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Goals and outline of the presentation

Part I: Machine Learning basis. Where and why Machine-Learning-based
methods may be useful in the numerical approximation of PDEs-based
models?

Part II: Functional Analysis and Machine Learning. Are there solid
Funcional and Numerical frameworks behind Machine Learning? What’s
known and what isn’t known?

Part III: Control of PDEs and Machine Learning. A toy control
problem solved by using Deep-Learning to begin with...

Propose a list of open problems related to this topic.
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Part I

Machine Learning Basis



Introduction: the set up of supervised learning

Main Goal: approximate (as accurately as we can) an unknown function
f ∗ : Rd → RN from a dataset S = {(x i , y i = f ∗(x i )) , 1 ≤ i ≤ n}
Two cases:

1 regression: f ∗ takes continuous values, and

2 classification: f ∗ takes discrete values.

Standard procedure for supervised learning(regression)

1 Choose a hypothesis space Hm. Artificial neural networks is the model of
choice in Machine Learning.

2 Choose a loss function. If we are interested in fitting the data, a popular
choice is the so-called training error

R̂n (f ) =
1

n

n∑
i=1

(f (θ; x i )− f ∗(x i ))
2
, f ∈ Hm. (1)

3 Choose an optimization algorithm for computing the optimal parameters θ
that minimize the loss function.

The overall objective is to minimize the generalization error

R (f ) = Ex∼P (f (θ; x i )− f ∗(x i ))
2
, f ∈ Hm, (2)

with P the (unknown) distribution of x .
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1. Hypothesis space: an example

A canonical example of an hypothesis space Hm (or a neural network
architecture) is the so-called multi-layer perceptron (MLP).For Peer Review

8 Vahid Keshavarzzadeh et al.

3 Risk Averse Topology Optimization with Artificial Neural Networks

3.1 Artificial Neural Networks

ANNs are computational models inspired by the functioning of the nervous system. ANNs are composed of a set of
neurons where each neuron is construed as a computational unit [59, 60]. The computation in each neuron is comprised
of two parts: a) the weighted sum of inputs in addition to the biases, and b) activation function applied to the linear map of
part b. This computational unit is hence parameterized with weights as well as the activation function. Typically, ANNs
are comprised of several layers where each layer includes several neurons. It is also common that the output of each layer
will be used as input to the neurons of the successive layer. The activation function is typically chosen uniformly for all
the neurons in the network. Figure 1 shows the structure of a traditional feed-forward neural network.

DenotingN = {Ni, N1, . . . , NK , No} as the set of number of nodes in each layer of a feed-forward neural network,
the number of hidden layers is K and the number of input and output dimensions are Ni and No i.e. the ANN is a
function y = f(x,Θ) that maps the input x ∈ RNi to output y ∈ RNo . Parameter Θ = (W, b) is the hyperparameters
of the net whereW are the weights and b are the biases.
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Fig. 1: Illustration of a neuron (left) and an Artificial Neural Network (right), where each node in the ANN corresponds to the left figure.

A training process entails the optimization of weights and biases which minimize the difference between the network
output and target. The training set is Dtr = {xi, ti}ntr

i=1 and test data set is Dte = {xi, ti}nte
i=1. The feature vector (or the

input) is typically normalized before the inception of training i.e. x̃ = (x− x̄)/(xmax − xmin).

The optimization problem for solving neural net hyper-parameters is highly nonlinear. To avoid overfitting, it is a
usual practice to regularize the objective function via `1 and `2 regularizations. The `2 regularization ensures that the
norm of the learned hyperparameters is bounded and remains relatively small and the `1 regularization promotes the
sparsity in the hyperparameters, i.e. several hyperparameters will be near zero which is reasonable as the number of
hyperparameters are usually high. The regularized loss function then reads:

L =
1

ntr

ntr∑

i=1

‖yi − ti‖+ λ1‖W‖1 + λ2‖W‖2. (23)

To train and predict via neural nets, we use the open-source machine learning library Tensorflow [61]. The optimization
is based on the standard Adam optimizer. We do not consider the stochastic gradient descent and batch sizes; instead,
at each iteration, we consider the entire training set. This is because in this work we mainly consider small training
datasets which are used in their entirety to provide more accurate learning. As a generic gradient descent optimizer, the
hyper-parameters are updated via Θ(i+1) = Θ(i+1) − η(∂L/∂Θ) where in this expression, η is a learning parameter
(the step size in a gradient descent approach) which we consider constant throughout training.

As another step we perform a randomization study similar to a cross-validation to select the best trained model. We
perform this study in the training stage since the initialization can impact the neural net map. We start the optimization
from 10 initial guesses and select the model which exhibits the smallest test error. Note that we do not shuffle through
the training and test data. We only start the optimization from different initial guesses and as such our randomization is
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Computational Mechanics

To each input x ∈ Rd it associates the output y = fm(x) := xm defined by{
xk+1 = σ

(
ωkxk + bk

)
for k = 0, 1, · · · ,m − 1

x0 = x ,
(3)

or in compositional form xm =
(
σ ◦ Λm−1 ◦ · · · ◦ σ ◦ Λ0

)
(x), Λkx = ωkx + bk ,

optimizable parameters θ: weights ωk ∈ Rdk+1×dk and biases bk ∈ Rdk

m is the depth of the neural network,

for any k, the vector xk ∈ Rdk and dk is the width of the layer k,

σ is a fixed nonlinear activation function (denoted by φ in the figure)
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3 Risk Averse Topology Optimization with Artificial Neural Networks

3.1 Artificial Neural Networks

ANNs are computational models inspired by the functioning of the nervous system. ANNs are composed of a set of
neurons where each neuron is construed as a computational unit [59, 60]. The computation in each neuron is comprised
of two parts: a) the weighted sum of inputs in addition to the biases, and b) activation function applied to the linear map of
part b. This computational unit is hence parameterized with weights as well as the activation function. Typically, ANNs
are comprised of several layers where each layer includes several neurons. It is also common that the output of each layer
will be used as input to the neurons of the successive layer. The activation function is typically chosen uniformly for all
the neurons in the network. Figure 1 shows the structure of a traditional feed-forward neural network.

DenotingN = {Ni, N1, . . . , NK , No} as the set of number of nodes in each layer of a feed-forward neural network,
the number of hidden layers is K and the number of input and output dimensions are Ni and No i.e. the ANN is a
function y = f(x,Θ) that maps the input x ∈ RNi to output y ∈ RNo . Parameter Θ = (W, b) is the hyperparameters
of the net whereW are the weights and b are the biases.
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A training process entails the optimization of weights and biases which minimize the difference between the network
output and target. The training set is Dtr = {xi, ti}ntr

i=1 and test data set is Dte = {xi, ti}nte
i=1. The feature vector (or the

input) is typically normalized before the inception of training i.e. x̃ = (x− x̄)/(xmax − xmin).

The optimization problem for solving neural net hyper-parameters is highly nonlinear. To avoid overfitting, it is a
usual practice to regularize the objective function via `1 and `2 regularizations. The `2 regularization ensures that the
norm of the learned hyperparameters is bounded and remains relatively small and the `1 regularization promotes the
sparsity in the hyperparameters, i.e. several hyperparameters will be near zero which is reasonable as the number of
hyperparameters are usually high. The regularized loss function then reads:

L =
1

ntr

ntr∑

i=1

‖yi − ti‖+ λ1‖W‖1 + λ2‖W‖2. (23)

To train and predict via neural nets, we use the open-source machine learning library Tensorflow [61]. The optimization
is based on the standard Adam optimizer. We do not consider the stochastic gradient descent and batch sizes; instead,
at each iteration, we consider the entire training set. This is because in this work we mainly consider small training
datasets which are used in their entirety to provide more accurate learning. As a generic gradient descent optimizer, the
hyper-parameters are updated via Θ(i+1) = Θ(i+1) − η(∂L/∂Θ) where in this expression, η is a learning parameter
(the step size in a gradient descent approach) which we consider constant throughout training.

As another step we perform a randomization study similar to a cross-validation to select the best trained model. We
perform this study in the training stage since the initialization can impact the neural net map. We start the optimization
from 10 initial guesses and select the model which exhibits the smallest test error. Note that we do not shuffle through
the training and test data. We only start the optimization from different initial guesses and as such our randomization is
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1. Hypothesis space: an example

More on the activation function:

By abuse of notation, σ : Rd → Rd is defined component-wise by

σ(x)j := σ(x j), 1 ≤ j ≤ d .

Common choices include sigmoids such as σ(x) = tanh(x), rectifiers such as
ReLU: σ(x) = max {x , 0} or smooth ReLU: σ(x) = max

{
x3, 0

}
and Leaky

ReLU: σ(x) = max {x , 0.1x}.

LARGE-TIME ASYMPTOTICS IN DEEP LEARNING 9

for i ∈ {1, . . . , N}. The number of step-sizes Nlayers ≥ 1 is the depth of the neural
network (2.1), and each time-step k is called a layer. For any i, the vector xki ∈ Rdk

designates the state at the layer k, while each dk is referred to as the width of the
layer k. The optimizable parameters wk ∈ Rdk+1×dk and bk ∈ Rdk are respectively
called the weights and biases of the network (2.1). Finally, σ ∈ Lip(R) is a fixed
nonlinear the activation function. By abuse of notation, we define the vector-valued
analog of σ component-wise, namely, σ : Rd → Rd is defined by

σ(x)j := σ(xj) for j ∈ {1, . . . , d}.
Common choices include sigmoids such as σ(x) = tanh(x) or σ(x) = 1

1+e−x , and
rectifiers : σ(x) = max{x, ax} for a fixed 0 ≤ a < 1. Whereas rectifiers have several
computational benefits (e.g. non-vanishing gradients), in practice, the activation σ
is generally selected using cross-validation.
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Figure 1. Commonly used activation functions include sigmoids
such as σ(x) = tanh(x) (left), and rectifiers such as ReLU: σ(x) =
max{x, 0} (middle) and Leaky ReLU: σ(x) = max{x, 0.1x} (right).
All three examples share the property σ(0) = 0, and a key property
which we exhibit in our results is the fact that the rectifiers are pos-
itively homogeneous of degree 1: max{λx, λax} = λmax{x, ax} for
λ > 0.

It can readily be seen that the formulation (2.1) coincides with the more con-
ventional formulation of neural networks as compositional structures of parametric
linear operators and nonlinearities, as namely x

Nlayers
i = (σ ◦ Λk ◦ . . . ◦ σ ◦ Λ0)(~xi),

with Λk~x := wk~x+ bk for k ∈ {0, . . . , Nlayers}.
Note that the iterative nature of the MLP (2.1) stimulates permuting the order

of the parametric linear maps and the nonlinearity σ, to the effect of considering
the equivalent, but somewhat simpler system

{
xk+1
i = wkσ(xk) + bk for k ∈ {0, . . . , Nlayers − 1}

x0
i = ~xi ∈ Rd.

(2.2)

We will henceforth concentrate on a specific, but rather general class of neural
networks called residual neural networks (ResNets). Contrary to the multi-layer
perceptrons (2.1) – (2.2), one typically needs to assume that the width dk is fixed
over every layer k, namely dk = d for every k. We refer to Section 6 for variable
width ResNets.
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m: number of free parameters

n: size of the training dataset

t: number of training steps

d : input dimension

Typically, m, n, t →∞ and d >> 1.

Examples where d is large include:

radiactive transport equation (d ≥ 5)

Boltzmann kinetic equations (d = 6)

nonlinear Schrödinger equation in the quantum many-body problem
(d ≫ 1)

parameter-dependent (random) PDEs

nonlinear Black- Scholes equation for pricing derivatives
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Deep Learning opens a door to deal with real-world control problems

More situations that lead to very large d:

turbulence modeling,

plasticity models,

multiscale,

multiphysics,

etc.

The heart of the matter for the difficulties described
above is our limited ability to handle functions of many
variables, and this is exactly where machine learning
can make a difference.
Weinan E. The dawning of a new era in applied
mathematics , Notice of the AMS, 2021.

https://web.math.princeton.edu/~weinan/

Machine learning is a promising tool to
deal with high-dimensional problems

https://web.math.princeton.edu/~weinan/
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Part II

Functional Analysis and ML



Functional and numerical analysis

Function to be approximated (learned): f ∗

Hypothesis space: Hm

Training error: R̂n (f ) =
1
n

∑n
i=1 (f (θ, x i )− f ∗(x i ))

2 , f ∈ Hm

Output of the ML model: f̂ (θ⋆) = argminf∈Hm R̂n(f )

Generalization error: R (f ) = Ex∼P (f (x i )− f ∗(x i ))
2 , f ∈ Hm

Best approximation in Hm: fm = argminf∈Hm R(f )
Error ≡ f ∗ − f̂= f ∗ − fm︸ ︷︷ ︸

approximation error

+ fm − f̂︸ ︷︷ ︸
estimation error

Approximation error (due to the choice of Hm): typically

∥f − fm∥L2 ≤ Cm−α/d∥f ∥Hα

If m−α/d = 0.1, then m = 10d/α = 10d , if α = 1. Curse of Dimensionality
(CoD). In ML we look for approximation errors that overcome (or at least
mitigate) CoD. A result that stands out CoD is the following one proven by
Barron

inf
fm∈Hm

∥f ∗ − fm∥2L2 ≲
∥f ∗∥2∗
m

, ∥ · ∥∗ a suitable norm.
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Functional and numerical analysis

Estimation error (due to the fact that we have a finite dataset): typically
Monte Carlo type estimates

I (g) =

∫
X

g(x) dx =
1

n

n∑
i=1

g(x i )︸ ︷︷ ︸
In(g)

+O(1/
√
n)

We would like to accomplish the following:
Given an hypothesis space Hm, identify a natural function space and a norm
∥ · ∥∗ that satisfies:

error de generalización ≲
∥f ∗∥2∗
m

+
∥f ∗∥∗√

n
.
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Two-layer neural networks and Barron space

A two-layer neural network may be represented as

fm(x) =
1

m

m∑
j=1

ajσ
(
ωT

j x + bj
)

(4)

where (aj ,ωj , bj) are the parameters and σ is the activation function.
Where does this expression come from?
Starting from the Fourier transform-type representation

f (x) =

∫
Rd

a(ω)e i(ωx)ρ (dω) ,

with ρ a probability measure on Rd , and by independently sample {ωj}mj=1 we
obtain the dimension-independent approximation

f (x) ≈ fm(x) =
1

m

m∑
j=1

a(ωj)σ
(
ωT

j x
)
=

1

m

m∑
j=1

ajσ
(
ωT

j x
)
, σ(z) = e iz ,

which is of the same type as in (4). Passing to the limit when the with of the
hidden layer goes to infinity in (4) we get the representation formula

fρ(x) =

∫
Rd+2

aσ
(
ωT

x + b
)
ρ (da, dω, db) = Eρ

[
aσ(ωT

x)
]
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Two-layer neural networks and Barron space

For the case of ReLU- activation function, the space for two-layer NN is that
so-called Barron space B, which is composed of functions f : D ⊂ Rd → R for
which the following norm is finite

∥f ∥B := inf

{∫
Rd+2

|a|[|ω|+ |b|] ρ (da, dω, db) : ρ s.t. f = fρ

}
.

Basic properties of Barron space

If f ∈ Hs(Rd) for s > d/2 + 2, then f ∈ B.
Barron space embeds into the space of Lipschitz-continuous functions.
If f ∈ B, then f =

∑∞
i=1 fi , where fi (x) = gi (Pix + bi ) and

gi is C1 except at the origin, bi is a shift vector, and
Pi is an orthogonal projection on a ki−dimensional subspace,
0 ≤ ki ≤ d − 1.

Approximation error. For any f ∈ B and m ∈ N, there exists a two-layer
neural network fm, with m neurons (aj ,ωj , bj) such that

∥f − fm∥L2 ≲
∥f ∗∥2∗
m

,

Estimation error in Barron spaces is controlled by a Monte Carlo type
ratio.
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Function spaces for neural networks architectures

Residual networks =⇒ flow-induced spaces

Multilayer networks =⇒ tree-like spaces

Convolutional networks =⇒ ???

DenseNets =⇒ ???

Weinan E. et al.: Towards a mathematical understanding of Neural
Network-based Machine Learning: what we know and we don’t known
Preprint (2020). Available at
https://web.math.princeton.edu/~weinan/

Weinan E, Chao Ma and Lei Wu, ”Machine Learning from a Continuous
Viewpoint” , 2019. Available at
https://web.math.princeton.edu/~weinan/

https://web.math.princeton.edu/~weinan/
https://web.math.princeton.edu/~weinan/
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Function spaces for neural networks architectures

Proposition

Let σ(z) = max{z , 0} and g(x) = σ(x1) be a Barron function on Rd , d ≥ 2.
Denote by Bd the unit ball in Rd and by u the solution to{

−∆u = 0 in Bd

u = g on ∂Bd .

If d ≥ 3, then u is not a Barron function on Bd .

Weinan E. and S. Wojtowytsch: Some observations on high-dimensional
PDEs with Barron data. (2021) Available at
https://web.math.princeton.edu/~weinan/

Open problem: regularity theory for PDEs in high dimension

https://web.math.princeton.edu/~weinan/
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Part III

Control of PDEs and ML



A toy model: null control of the wave equation


ytt −∆y = 0, in QT

y(x , 0) = y 0(x), in Ω
yt(x , 0) = y 1(x) in Ω
y(x , t) = 0, on ΓD × (0,T )
y(x , t) = u(x , t) on ΓC × (0,T )

Goal: Compute u(x , t) such that

y(x ,T ) = yt(x ,T ) = 0 x ∈ Ω.

Raisi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural
networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations. J. Comput.
Phys. 378, 686-707 (2019)



Numerical approximation using ML

A Physics-informed neural networks (PINNs) algorithm

Step 1: Neural network
A surrogate ŷ(x , t;θ) of the state variable y(x , t) is constructed as


input layer: N 0(x) = x = (x , t) ∈ Rd+1

hidden layers: N ℓ(x) = σ
(
W ℓN ℓ−1(x) + bℓ

)
∈ RNℓ , ℓ = 1, · · · , L− 1

output layer: ŷ (x ;θ) = N L(x) = W LN L−1(x) + bL ∈ R

N ℓ : Rdin → Rdout is the ℓ layer with Nℓ neurons,

W ℓ ∈ RNℓ×Nℓ−1 and bℓ ∈ RNℓ are, respectively, the weights and biases so
that θ =

{
W ℓ, bℓ

}
1≤ℓ≤L

are the parameters of the neural network, and

σ is an activation function, e.g. σ(s) = tanh(s)
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Numerical approximation using ML

A Physics-informed neural networks (PINNs) algorithm

Step 2: Training dataset

Figure: Illustration of a training dataset (based on Sobol points) in the domain
Q2 = (0, 1)× (0, 2). Interior points are marked with circles and boundary points in
blue color. (xj , tj ) are the features.



Numerical approximation using ML

A Physics-informed neural networks (PINNs) algorithm

Step 3: Loss function. Labels equal zero

Lint (θ; Tint) =
∑Nint

j=1 wj,int|ŷtt(x j ;θ)−∆ŷ(x j ;θ)|2, x j ∈ Tint

LΓD (θ; TΓD ) =
∑Nb

j=1 wj,b|ŷ(x j ;θ)|2, x j ∈ TΓD

Lpos
t=0 (θ; Tt=0) =

∑N0
j=1 wj,0|ŷ(x j ;θ)− y 0(x j)|2, x j ∈ Tt=0

Lvel
t=0 (θ; Tt=0) =

∑N0
j=1 wj,0|ŷt(x j ;θ)− y 1(x j)|2, x j ∈ Tt=0

Lpos
t=T (θ; Tt=T ) =

∑NT
j=1 wj,T |ŷ(x j ;θ)|2, x j ∈ Tt=T

Lvel
t=T (θ; Tt=T ) =

∑NT
j=1 wj,T |ŷt(x j ;θ)|2, x j ∈ Tt=T ,

where wj,int, wj,b, wj,0 and wj,T are the weights of suitable quadrature rules.

L (θ; T ) = Lint (θ; Tint)
+LΓD (θ; TΓD )
+Lpos

t=0 (θ; Tt=0) + Lvel
t=0 (θ; Tt=0)

+Lpos
t=T (θ; Tt=T ) + Lvel

t=T (θ; Tt=T ) .



Numerical approximation using ML

A Physics-informed neural networks (PINNs) algorithm

Step 4: Training process

θ∗ = argmin
θ
L (θ; T ) .

The approximation û(t;θ∗) of the control u(x , t) is

û(x , t;θ∗) = ŷ(x , t;θ∗), x ∈ ΓC , 0 ≤ t ≤ T .

To sump up:
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Numerical approximation using ML

Estimates on generalization error

Training error

Etrain := Etrain, int + Etrain, boundary + Etrain, initialpos + Etrain, initialvel
+Etrain, finalpos + Etrain, finalvel,

Etrain, int = (Lint (θ
∗; Tint))1/2

Etrain, boundary = (LΓD (θ∗; TΓD ))1/2
Etrain, initialpos = (Lpos

t=0 (θ
∗; Tt=0))

1/2

Etrain, initialvel =
(
Lvel

t=0 (θ
∗; Tt=0)

)1/2
Etrain, finalpos = (Lpos

t=T (θ∗; Tt=T ))
1/2

Etrain, finalvel =
(
Lvel

t=T (θ∗; Tt=T )
)1/2

,

Generalization error for control and state{
Egener (u) := ∥u − û∥L2(ΓC ;(0,T ))

Egener (y) := ∥y − ŷ∥C(0,T ;L2(Ω))∩C1(0,T ;H−1(Ω))
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Numerical approximation using ML

Theorem (Estimates on generalization error)

Assume that both y, ŷ ∈ C 2
(
QT

)
. Then

Egener (u) ≤ C
(
Etrain, int + C

1/2
qint N

−αint/2
int

+Etrain, boundary + C
1/2
qb N

−αb/2
b

+Etrain, initialpos + C
1/2
qip N

−αip/2

0

+Etrain, initialvel + C
1/2
qiv N

−αiv/2
0

+Etrain, finalpos + C
1/2
qfp N

−αfp/2

T

+Etrain, finalvel + C
1/2
fv N

−αfv/2
T

)
,

where C = C(Ω,T ), and consequently C = C(d) also depends on the spatial
dimension d. A similar estimate holds for the state variable.
Moreover, training errors converge to zero as the size of the NN and the
number of training points go to infinity.

Garćıa-Cervera, C., Kessler, M., Periago, F.: Control of Partial Differential
Equations via Physics-Informed Neural Networks J. Optim. Th.
Appl.(2023) 196:391–414



Numerical approximation using ML

Idea of the proof. Let y = y − ŷ and u = u − û. By linearity,

y tt −∆y = ŷtt −∆ŷ , in QT

y(x , 0) = y 0(x)− ŷ(x , 0), in Ω
y t(x , 0) = y 1(x)− ŷt(x , 0) in Ω
y(x ,T ) = ŷ(x ,T ), in Ω
y t(x ,T ) = ŷt(x ,T ) in Ω
y(x , t) = ŷ(x , t), on ΓD × (0,T )
y(x , t) = u(x , t)− ŷ(x , t) on ΓC × (0,T ).

(5)

Again by linearity, y(x , t;θ) is decomposed as y = y 1 + y 2, where
y 1
tt −∆y 1 = 0, in QT

y 1(x , 0) = y 0(x)− ŷ(x , 0), in Ω
y 1
t (x , 0) = y 1(x)− ŷt(x , 0) in Ω

y 1(x , t) = 0, on ΓD × (0,T )
y 1(x , t) = u(x , t)− ŷ(x , t) on ΓC × (0,T )

(6)



y 2
tt −∆y 2 = ŷtt −∆ŷ , in QT

y 2(x , 0) = 0, in Ω
y 2
t (x , 0) = 0 in Ω

y 2(x ,T ) = ŷ(x ,T )− y 1(x ,T ), in Ω
y 2
t (x ,T ) = ŷt(x ,T )− y 1

t (x ,T ), in Ω
y 2(x , t) = ŷ(x , t), on ΓD × (0,T )
y 2(x , t) = 0 on ΓC × (0,T ).

(7)
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y(x , t) = u(x , t)− ŷ(x , t) on ΓC × (0,T ).

(5)

Again by linearity, y(x , t;θ) is decomposed as y = y 1 + y 2, where
y 1
tt −∆y 1 = 0, in QT

y 1(x , 0) = y 0(x)− ŷ(x , 0), in Ω
y 1
t (x , 0) = y 1(x)− ŷt(x , 0) in Ω

y 1(x , t) = 0, on ΓD × (0,T )
y 1(x , t) = u(x , t)− ŷ(x , t) on ΓC × (0,T )

(6)



y 2
tt −∆y 2 = ŷtt −∆ŷ , in QT

y 2(x , 0) = 0, in Ω
y 2
t (x , 0) = 0 in Ω

y 2(x ,T ) = ŷ(x ,T )− y 1(x ,T ), in Ω
y 2
t (x ,T ) = ŷt(x ,T )− y 1

t (x ,T ), in Ω
y 2(x , t) = ŷ(x , t), on ΓD × (0,T )
y 2(x , t) = 0 on ΓC × (0,T ).

(7)



Numerical approximation using ML

Idea of the proof (cont). By applying an observability inequality to system
(6), and an energy estimate to (7),

∥u − û∥L2(ΓC ;(0,T ))

≤ Co

(
∥y 0 − ŷ(0)∥L2(Ω) + ∥y 1 − ŷt(0)∥H−1(Ω) + ∥y 1(T )∥L2(Ω) + ∥y 1

t (T )∥H−1(Ω)

)
≤ Co

(
∥y 0 − ŷ(0)∥L2(Ω) + ∥y 1 − ŷt(0)∥L2(Ω) + ∥ŷ(T )∥L2(Ω) + ∥ŷt(T )∥L2(Ω)

+∥y 2(T )∥L2(Ω) + ∥y 2
t (T )∥H−1(Ω)

)
≤ Co

(
∥y 0 − ŷ(0)∥L2(Ω) + ∥y 1 − ŷt(0)∥L2(Ω) + ∥ŷ(T )∥L2(Ω) + ∥ŷt(T )∥L2(Ω)

+Ce

(
∥ŷ∥L2(ΓD×(0,T )) + ∥ŷtt −∆ŷ∥L2(0,T ;L2(Ω))

))
.

(8)
The fact that training error converges to zero is a consequence of Pinkus’
universal approximation theorem, which basically states that any function
f ∈ C k may be approximate in the ∥ · ∥Ck by a suitable two-layer neural
network.
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Some comments and related open questions:

The PINN algo generalises to any control system both linear and nonlinear

How does the constant C(Ω,T ) depends on the dimension d?

The proof uses linearity. How can be get similar estimates of
generalization error for semilinear PDEs?

Construct a unique prediction model for all initial data.

.....
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Numerical experiments

Figure: Experiment 1 (linear wave equation). y0(x) = sin(πx), y1(x) = 0. Neural
network composed of 4 hidden layers and 50 neurons in each layer. Relative
generalization error of the order of 2%.

Implementation with https://github.com/lululxvi/deepxde

Python scripts available at https://github.com/fperiago/deepcontrol

https://github.com/lululxvi/deepxde
https://github.com/fperiago/deepcontrol
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