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m Part |: Machine Learning basis. Where and why Machine-Learning-based
methods may be useful in the numerical approximation of PDEs-based
models?

m Part II: Functional Analysis and Machine Learning. Are there solid
Funcional and Numerical frameworks behind Machine Learning? What's
known and what isn't known?

m Part IlI: Control of PDEs and Machine Learning. A toy control
problem solved by using Deep-Learning to begin with...

m Propose a list of open problems related to this topic.
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Main Goal: approximate (as accurately as we can) an unknown function
f*:R? — RN from a dataset S = {(x;,y; = f*(x;)),1 <i < n}
Two cases:
regression: f* takes continuous values, and
classification: ™ takes discrete values.
Standard procedure for supervised learning(regression)
Choose a hypothesis space H . Artificial neural networks is the model of
choice in Machine Learning.
Choose a loss function. If we are interested in fitting the data, a popular
choice is the so-called training error
5 1 * 2
Ro(F) == (F(O:x)) = F(xi))*, fEHm (1)
i
Choose an optimization algorithm for computing the optimal parameters 0
that minimize the loss function.
The overall objective is to minimize the generalization error

R(f) = Exp (F(0; x;) — £ (x1))°, f € Hm, (2)

with P the (unknown) distribution of x.
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1. Hypothesis space: an example

A canonical example of an hypothesis space H (or a neural network
architecture) is the so-called multi-layer perceptron (MLP).

Bias Input Hidden Hidden Hidden
b layer layer 1 layer 2 layer 3

T Activation
m function

% Y5

T o— Wij

—

Ty o— W2j

T3 o— W3j
Weights

To each input x € RY it associates the output y = fin(x) := x™ defined by

{x”lza(wkxk—l—bk) fork=0,1,---,m—1 3)

x® =x,

or in compositional form x” = (7 o A" o --- 05 0 A%) (x), Ax = wkx + b*,

m optimizable parameters 8: weights w* € R%1%*% and biases b € R%
m is the depth of the neural network,
for any k, the vector x* € R% and dj is the width of the layer k,

n
| |
m o is a fixed nonlinear activation function (denoted by ¢ in the figure)
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1. Hypothesis space: an example

More on the activation function:
By abuse of notation, ¢ : R? — R is defined component-wise by

o(x)j:=0(xj), 1<j<d.

Common choices include sigmoids such as o(x) = tanh(x), rectifiers such as
ReLU: o(x) = max {x, 0} or smooth ReLU: o(x) = max {x*,0} and Leaky
ReLU: o(x) = max{x, 0.1x}.
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Important parameters to keep in mind

m: number of free parameters
n: size of the training dataset
t: number of training steps

d: input dimension

Typically, m,n,t — co and d >> 1.

Examples where d is large include:

radiactive transport equation (d > 5)
Boltzmann kinetic equations (d = 6)

nonlinear Schrodinger equation in the quantum many-body problem
(d>1)

parameter-dependent (random) PDEs

nonlinear Black- Scholes equation for pricing derivatives
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Deep Learning opens a door to deal with real-world control problems

More situations that lead to very large d:
m turbulence modeling,
m plasticity models,
m multiscale,
m multiphysics,
m etc.

The heart of the matter for the difficulties described
above is our limited ability to handle functions of many
variables, and this is exactly where machine learning
can make a difference.

Weinan E. The dawning of a new era in applied
mathematics , Notice of the AMS, 2021.

https://web.math.princeton.edu/~weinan/

Machine learning is a promising tool to
deal with high-dimensional problems
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Approximation error (due to the choice of H,): typically
If = falliz < Cm=/?| f[|e

If m™*/? = 0.1, then m = 10/* = 109, if & = 1. Curse of Dimensionality
(CoD). In ML we look for approximation errors that overcome (or at least
mitigate) CoD. A result that stands out CoD is the following one proven by
Barron o
inf ||[F* — full2 < I ”*7 I - |l+ a suitable norm.
fn€Hm m
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a1
m V/n
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A two-layer neural network may be represented as
fm(x) = 1 i ajo (w»Tx + bj) (4)
m J
=

where (aj, wj, bj) are the parameters and o is the activation function.
Where does this expression come from?
Starting from the Fourier transform-type representation
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A two-layer neural network may be represented as

= % i ajo (ijx + bj) (4)
=1

where (aj, wj, bj) are the parameters and o is the activation function.
Where does this expression come from?
Starting from the Fourier transform-type representation

Fx) = / a(w)ep (dw),

with p a probability measure on RY, and by independently sample {wj}j";l we
obtain the dimension-independent approximation

m

f(x) ~ %Z a(wj)o (wl ) Za, ( )7 o(z) = e”,

which is of the same type as in (4). Passing to the limit when the with of the
hidden layer goes to infinity in (4) we get the representation formula

fo(x) = /Rd+2 ao (wa + b) p(da,dw,db) =E, [aa(wa)}
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For the case of ReLU- activation function, the space for two-layer NN is that
so-called Barron space B, which is composed of functions f : D € R? — R for
which the following norm is finite

Ifll5 = inf{/ la|[|w] + |b]] p (da, dw, db) : ps.t. f= fp}.
RA+2

Basic properties of Barron space
m If f € H(R?) for s > d/2+2, then f € B.
m Barron space embeds into the space of Lipschitz-continuous functions.
m If f € B, then f = >, fi, where fi(x) = gi(Pix + b;) and
m g is C1 except at the origin, b; is a shift vector, and
m P; is an orthogonal projection on a k;j—dimensional subspace,
0< ki<d-1.
m Approximation error. For any f € B and m € N, there exists a two-layer
neural network fm,, with m neurons (aj, wj, bj) such that
£
I~ falle 101,




Two-layer neural networks and Barron space

For the case of ReLU- activation function, the space for two-layer NN is that
so-called Barron space B, which is composed of functions f : D € R? — R for
which the following norm is finite

Ifll5 = inf{/ la|[|w] + |b]] p (da, dw, db) : ps.t. f= fp}.
RA+2

Basic properties of Barron space
m If f € H(R?) for s > d/2+2, then f € B.
m Barron space embeds into the space of Lipschitz-continuous functions.
m If f € B, then f = >, fi, where fi(x) = gi(Pix + b;) and
m g is C1 except at the origin, b; is a shift vector, and
m P; is an orthogonal projection on a k;j—dimensional subspace,
0<k <d-1.
m Approximation error. For any f € B and m € N, there exists a two-layer
neural network fm,, with m neurons (aj, wj, bj) such that
2
(£ 11

IF = fulle 5 I,

m Estimation error in Barron spaces is controlled by a Monte Carlo type
ratio.
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Function spaces for neural networks architectures

Residual networks —> flow-induced spaces

Multilayer networks —> tree-like spaces

Convolutional networks —> 777

DenseNets —> 777

Weinan E. et al.: Towards a mathematical understanding of Neural
Network-based Machine Learning: what we know and we don't known

Preprint (2020). Available at
https://web.math.princeton.edu/~weinan/

Weinan E, Chao Ma and Lei Wu, "Machine Learning from a Continuous
Viewpoint” , 2019. Available at
https://web.math.princeton.edu/~weinan/
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Function spaces for neural networks architectures

PROPOSITION

Let o(z) = max{z,0} and g(x) = o(x1) be a Barron function on R, d > 2.
Denote by B? the unit ball in RY and by u the solution to

—Au=0 in B
u=g on OBY.

If d > 3, then u is not a Barron function on BY.
@ Weinan E. and S. Wojtowytsch: Some observations on high-dimensional

PDEs with Barron data. (2021) Available at
https://web.math.princeton.edu/~weinan/
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PROPOSITION

Let o(z) = max{z,0} and g(x) = o(x1) be a Barron function on R, d > 2.
Denote by B? the unit ball in RY and by u the solution to

—Au=0 in B
u=g on OBY.

If d > 3, then u is not a Barron function on BY.
@ Weinan E. and S. Wojtowytsch: Some observations on high-dimensional

PDEs with Barron data. (2021) Available at
https://web.math.princeton.edu/~weinan/

Open problem: regularity theory for PDEs in high dimension
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Part 11l

Control of PDEs and ML



A toy model: null control of the wave equation

yie — Ay =0, in Qr
y(X,O):yO(X), in
yi(x,0) =y*(x) inQ
y(x,t) =0, on I'p x (0,
y(x,t) = u(x,t) onT¢x(0,

7
)
Goal:  Compute u(x, t) such that

Yy, T)=y(x,T)=0 xe€q.

@ Raisi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural
networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations. J. Comput.
Phys. 378, 686-707 (2019)
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A Physics-informed neural networks (PINNs) algorithm
Step 1: Neural network
A surrogate y(x, t; 0) of the state variable y(x, t) is constructed as

input layer hidden layers output layer

2 9(z,t;0)

N\
<
input layer: No(x) = x = (x,t) € RI"?
hidden layers: N‘(x) = o (WN* 7 (x) +b°) eRY, (=1, L-1
output layer:  §(x;0) = N'(x) = WN" " (x) + b" € R

m NV R% — R%u s the ¢ layer with N, neurons,

m W e RVeXNe-1 and b € RM are, respectively, the weights and biases so
that @ = {W*, bZ}KKL are the parameters of the neural network, and

m o is an activation function, e.g. o(s) = tanh(s)
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A Physics-informed neural networks (PINNs) algorithm
Step 2: Training dataset

Training points

2.00 % x X % X _x x %

1754

150 1%

1.25 7

+ 1.00 4

0.75 43

0.50

0.25 1

0.00 4% % Lol Ealiiad XX Ead KX

0.0 0.2 0.4 0.6 0.8 1.0

Figure: lllustration of a training dataset (based on Sobol points) in the domain
Q2 =(0,1) x (0,2). Interior points are marked with circles and boundary points in
blue color. (xj, t;) are the features.
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A Physics-informed neural networks (PINNs) algorithm

Step 3: Loss function. Labels equal zero

Lint (6; Tint) = ,,-V:i"{ Wint|9ee (xj: 0) — B9 (xj; 0)*,  xj € Tint
Ly (6:Trp) = 0% winl9(xs: 0)[, x; € Trp

L% (8: Teco) = 30% wiol9(x550) — y°(x))%, xj € Ti=o
Li (6: Te=0) = 32/% wiol9e(x; 0) — y* (x)) P, xj € Te=o
L2 (0; Te=r) = 31 w;,719(x: 0)%, xj € Te=1

LEF(0:Te=r) =M wr

j 719 (x5 0) %, xj € Te=1,

where wjint, Wj,b, Wj0 and wj, T are the weights of suitable quadrature rules.

L (0, T) = Lint (9, 7i~nt)
+»CrD (6;Trp)
L£82% (6; Te=o) + L (6; Tezo)
pos (0 7— ) veI (0 7— )
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A Physics-informed neural networks (PINNs) algorithm
Step 4: Training process
0" =arg mein L(6;T).
The approximation i(t; ") of the control u(x, t) is

0(x,t,0") =9(x,t;,0"), x€lc, 0<t<T.



Numerical approximation using ML

A Physics-informed neural networks (PINNs) algorithm

Step 4: Training process
0" =arg mein L(6;T).
The approximation i(t; ") of the control u(x, t) is
0(x,t,0") =9(x,t;,0"), x€lc, 0<t<T.

To sump up:

PINN state  PINN control

trace on I'
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Estimates on generalization error

Training error

‘Strain = gtrain, int + gtrain, boundary + gtrain, initialpos + gtrain, initialvel
+5train, finalpos + gtrain, finalvel

gtrain, int (Elnt (0 Tnt)) 1/2

gtrain, boundary (‘CFD (93< 7—rD))l/z
= (L% (6" Tiz0))'?

1/2

gtrain, initialpos

gtrain, initialvel ( veI 0* T ))

gtrain, finalpos (ﬁfosT (0*< ))1/2
( ))1/2

veI

gtrain, finalvel
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Estimates on generalization error

Training error

‘Strain = gtrain, int + gtrain, boundary + gtrain, initialpos + gtrain, initialvel
+5train, finalpos + gtrain, finalvel

gtrain, int (Elnt (0 Tnt)) 1/2
gtrain, boundary (‘CFD (93< 7—rD))l/z
= (L% (0" Teco))

gtrain, initialpos

gtrain, initialvel ( veI 0* T )) v

gtrain, finalpos (‘CfosT (0*< ))1/2
veI 1/2

gtrain, finalvel - ( ’ ))

Generalization error for control and state

5gener (U) = ||U - UHL2 (Fci(0,7))
Egener (¥) = |ly — y”C((] T:L2(2))NC (0, T:H-1(Q))
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Theorem (Estimates on generalization error)

Assume that both y, § € C*>(Qr). Then

1/2 pnj—tjnt /2
ggener (U) S C (Etrain, int + CQiﬁt Nint int /

1/2 pnj—p/2
+€train, boundary aF Cqb Nb y

1/2 pnj—@ip/2
+£train, initialpos ar qu/ NO ®

1/2 pj—cjy /2
+5train, initialvel 1 quv NO

1/2 pj—afp/2
+(€train, finalpos + C / NT 2

qfp

+5trafn, finalvel Cf}‘,/2N;afV/2> )

where C = C(2, T), and consequently C = C(d) also depends on the spatial
dimension d. A similar estimate holds for the state variable.

Moreover, training errors converge to zero as the size of the NN and the
number of training points go to infinity.

@ Garcia-Cervera, C., Kessler, M., Periago, F.: Control of Partial Differential
Equations via Physics-Informed Neural Networks J. Optim. Th.
Appl.(2023) 196:391-414
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Idea of the proof.

Lety =y —y and U = u — {. By linearity,

ytt_Ay:}?ff — Ay,
y(X,O) :yO(X) _.)A/(X70)7
(%, 0) = y*(x) = 9:(x,0)
Y0, T)=9(x,T),

Ye(x, T) = i(x, T)

y(x t) = y(x, 1),

y(x, t) = u(x,t) = y(x, t)

in Qr
in Q
in Q
in Q (5)
in Q

on I'p x (0,

0, T)
on rc X (O,T

).
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Idea of the proof.

Again by linearity, y(x, t; 8) is decomposed as y =

Lety =y —y and U = u — {. By linearity,

ytt_Ay:}?ff — Ay,
y(xv 0) = yO(X) - .)A/(Xv 0)7
7:(x,0) = y'(x) = 9(x,0)
y(x, T) =y(x, T),

Ye(x, T) = (x, T)

Y(Xv t) = }A/(Xv t)7

Y(X’ t) = U(X’ t) - }?(Xv t)

Ye — Ay =0,
7'(x,0) = y°(x) = 9(x,0),
7:(x,0) = y*(x) — 9:(x,0)
yi(x,t) =0,
yHx 1) = u(x, t) = §(x, t)
Vi — AV = Jue — A,
YQ(X,O):O,
y?(X,O):O
yz(xa T) = )7(X, T) _yl(xv T)7
?f(X T) = 9:(x, T) = vi(x, T),

YA(x, t) = 9(x, 1),
T2y +t) =0

in Qr

in Q

in Q

in Q

in Q
onlpx(0,T)
onTl¢x(0,T).

(5)

y' + 72, where
in Qr
in Q
in Q
onlpx(0,T)
onlcx(0,T)
in Qr
in Q
in Q
in Q
in Q
onlpx(0,T)
onlF~x (0 T)

(7)
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Idea of the proof (cont). By applying an observability inequality to system
(6), and an energy estimate to (7),

lu— ﬁHLZ(FC;(O,T))

<G (||y° — 7(0)[l12(q) + llyt — Pe(0) | y-1) + ‘|}71(T)|‘L2(Q) + ||Y1(T)||H—1(Q))
<G (||}’0 — 7(0)[l12(q) + llyt — (0l 2@y + 19 M2y + [17:( Tl 20

HIF (M2 + 17 (Tll-1))

< Go (Ily° = 90z + Iy = 70l 2@ + 19Tl (@) + 19:( Tl 20

+Ce (H}A’HLZ(er(o,T)) + |9 — A)A/HB(O,T;L?(Q)))) .
(8)
The fact that training error converges to zero is a consequence of Pinkus’
universal approximation theorem, which basically states that any function

f € C* may be approximate in the || - ||c« by a suitable two-layer neural
network.



Numerical approximation using ML

Some comments and related open questions:

m The PINN algo generalises to any control system both linear and nonlinear



Numerical approximation using ML

Some comments and related open questions:
m The PINN algo generalises to any control system both linear and nonlinear

m How does the constant C(£2, T) depends on the dimension d?



Numerical approximation using ML

Some comments and related open questions:
m The PINN algo generalises to any control system both linear and nonlinear
m How does the constant C(£2, T) depends on the dimension d?

m The proof uses linearity. How can be get similar estimates of
generalization error for semilinear PDEs?
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Some comments and related open questions:
m The PINN algo generalises to any control system both linear and nonlinear
m How does the constant C(£2, T) depends on the dimension d?

m The proof uses linearity. How can be get similar estimates of
generalization error for semilinear PDEs?

m Construct a unique prediction model for all initial data.
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Numerical experiments

Error between exact state and PINN state

— Exact control

== Predicted control
0.4 1

0.2 4

0.0 q

Figure: Experiment 1 (linear wave equation). y%(x) = sin(rx), y!(x) = 0. Neural
network composed of 4 hidden layers and 50 neurons in each layer. Relative
generalization error of the order of 2%.

Implementation with https://github.com/lululxvi/deepxde
Python scripts available at https://github.com/fperiago/deepcontrol
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https://github.com/fperiago/deepcontrol
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