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Introduction. The problems

Optimal control, controllability and identification

Example: The Kermack-Mckendrick Model + Quarantine
Qi =p(t)S - A(H)Q
/
St= =75~ (p(t) + p(1))S+A(HQ
/
Iy = ﬁNS — 4l
Ri =~I1+ p(t)S

Q, S, I, R: Quarantined, Susceptible, Infectious and Recovered individuals

A = A(t): quarantine rate, 1/\(t) = average time of confinement
p = p(t): vaccinated individuals / time
Bi-objective optimal control problem:

@ Goal 1: Minimize J; (), p) fo I(t) dt

@ Goal 2: Minimize J (), p) := |S(T) — S| + fo (t)dt

Q1: How can we choose \ and p?
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Introduction. The problems

Optimal control, controllability and identification

Example: The Kermack-Mckendrick Model + Quarantine
Q:r=p(t)S—\(1)Q
/
St=—B7S = (p(t) + p(1)S+ADQ
/
I = BNS — 9l
Ri=~I1+p(1)S

Q, S, I, R: Quarantined, Susceptible, Infectious and Recovered individuals

A = A(t): quarantine rate, 1/\(t) = average time of confinement
p = p(t): vaccinated individuals / time

Controllability problem:
@ Goal: Get S(T) =Sy, (T) = Iy
Q2: How can we choose A and p?
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Introduction. The problems

Optimal control, controllability and identification

Example: The Kermack-Mckendrick Model + Quarantine
Qi =p(H)S—A(1H)Q
/
St=—B7S— (p(t) +p(1))S+A(DQ

I
=By S—l
R: = I+ p(1)S

Q, S, I, R: Quarantined, Susceptible, Infectious and Recovered individuals

A = A(t): quarantine rate, 1/\(t) = average time of confinement
p = p(t): vaccinated individuals / time

Inverse problem: Now, A and p are known but g and ~ are not

Q3: Can we recover 3 and ~ from initial and final values for S, /, R, Q?
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Boundary controllability and non-scalar systems

A general result?
Internal and boundary controllability of non-scalar parabolic systems

yt— Ay — Ay = Bvl, yi— Ay —Ay =20
(1) y =0 onthe boundary  (2) y = Bf1, on the boundary
Yl=o = Yo Y=o = Yo
with
@ y=1,...,yn),v=(vy,...,vm), F=(F1,...,fm)"
@ AcR™ BeR™™ m<n
Interesting case: m << n, for instance feeding very few species in a domain
with many different populations

Controllability questions:
AC? Is (for instance) {y|w1 : v € L?} dense?
NC? Do we have (for instance) {y|=7 : v € L?} 5 0?
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Boundary controllability and non-scalar systems

A general result?

n m
Yie— Ay — Z/‘h,f}’j = Z Bikvile
= pa

(1) 4 m
Yot — Ayn— ZAnJ}/j = Z Bnkvile
j=1 k=1
yi =0 on the boundary and
yi|t:o = VYio, i= 1,...,n

@ y=W1--syn) V=i, vm), f=(F1,. o )T
@ AcR™" BER™™ m<n
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Boundary controllability and non-scalar systems

A general result?

Attention: the scalar systems are always AC and NC atany T > 0

zi—Az—az=v1, zi—Az—az=0
z=0 y=1f,
Z|t=0 = 20 Z|t—0 = 2o
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Boundary controllability and non-scalar systems

A general result?

Internal and boundary controllability of non-scalar parabolic systems

yt— Ay — Ay = Bvi,, yi—Ay—Ay=0
(1) § y=0 (@) 3 y=5r1,
Y]i=0 = Yo Y]i=0o = Yo

N: spatial dimension, n: number of states, m: number of controls
Notation: [P; R] := [R|PR|---|P*~'R] for R € R%*’, P ¢ R%*¢

Known results:
@ (1) NC < rank [A; B] = n (Kalman)
@ For N =1: (2) NC < rank [Lk; Bx] = nk Vk > 1
Here: By := [B...B]", Lk := diag (L1, ..., Lk), L = \jId. — A
[Ammar-Khodja et al. 2010]
In particular, if N =1, m=1 (1D in space, one control):

(2) NC & rank [A, B] =N, pi— # Ak — Ae for (k I) 7& (é.j)
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Boundary controllability and non-scalar systems

A general result?

Internal and boundary controllability of non-scalar parabolic systems

yit — Ay — Ay = Bvi,, yi— Ay —Ay =0
(1) q y=0 (2 { y=Bf1,
Ylt=0 = Yo Ylt=0 = Yo

Problem 1: For N > 2, m < n: results for (2) are unknown
Problem 2: For variable A and/or y; — DAy — Ay = ...: general criteria?
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Control problems for free-boundary systems

Global results? Results for N > 2?

Null controllability of the free-boundary two-phase Stefan problem

Yi—dy,, =0, x€(0,4(t), te(0,T)
Zi—drizix =0, x € (¢(1),L), t€(0,T)

(NC) Ylx=0 = Vi, Z|xe = Vi, t€(0,T)

(diy, — drzx)|x—ery = —K€'(t), t€(0,T)

{ y(x,T)=0, x€(0,4T)), z(x,T)=0, xe (¢T),L)
T)
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Control problems for free-boundary systems

Global results? Results for N > 2?

Two-phase Stefan problem

Figure: Uncontrolled solution
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Control problems for free-boundary systems

Global results? Results for N > 2?

Two-phase Stefan problem

Figure: Uncontrolled solution
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Control problems for free-boundary systems

Global results? Results for N > 2?

Yi—dy,, =0, xe(0,4(1), te(0,T)
zZt— iz =0, x € (¢(t),L), t€ (0, T)
(NC)1
(d/yx - dsz)|X:€(f) = —kf'(t), t6(07 T)

(NC) y(x,T)=0, x€(0,(T)), z(x,T)=0, x € ({T),L)
2 «T)=tr
Results (with D.A. Souza and others):

@ Local NG, i.e. 3¢ >0 such that
1Yol +112oll g 160 —r| <& = 3vi, vi, £, y, 2 satisfying (NC)1, (NC)2

@ Computations
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Control problems for free-boundary systems

Global results? Results for N > 2?

Two-phase Stefan problem

EOUND. CONT. STATES, IT_EXT=211T INT=0

Figure: Controlled solution
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Control problems for free-boundary systems

Global results? Results for N > 2?

Two-phase Stefan problem

EOUND. CONT. STATES, IT_EXT=211T INT=0

Figure: Controlled solution
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roblems for free-boundary systems

Control

Global results? Results for N > 2?

Two-phase Stefan problem

EOUND. CONT. STATES, IT_EXT=211T INT=0

e

e

B
e

i, e I S L
SaemsEeo it nitEan
Seiras
o s
e S e S
R e I
S

e o ]
EEREkE

KN,

y
1

Tt
i

L
F e
il
AAuq
i
A%%A

i

i

1y
AT
i
3

A7

S

b
7
g

ul
i
i
i
i
A
!

5

o
e T
T ke T

i

ok

i

U

i

(e e
3l

i)

4

0

o
b,
A
ArLY
i
A4

i

okl
&
SeH
v,
R
el
i
i
X
A
HAZY
L
%ﬁﬂ
e

7

el

£
i
i
(
A
i
i
2

s
m A
v
MR
e
S
W
iy
®
(
"

Y
W
*’r
1Ay
LY"%:
¥l
el
S
W
o
RCRRED
R
Ao
L
S
o
A

5
&
Y

5 =3 o]
4 e, AT
B
W A A wa e A
e S B
SEERE LS

iy

v

s
il

4

(5

“
=
== 7
S A
~L=E

Figure: Controlled solution and final mesh
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Control problems for free-boundary systems

Global results? Results for N > 2?

Two-phase Stefan problem

@ Problem 3: Results with one boundary control?
@ Problem 4: Global controllability?

@ Problem 5: Local (and global) results for semilinear and nonlinear
PDEs?

@ Problem 6: Results for higher spatial dimensions? For instance,
domains close to a ball?
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An inverse problem related to elastography
Motivation and description

Elastography:

A technique to detect elastic properties of tissue

Mathematical model components:

- The system (displacements, acoustic waves generator, MR or ultrasound);

u=op on 92 x (0, T)

ur — V- (W(Vu+vu') + NV - u)ld) = f(x,t) inQx(0,T)
{ u(x,0) = uo(x), ui(x,0) = ui(x) in Q

- The observation (stress captor):
A:=a(u) - n= (u(Vu+Vu")+X(V-u)d.)-n onyx(0,T)

Start: (uo, u1), applying: ¢ on 9Q x (0, T), measuring: A on~ x (0, T)
- The inverse problem: find ;. and X (stiffness quantification) from A

A Calderdn-like IP — Uniqueness? Stability? Reconstruction?
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Motivation and description
Application to cancer detection

Figure: An elastogram for a glioblastoma (brain tumor)
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Motivation and description

Application to arteriosclerosis detection and description

Figure: Arteriosclerosis (thickening, hardening and loss of elasticity) in the carotid
arteria. Diagnosis by MRI
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Elastography
A Calderon-like problem

ur — V- (u(Vu+Vu') + A(V - u)ld.) = f(x,t) inQx(0,T)
u=e on 9Q x (0, T)
{ u(x,0) = up(x), u(x,0) = us(x) in Q
Reconstruction (main result, with F. Maestre):
Assume f, f € L2(Q)V, uo =0, uy € H{(Q)N, Ae B(Z)V
Introduce a related (direct) extremal problem (R > 0 is given):

Minimize 1(p, \)
Subject to (1, A) € K(R)

.
I(u, A) == %/0 lo(u) - n|, — AJ* dt

K(R) := {(1,\) €BV(Q), a <A< B, TV(a), TV(\) <R}
Then: YR > 0 3 at least one solution (ia, Ar)
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Elastography
A Calderon-like problem

ur — V- (W(Vu+vu') + \(V - u)d.) = f(x,t) inQx (0, T)
u=yp on 9Q x (0, T)
u(x,0) = up(x), u(x,0) = ur(x) in Q

In other words:

Under the assumptions o < p, A < gand TV(u), TV()\) < R, we can
compute p and A from A

Problem 7: Results with no restriction on TV?
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Elastography

A Calderon-like problem

A numerical experiment
The domain and the mesh
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Figure: Number of nodes: 3629 — Number of triangles: 7056
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Elastography
A Calderon-like problem

TEST 1
Starting: u = 5 Target: . = 10in D, u = 1 outside. Same A

TARGET o

Figure: The target p. The information A is taken accordingly
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Elastography
A Calderon-like problem

The algorithm: Augmented Lagrangian + L-BFGS
(limited memory quasi-Newton, Broyden, Fletcher, Goldfarb and Shanno)
Final cost ~ 9.6 x 1078, 158 comp. of the cost, 78 comp. of the gradient.

FINAL COMPUTED rau TsoValue

[ E]

W5

Figure: The computed
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Elastography
A Calderon-like problem

The algorithm: Augmented Lagrangian + L-BFGS
(limited memory quasi-Newton, Broyden, Fletcher, Goldfarb and Shanno)
Final cost ~ 9.6 x 1078, 158 comp. of the cost, 78 comp. of the gradient.

FINAL COMPUTED Limbda TsoValue

47504

[
e 522

Figure: The computed A
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Elastography
A Calderon-like problem

TEST 2
Starting: u = 5 Target: = 10in Dy U Do, 1 = 1 outside. Same A

TARGET o

Figure: The target p. The information A is taken accordingly
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Elastography
A Calderon-like problem

The algorithm: Augmented Lagrangian + L-BFGS
Final cost ~ 9.6 x 108, 180 comp. of the cost, 80 comp. of the gradient.

FINAL COMPUTED rau TsoValue

e 10065
s 3000
W16
W 51156

W15

Figure: The computed
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Elastography
A Calderon-like problem

The algorithm: Augmented Lagrangian + L-BFGS
Final cost ~ 9.6 x 108, 180 comp. of the cost, 80 comp. of the gradient.

FINAL COMPUTED Limbda TsoValue

W17
200
W o220
a245
02265
W77
Wiizi08
W67
Wiz.135
W25

Figure: The computed A
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Elastography
A Calderon-like problem

— Log Cost

— Log Cost ]
-3 3
% &
3 -4 o4
o o
(O} (O]
9 -5 9 -5}
-6 -6 -
20 40 60 80 20 40 60 80 100 120
ITERATES ITERATES

Figure: log of the cost versus number of iterates. Case 1 (left) and Case 2 (right).
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Controlling Navier-Stokes-like systems

Navier-Stokes-like systems

Uu+(u-Viu—rvAu+Vvp=1f,, V.-u=0
Boundary and initial conditions

Existence: Vf, up in reasonable spaces 3(u, p) (unique if N = 2)

3 many reasons to consider related control problems:
optimum design, optimal suction problems, pollution minimization, etc.
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Bi-objective control problems and stationary Navier-Stokes

Results

Bi-objective control problems and stationary Navier-Stokes
Ei(u,p) =fi1,, + 210, INQ
Ex(u)=0 inQ
a .
J;(f1,f2,u,p) = E/ |U — u,-d|2 + g/ |f,“2 = 1,2
O wj

“Minimizing” J; and J,?
We look for Nash equilibria (f1, f2):

J1(f17f27u7p) < J1(ﬁ7f2,y7 q) qu
Jo(fr,f2,u,p) < o(fi, 12,y,q9) Vi,
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Control issues

Multi-objective optimal control

An illustration of bi-objective extremal problems and Nash equilibria

Level curves of J1 and J2

@ Nash equilibrium

-2 -1 0 1 2 3 4 5
Couples (f,u)
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Bi-objective control problems and stationary Navier-Stokes

Results

E1(U,,O) :f11w1 +f21w2 in Q
Ez(u):O in Q

Ji(f1,f2,u,p) = /|ufu,d| 4 2 /|f,-\2 i=1,2

Results (with I. Marin-Gayte):

@ I (delicate ...)

@ Characterization: (f1, f2, u, p) Nash equilibrium = (f, f, u, p) Nash
quasi-equilibrium, i.e.
3(w;, g;) such that

Ei(u,p) =11, inQ
E>(u)=0 inQ

Ef(wi, ) =(u—ug)lg inQ
EQ(W,) =0inQ

f,’ =—24w

|
123 wi

@ Computation
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Bi-objective control problems for Navier-Stokes

A numerical experiment

A numerical experiment: control in a channel

Figure: The domain and a “rough” mesh; Q is composed of the main pipe, two first
rectangles (wy and w»), a second upper rectangle O and a second lower rectangle
5. Number of nodes: 1541. Number of triangles: 2774.
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Bi-objective control problems for Navier-Stokes

A numerical experiment

A numerical experiment: control in a channel

e “‘“\!
E =

m\\,

Figure: The function u1q; uog = 0 (recall: J; = § [o [u — ugl? + 4 Lo If:[2).
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Bi-objective control problems for Navier-Stokes

A numerical experiment

A numerical experiment: control in a channel

Figure: The final computed velocity fields (Newton) for Re = 1200 and a = 1.99,
p=0.01 (recall: J; = § [, [u—uigl® + 5 [, [fi?).
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Bi-objective control problems and Navier-Stokes

Results and questions

Other results:

@ 3, characterization and computation of other equilibria (Pareto)

@ The same for time-dependent problems: linear and semilinear heat,
wave, etc.

@ Hierarchical control: Stackleberg-Nash, Stackleberg-Pareto,
Pareto-Stackleberg, ...
For instance:

Yi— Y=, +vig
Bound. and initial conditions

@ The substep (optimal control):
For any v find f(v) minimizing J = J(f, y; v)
@ The NC Stackelberg problem:
Find v fsuch that y|;—7 =0
3, Characterization, Computation

Problem 8: Results for time-dependent Navier-Stokes-like systems?
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Approximate and null controllability

What is known

Navier-Stokes, Dirichlet

Navier-Stokes PDEs (x,t) € 2 x (0, T)
u=0, xedQ\rI, te(0,T)

u="flr, xerl, te(0,T)

Uji—o = Uo

Conjecture [JL Lions, 90]

AC: Vug,ur, Ve > 0, 3f suchthat ||u(-,T) —ur| <e
NC:Vu, 3f suchthat u(-,7)=0

Many partial (positive) results — Among them:

(1) Local NC, also for large T (Dirichlet and other BC’s)
(2) Global NC (all-boundary control, ' = 9Q)
(3) Global NC (Navier-slip-2D, periodic or no boundary), etc.

Problem 9: Global AC? Global NC?
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Figure: The domain and the active boundary

E. Fernandez Cara Control and Inverse Problems



Controlling the Navier-Stokes system
A global result

Navier-Stokes, Navier-slip-with-friction

Navier-Stokes PDEs (x,t) € Q2 x (0, T)

u-n=0, [2vDun+ Muju =0, x€dQ\T, te(0,T)
u=flr, xerl, te(0,7)

Uji—o = Uo

M = M(x, t): smooth and symmetric
The fluid slips, normal stresses are “proportional” to tangential u

Theorem [Coron-Marbach-Sueur, 2018]

Global NG, i.e. Vug € Hr 3f withu(x, T) =0

Also global ECT: V admiss. trajectory 3f with u(x, T) = u.(x, T)
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Controlling the Navier-Stokes system

2 T T T
—— DESIRED (TARGET)
1.8 —— CONTROLLED .
—— UNCONTROLLED

1.6

1.4

1.2

STATE

0.8

0.6

0.4

0.2

0 L Il I
0 0.5 1 15 2

TIME

Figure: Exact controllability to the trajectories (illustration)
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Controlling the Navier-Stokes system
A global result

For the proof of Coron-Marbach-Sueur’s result:

@ It suffices: to reach arbitrarily small states
@ Extension: Q — O and distributed control

@ Change of scale: t =et’, u =¢"'u/, efc.
Now: new ug and v’ are small and new T is large

o (U,p,¢,0") = U +el' +cU° + (Vev(x, t'; £2),0,0,0) + STT's

UC such that u®|;_g = 0, V x u® = 0 and u%(x, #') = 0 V¥’ > t'(x) vx € O
U' such that u®|;—g = uy, [lu'|y_7/2| < Ce

Ue such that [|u®|y 74| < Ce'/2

v = v(x, t’; z) is the solution to a Prandtl-like PDE, with source &,

@ After some work: v|y_.7 is “prepared” with &, (Possible !!!)
Hence, v|y_7 is small

Adaptation to Dirichlet conditions?
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Controlling the Navier-Stokes system

A global result

Also: global NC and global ECT for Boussinesq

u+Uu-vVju—vAu+Vp=0, V-u=0
0t +u-V0—rxAd=0

with
00
u-n=0, [2vDun+ Mu].,. =0, %+m9:07 X e o\l
u="flr, 6="hir, xerl

(results with Chaves-Silva, Le Balch and Souza 2022)
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Controlling the Navier-Stokes system
A global result

Other questions:

@ Problem 10: Navier-Stokes + dynamic boundary conditions?

u-n=0, [us+2vDun+ Mulw, =0, x€dQ\T, t€(0,T)
u="fly, xel, te(0,7)
@ Problem 11: Variable density Navier-Stokes or Boussinesq?

pt+u-Vp=0
p(Uur+(U-V)u) —pAu+Vp=0, V-u=0

@ Problem 12: Boussinesq viscous heat sources + Navier-slip and Robin?

u+Uu-vVu—vAu+Vp=0, V-u=0
0y +u-VO — kA =2vDu: Vu
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Controlling equations with nonlocal terms
Results for linearized Oldroyd systems

Results for linearized Oldroyd systems

u—Au+vVp=v-.-r, V.u=0

Tt 4+ ar = bDu
u=f1r on 92 x (0, T)
+...

Navier-Stokes + PDE for 7 (elastic tensor), linearized system
Particle interaction: inertia + friction (viscosity) + memory (elasticity)

¢Boundary control?
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Controlling equations with nonlocal terms
Results for linearized Oldroyd systems

Figure: A visco-elastic fluid
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Controlling equations with nonlocal terms
Results for linearized Oldroyd systems

Figure: A visco-elastic fluid
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Controlling equations with nonlocal terms
Results for linearized Oldroyd systems

Linearized Oldroyd
u=filr on 9Qx (0,T)
U|t:0:Uo+...
Uo is given. ;AC? Ve > 0 3. with ||ui=7]| < &?
¢NC? ¢ 3f with u|i—r = 0?

Results (with A. Doubova, D.A. Souza and others):

@ AC holds
@ In general, NC does not

Problem 13: Computation of f. (?7)
Problem 14: What about the original nonlinear problem?

Tt+ (u-V)r+ar+9(Vu,7) = bDu

u+Wu-Viu—Au+Vp=V-.7, V-u=0
+...
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THANK YOU VERY MUCH . ..
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