bar{y}=y-\hat{y}$ and $\bar{u}=u-\hat{u}$. By linearity,

$$
\begin{cases}\bar{y}_{t t}-\Delta \bar{y}=\hat{y}_{t t}-\Delta \hat{y}, & \text { in } Q_{T} \tag{5}\\ \bar{y}^{\prime}(x, 0)=y^{0}(x)-\hat{y}(x, 0), & \text { in } \Omega \\ \bar{y}_{t}(x, 0)=y^{1}(x)-\hat{y}_{t}(x, 0) & \text { in } \Omega \\ \bar{y}(x, T)=\hat{y}(x, T), & \text { in } \Omega \\ \bar{y}_{t}(x, T)=\hat{y}_{t}(x, T) & \text { in } \Omega \\ \bar{y}(x, t)=\hat{y}(x, t), & \text { on } \Gamma_{D} \times(0, T) \\ \bar{y}(x, t)=u(x, t)-\hat{y}(x, t) & \text { on } \Gamma_{C} \times(0, T)\end{cases}
$$

Numerical approximation using ML

Idea of the proof. Let $\bar{y}=y-\hat{y}$ and $\bar{u}=u-\hat{u}$. By linearity,

$$
\begin{cases}\bar{y}_{t t}-\Delta \bar{y}=\hat{y}_{t t}-\Delta \hat{y}, & \text { in } Q_{T} \tag{5}\\ \bar{y}^{\prime}(x, 0)=y^{0}(x)-\hat{y}(x, 0), & \text { in } \Omega \\ \bar{y}_{t}(x, 0)=y^{1}(x)-\hat{y}_{t}(x, 0) & \text { in } \Omega \\ \bar{y}^{1}(x, T)=\hat{y}(x, T), & \text { in } \Omega \\ \bar{y}_{t}(x, T)=\hat{y}_{t}(x, T) & \text { in } \Omega \\ \bar{y}(x, t)=\hat{y}(x, t), & \text { on } \Gamma_{D} \times(0, T) \\ \bar{y}(x, t)=u(x, t)-\hat{y}(x, t) & \text { on } \Gamma_{C} \times(0, T)\end{cases}
$$

Again by linearity, $\bar{y}(x, t ; \boldsymbol{\theta})$ is decomposed as $\bar{y}=\bar{y}^{1}+\bar{y}^{2}$, where

$$
\begin{align*}
& \begin{cases}\bar{y}_{t t}^{1}-\Delta \bar{y}^{1}=0, & \text { in } Q_{T} \\
\bar{y}^{1}(x, 0)=y^{0}(x)-\hat{y}(x, 0), & \text { in } \Omega \\
\bar{y}_{t}^{1}(x, 0)=y^{1}(x)-\hat{y}_{t}(x, 0) & \text { in } \Omega \\
\bar{y}^{1}(x, t)=0, & \text { on } \Gamma_{D} \times(0, T) \\
\bar{y}^{1}(x, t)=u(x, t)-\hat{y}(x, t) & \text { on } \Gamma_{C} \times(0, T)\end{cases} \tag{6}\\
& \begin{cases}\bar{y}_{t t}^{2}-\Delta \bar{y}^{2}=\hat{y}_{t t}-\Delta \hat{y}, & \text { in } Q_{T} \\
\bar{y}^{2}(x, 0)=0, & \text { in } \Omega \\
\bar{y}_{t}^{2}(x, 0)=0 & \text { in } \Omega \\
\bar{y}^{2}(x, T)=\hat{y}(x, T)-\bar{y}^{1}(x, T), & \text { in } \Omega \\
\bar{y}_{t}^{2}(x, T)=\hat{y}_{t}(x, T)-\bar{y}_{t}^{1}(x, T), & \text { in } \Omega \\
\bar{y}^{2}(x, t)=\hat{y}(x, t), & \text { on } \Gamma_{D} \times(0, T) \\
\bar{v}^{2}(x, t)=0 & \text { on } \Gamma_{c} \times(0 . T) .\end{cases} \tag{7}
\end{align*}
$$

Numerical approximation using ML

Idea of the proof (cont). By applying an observability inequality to system (6), and an energy estimate to (7),

$$
\begin{align*}
& \|u-\hat{u}\|_{L^{2}\left(\Gamma_{C} ;(0, T)\right)} \\
& \leq C_{o}\left(\left\|y^{0}-\hat{y}(0)\right\|_{L^{2}(\Omega)}+\left\|y^{1}-\hat{y}_{t}(0)\right\|_{H^{-1}(\Omega)}+\left\|\bar{y}^{1}(T)\right\|_{L^{2}(\Omega)}+\left\|\bar{y}_{t}^{1}(T)\right\|_{H^{-1}(\Omega)}\right) \\
& \leq C_{o}\left(\left\|y^{0}-\hat{y}(0)\right\|_{L^{2}(\Omega)}+\left\|y^{1}-\hat{y}_{t}(0)\right\|_{L^{2}(\Omega)}+\|\hat{y}(T)\|_{L^{2}(\Omega)}+\left\|\hat{y}_{t}(T)\right\|_{L^{2}(\Omega)}\right. \\
& \left.+\left\|\bar{y}^{2}(T)\right\|_{L^{2}(\Omega)}+\left\|\bar{y}_{t}^{2}(T)\right\|_{H^{-1}(\Omega)}\right) \\
& \leq C_{o}\left(\left\|y^{0}-\hat{y}(0)\right\|_{L^{2}(\Omega)}+\left\|y^{1}-\hat{y}_{t}(0)\right\|_{L^{2}(\Omega)}+\|\hat{y}(T)\|_{L^{2}(\Omega)}+\left\|\hat{y}_{t}(T)\right\|_{L^{2}(\Omega)}\right. \\
& \left.+C_{e}\left(\|\hat{y}\|_{L^{2}\left(\Gamma_{D} \times(0, T)\right)}+\left\|\hat{y}_{t t}-\Delta \hat{y}\right\|_{L^{2}\left(0, T_{;} L^{2}(\Omega)\right)}\right)\right) \tag{8}
\end{align*}
$$

The fact that training error converges to zero is a consequence of Pinkus' universal approximation theorem, which basically states that any function $f \in C^{k}$ may be approximate in the $\|\cdot\|_{C^{k}}$ by a suitable two-layer neural network.

Numerical approximation using ML

Some comments and related open questions:

- The PINN algo generalises to any control system both linear and nonlinear

Numerical approximation using ML

Some comments and related open questions:

- The PINN algo generalises to any control system both linear and nonlinear

■ How does the constant $C(\Omega, T)$ depends on the dimension d ?

Numerical approximation using ML

Some comments and related open questions:

- The PINN algo generalises to any control system both linear and nonlinear
- How does the constant $C(\Omega, T)$ depends on the dimension d ?
- The proof uses linearity. How can be get similar estimates of generalization error for semilinear PDEs?

Numerical approximation using ML

Some comments and related open questions:

- The PINN algo generalises to any control system both linear and nonlinear

■ How does the constant $C(\Omega, T)$ depends on the dimension d ?

- The proof uses linearity. How can be get similar estimates of generalization error for semilinear PDEs?
- Construct a unique prediction model for all initial data.

Numerical approximation using ML

Numerical experiments

Figure: Experiment 1 (linear wave equation). $y^{0}(x)=\sin (\pi x), y^{1}(x)=0$. Neural network composed of 4 hidden layers and 50 neurons in each layer. Relative generalization error of the order of 2%.

Implementation with https://github.com/lululxvi/deepxde Python scripts available at https://github.com/fperiago/deepcontrol

Work supported by

- Fundación Séneca (Agencia de Ciencia y Tecnología de la Región de Murcia (Spain)) under contract 20911/PI/18 and grant number 21503/EE/21 (mobility program Jiménez de la Espada), and through the programme for the development of scientific and technical research by competitive groups (21996/PI/22).

■ Grants PID2022-141957OA-C22 funded by MCIN/AEI/10.13039/501100011033, by RDF A way of making Europe

Thank you for your attention!

