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Introduction. The problems
Optimal control, controllability and identification

Example: The Kermack-Mckendrick Model + Quarantine

Qt = p(t)S − λ(t)Q

St = −β I
N

S − (p(t) + ρ(t))S + λ(t)Q

I t = β
I
N

S − γI

Rt = γI + ρ(t)S

Q,S, I,R: Quarantined, Susceptible, Infectious and Recovered individuals

λ = λ(t): quarantine rate, 1/λ(t) = average time of confinement
ρ = ρ(t): vaccinated individuals / time

Bi-objective optimal control problem:

Goal 1: Minimize J1(λ, ρ) :=
∫ T

0 I(t) dt

Goal 2: Minimize J2(λ, ρ) := |S(T )− ST |+
∫ T

0 ρ(t) dt

Q1: How can we choose λ and ρ?
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Introduction. The problems
Optimal control, controllability and identification

Example: The Kermack-Mckendrick Model + Quarantine

Qt = p(t)S − λ(t)Q

St = −β I
N

S − (p(t) + ρ(t))S + λ(t)Q

I t = β
I
N

S − γI

Rt = γI + ρ(t)S

Q,S, I,R: Quarantined, Susceptible, Infectious and Recovered individuals

λ = λ(t): quarantine rate, 1/λ(t) = average time of confinement
ρ = ρ(t): vaccinated individuals / time

Controllability problem:

Goal: Get S(T ) = Sd , I(T ) = Id

Q2: How can we choose λ and ρ?
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Introduction. The problems
Optimal control, controllability and identification

Example: The Kermack-Mckendrick Model + Quarantine

Qt = p(t)S − λ(t)Q

St = −β I
N

S − (p(t) + ρ(t))S + λ(t)Q

I t = β
I
N

S − γI

Rt = γI + ρ(t)S

Q,S, I,R: Quarantined, Susceptible, Infectious and Recovered individuals

λ = λ(t): quarantine rate, 1/λ(t) = average time of confinement
ρ = ρ(t): vaccinated individuals / time

Inverse problem: Now, λ and ρ are known but β and γ are not

Q3: Can we recover β and γ from initial and final values for S, I, R, Q?
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Boundary controllability and non-scalar systems
A general result?

Internal and boundary controllability of non-scalar parabolic systems

(1)


y t −∆y − Ay = Bv1ω
y = 0 on the boundary
y |t=0 = y0

(2)


y t −∆y − Ay = 0
y = Bf1γ on the boundary
y |t=0 = y0

with

y = (y1, . . . , yn)T , v = (v1, . . . , vm)T , f = (f 1, . . . , f m)T

A ∈ Rn×n, B ∈ Rn×m, m < n

Interesting case: m << n, for instance feeding very few species in a domain
with many different populations

Controllability questions:
AC? Is (for instance) {y |t=T : v ∈ L2} dense?
NC? Do we have (for instance) {y |t=T : v ∈ L2} 3 0?
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Boundary controllability and non-scalar systems
A general result?

(1)



y1,t −∆y1 −
n∑

j=1

A1,jy j =
m∑

k=1

B1,k v k 1ω

· · ·

yn,t −∆yn −
n∑

j=1

An,jy j =
m∑

k=1

Bn,k v k 1ω

y i = 0 on the boundary and
y i |t=0 = y i,0, i = 1, . . . , n

y = (y1, . . . , yn)T , v = (v1, . . . , vm)T , f = (f 1, . . . , f m)T

A ∈ Rn×n, B ∈ Rn×m, m < n
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Boundary controllability and non-scalar systems
A general result?

Attention: the scalar systems are always AC and NC at any T > 0
z t −∆z − az = v1ω
z = 0
z|t=0 = z0


z t −∆z − az = 0
y = f1γ
z|t=0 = z0
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Boundary controllability and non-scalar systems
A general result?

Internal and boundary controllability of non-scalar parabolic systems

(1)


y t −∆y − Ay = Bv1ω
y = 0
y |t=0 = y0

(2)


y t −∆y − Ay = 0
y = Bf1γ
y |t=0 = y0

N: spatial dimension, n: number of states, m: number of controls

Notation: [P; R] := [R|PR| · · · |Pd−1R] for R ∈ Rd×r , P ∈ Rd×d

Known results:

(1) NC⇔ rank [A; B] = n (Kalman)

For N = 1: (2) NC⇔ rank [Lk ; Bk ] = nk ∀k ≥ 1
Here: Bk := [B . . .B]T , Lk := diag (L1, . . . , Lk ), Lj = λj Id.− A
[Ammar-Khodja et al. 2010]

In particular, if N = 1, m = 1 (1D in space, one control):

(2) NC ⇔ rank [A; B] = n, µi − µj 6= λk − λ` for (k , i) 6= (`, j)
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Boundary controllability and non-scalar systems
A general result?

Internal and boundary controllability of non-scalar parabolic systems

(1)


y t −∆y − Ay = Bv1ω
y = 0
y |t=0 = y0

(2)


y t −∆y − Ay = 0
y = Bf1γ
y |t=0 = y0

Problem 1: For N ≥ 2, m < n: results for (2) are unknown
Problem 2: For variable A and/or y t − D∆y − Ay = . . . : general criteria?
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Control problems for free-boundary systems
Global results? Results for N ≥ 2?

Null controllability of the free-boundary two-phase Stefan problem

(NC)1



y t − dly xx = 0, x ∈ (0, `(t)), t ∈ (0,T )
z t − dr zxx = 0, x ∈ (`(t), L), t ∈ (0,T )

y |x=0 = v l , z|x=L = v r , t ∈ (0,T )

(dly x − dr zx )|x=`(t) = −k`′(t), t∈(0,T )
. . .

(NC)2

{
y(x ,T ) = 0, x ∈ (0, `(T )), z(x ,T ) = 0, x ∈ (`(T ), L)
`(T ) = `T
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Control problems for free-boundary systems
Global results? Results for N ≥ 2?

Two-phase Stefan problem

Figure: Uncontrolled solution
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Control problems for free-boundary systems
Global results? Results for N ≥ 2?

Two-phase Stefan problem

Figure: Uncontrolled solution

E. Fernández Cara Control and Inverse Problems



Control problems for free-boundary systems
Global results? Results for N ≥ 2?

(NC)1


y t − dly xx = 0, x ∈ (0, `(t)), t ∈ (0,T )
z t − dr zxx = 0, x ∈ (`(t), L), t ∈ (0,T )
. . .
(dly x − dr zx )|x=`(t) = −k`′(t), t∈(0,T )
. . .

(NC)2

{
y(x ,T ) = 0, x ∈ (0, `(T )), z(x ,T ) = 0, x ∈ (`(T ), L)
`(T ) = `T

Results (with D.A. Souza and others):

Local NC, i.e. ∃ε>0 such that
‖y0‖H1

0
+‖z0‖H1

0
+|`0−`T |≤ε⇒ ∃v l , v r , `, y , z satisfying (NC)1, (NC)2

Computations
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Control problems for free-boundary systems
Global results? Results for N ≥ 2?

Two-phase Stefan problem

Figure: Controlled solution
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Control problems for free-boundary systems
Global results? Results for N ≥ 2?

Two-phase Stefan problem

Figure: Controlled solution
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Control problems for free-boundary systems
Global results? Results for N ≥ 2?

Two-phase Stefan problem

Figure: Controlled solution and final mesh
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Control problems for free-boundary systems
Global results? Results for N ≥ 2?

Two-phase Stefan problem

Problem 3: Results with one boundary control?

Problem 4: Global controllability?

Problem 5: Local (and global) results for semilinear and nonlinear
PDEs?

Problem 6: Results for higher spatial dimensions? For instance,
domains close to a ball?
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An inverse problem related to elastography
Motivation and description

Elastography:

A technique to detect elastic properties of tissue

Mathematical model components:

- The system (displacements, acoustic waves generator, MR or ultrasound); utt −∇ ·
(
µ(∇u +∇uT ) + λ(∇ · u)Id.

)
= f (x , t) in Ω× (0,T )

u = ϕ on ∂Ω× (0,T )
u(x , 0) = u0(x), ut (x , 0) = u1(x) in Ω

- The observation (stress captor):
Λ := σ(u) · n =

(
µ(∇u +∇uT ) + λ(∇ · u)Id.

)
· n on γ × (0,T )

Start: (u0, u1), applying: ϕ on ∂Ω× (0,T ), measuring: Λ on γ × (0,T )

- The inverse problem: find µ and λ (stiffness quantification) from Λ

A Calderón-like IP — Uniqueness? Stability? Reconstruction?
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Motivation and description
Application to cancer detection

Figure: An elastogram for a glioblastoma (brain tumor)
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Motivation and description
Application to arteriosclerosis detection and description

Figure: Arteriosclerosis (thickening, hardening and loss of elasticity) in the carotid
arteria. Diagnosis by MRI
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Elastography
A Calderon-like problem

 utt −∇ ·
(
µ(∇u +∇uT ) + λ(∇ · u)Id.

)
= f (x , t) in Ω× (0,T )

u = ϕ on ∂Ω× (0,T )
u(x , 0) = u0(x), ut (x , 0) = u1(x) in Ω

Reconstruction (main result, with F. Maestre):
Assume f , ft ∈ L2(Q)N , u0 = 0, u1 ∈ H1

0 (Ω)N , Λ ∈ L2(Σ)N

Introduce a related (direct) extremal problem (R > 0 is given):{
Minimize I(µ, λ)

Subject to (µ, λ) ∈ K(R)

I(µ, λ) :=
1
2

∫ T

0
‖σ(u) · n

∣∣
γ
− Λ‖2 dt

K(R) := { (µ, λ) ∈ BV(Ω), α ≤ µ, λ ≤ β, TV (µ),TV (λ) ≤ R }

Then: ∀R > 0 ∃ at least one solution (µR , λR)
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Elastography
A Calderon-like problem

 utt −∇ ·
(
µ(∇u +∇uT ) + λ(∇ · u)Id.

)
= f (x , t) in Ω× (0,T )

u = ϕ on ∂Ω× (0,T )
u(x , 0) = u0(x), ut (x , 0) = u1(x) in Ω

In other words:

Under the assumptions α ≤ µ, λ ≤ β and TV (µ),TV (λ) ≤ R, we can
compute µ and λ from Λ

Problem 7: Results with no restriction on TV?
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Elastography
A Calderon-like problem

A numerical experiment
The domain and the mesh

Figure: Number of nodes: 3629 – Number of triangles: 7056
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Elastography
A Calderon-like problem

TEST 1
Starting: µ = 5 Target: µ = 10 in D, µ = 1 outside. Same λ

Figure: The target µ. The information Λ is taken accordingly
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Elastography
A Calderon-like problem

The algorithm: Augmented Lagrangian + L-BFGS
(limited memory quasi-Newton, Broyden, Fletcher, Goldfarb and Shanno)
Final cost ∼ 9.6× 10−8, 158 comp. of the cost, 78 comp. of the gradient.

Figure: The computed µ
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Elastography
A Calderon-like problem

The algorithm: Augmented Lagrangian + L-BFGS
(limited memory quasi-Newton, Broyden, Fletcher, Goldfarb and Shanno)
Final cost ∼ 9.6× 10−8, 158 comp. of the cost, 78 comp. of the gradient.

Figure: The computed λ
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Elastography
A Calderon-like problem

TEST 2
Starting: µ = 5 Target: µ = 10 in D1 ∪ D2, µ = 1 outside. Same λ

Figure: The target µ. The information Λ is taken accordingly

E. Fernández Cara Control and Inverse Problems



Elastography
A Calderon-like problem

The algorithm: Augmented Lagrangian + L-BFGS
Final cost ∼ 9.6× 10−8, 180 comp. of the cost, 80 comp. of the gradient.

Figure: The computed µ
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Elastography
A Calderon-like problem

The algorithm: Augmented Lagrangian + L-BFGS
Final cost ∼ 9.6× 10−8, 180 comp. of the cost, 80 comp. of the gradient.

Figure: The computed λ
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Elastography
A Calderon-like problem

Figure: log of the cost versus number of iterates. Case 1 (left) and Case 2 (right).
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Controlling Navier-Stokes-like systems

Navier-Stokes-like systems{
ut + (u · ∇)u− ν∆u +∇p = f1ω, ∇ · u = 0
Boundary and initial conditions

Existence: ∀ f,u0 in reasonable spaces ∃(u, p) (unique if N = 2)

∃ many reasons to consider related control problems:
optimum design, optimal suction problems, pollution minimization, etc.

E. Fernández Cara Control and Inverse Problems



Bi-objective control problems and stationary Navier-Stokes
Results

Bi-objective control problems and stationary Navier-Stokes
E1(u, p) = f11ω1 + f21ω2 in Ω
E2(u) = 0 in Ω
. . .

Ji (f1, f2,u, p) =
a
2

∫
Oi

|u− uid |2 +
µ

2

∫
ωi

|fi |2 i = 1, 2

“Minimizing” J1 and J2?
We look for Nash equilibria (f1, f2):{

J1(f1, f2,u, p) ≤ J1(f′1, f2, y, q) ∀f′1
J2(f1, f2,u, p) ≤ J2(f1, f′2, y, q) ∀f′2
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Control issues
Multi-objective optimal control

An illustration of bi-objective extremal problems and Nash equilibria
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Bi-objective control problems and stationary Navier-Stokes
Results


E1(u, p) = f11ω1 + f21ω2 in Ω
E2(u) = 0 in Ω
. . .

Ji (f1, f2,u, p) =
a
2

∫
Oi

|u− uid |2 +
µ

2

∫
ωi

|fi |2 i = 1, 2

Results (with I. Marín-Gayte):

∃ (delicate . . . )
Characterization: (f1, f2,u, p) Nash equilibrium⇒ (f1, f2,u, p) Nash
quasi-equilibrium, i.e.
∃(wi , qi ) such that

E1(u, p) = f1ω in Ω
E2(u) = 0 in Ω
E∗1 (wi , qi ) = (u− uid )1Oi in Ω
E2(wi ) = 0 in Ω
fi = − a

µ
wi
∣∣
ωi

. . .

Computation
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Bi-objective control problems for Navier-Stokes
A numerical experiment

A numerical experiment: control in a channel

Figure: The domain and a “rough” mesh; Ω is composed of the main pipe, two first
rectangles (ω1 and ω2), a second upper rectangle O1 and a second lower rectangle
O2. Number of nodes: 1541. Number of triangles: 2774.
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Bi-objective control problems for Navier-Stokes
A numerical experiment

A numerical experiment: control in a channel

Figure: The function u1d ; u2d = 0 (recall: Ji = a
2

∫
Oi
|u− uid |2 + µ

2

∫
ωi
|fi |2).
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Bi-objective control problems for Navier-Stokes
A numerical experiment

A numerical experiment: control in a channel

Figure: The final computed velocity fields (Newton) for Re = 1200 and a = 1.99,
µ = 0.01 (recall: Ji = a

2

∫
Oi
|u− uid |2 + µ

2

∫
ωi
|fi |2).
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Bi-objective control problems and Navier-Stokes
Results and questions

Other results:

∃, characterization and computation of other equilibria (Pareto)

The same for time-dependent problems: linear and semilinear heat,
wave, etc.

Hierarchical control: Stackleberg-Nash, Stackleberg-Pareto,
Pareto-Stackleberg, . . .
For instance: {

y t − y xx = f1ω + v1O

Bound. and initial conditions

1 The substep (optimal control):

For any v find f (v) minimizing J = J(f , y ; v)

2 The NC Stackelberg problem:

Find v fsuch that y |t=T = 0

∃, Characterization, Computation

Problem 8: Results for time-dependent Navier-Stokes-like systems?
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Approximate and null controllability
What is known

Navier-Stokes, Dirichlet
Navier-Stokes PDEs (x, t) ∈ Ω× (0,T )
u = 0, x ∈ ∂Ω \ Γ, t ∈ (0,T )
u = f1Γ, x ∈ Γ, t ∈ (0,T )
u|t=0 = u0

Conjecture [JL Lions, 90]

AC: ∀u0,uT , ∀ε > 0, ∃f such that ‖u(· ,T )− uT‖ ≤ ε
NC: ∀u0 ∃f such that u(· ,T ) = 0

Many partial (positive) results — Among them:

(1) Local NC, also for large T (Dirichlet and other BC’s)

(2) Global NC (all-boundary control, Γ = ∂Ω)

(3) Global NC (Navier-slip-2D, periodic or no boundary), etc.

Problem 9: Global AC? Global NC?
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Figure: The domain and the active boundary
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Controlling the Navier-Stokes system
A global result

Navier-Stokes, Navier-slip-with-friction
Navier-Stokes PDEs (x, t) ∈ Ω× (0,T )
u · n = 0, [2νDu n + Mu]tan = 0, x ∈ ∂Ω \ Γ, t ∈ (0,T )
u = f1Γ, x ∈ Γ, t ∈ (0,T )
u|t=0 = u0

M = M(x, t): smooth and symmetric
The fluid slips, normal stresses are “proportional” to tangential u

Theorem [Coron-Marbach-Sueur, 2018]

Global NC, i.e. ∀u0 ∈ HΓ ∃f with u(x,T ) ≡ 0

Also global ECT: ∀admiss. trajectory ∃f with u(x,T ) ≡ u∗(x,T )
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Controlling the Navier-Stokes system

Figure: Exact controllability to the trajectories (illustration)
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Controlling the Navier-Stokes system
A global result

For the proof of Coron-Marbach-Sueur’s result:

It suffices: to reach arbitrarily small states

Extension: Ω→ O and distributed control

Change of scale: t = εt ′, u = ε−1u′, etc.
Now: new u′0 and ν′ are small and new T ′ is large

(u′, p′, ξ′, σ′) = U0 + εU1 + εUε + (
√
ε v(x, t ′; ϕ(x)√

ε
), 0, 0, 0) + STT’s

U0 such that u0|t=0 = 0, ∇× u0 = 0 and u0(x, t ′) = 0 ∀t ′ > t ′(x) ∀x ∈ O
U1 such that u1|t=0 = u′0, ‖u1|t′=T/2‖ ≤ Cε
Uε such that ‖uε|t′=3T/4‖ ≤ Cε1/2

v = v(x, t ′; z) is the solution to a Prandtl-like PDE, with source ξv

After some work: v|t′=εT is “prepared” with ξv (Possible !!!)
Hence, v|t′=T ′ is small

Adaptation to Dirichlet conditions?
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Controlling the Navier-Stokes system
A global result

Also: global NC and global ECT for Boussinesq{
ut + (u · ∇)u− ν∆u +∇p = 0, ∇ · u = 0
θt + u · ∇θ − κ∆θ = 0

with  u · n = 0, [2νDu n + Mu]tan = 0,
∂θ

∂n
+ mθ = 0, x ∈ ∂Ω \ Γ

u = f1Γ, θ = h1Γ, x ∈ Γ

(results with Chaves-Silva, Le Balch and Souza 2022)
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Controlling the Navier-Stokes system
A global result

Other questions:

Problem 10: Navier-Stokes + dynamic boundary conditions?
. . .
u · n = 0, [ut + 2νDu n + Mu]tan = 0, x ∈ ∂Ω \ Γ, t ∈ (0,T )
u = f1Γ, x ∈ Γ, t ∈ (0,T )

Problem 11: Variable density Navier-Stokes or Boussinesq?
ρt + u · ∇ρ = 0
ρ(ut + (u · ∇)u)− µ∆u +∇p = 0, ∇ · u = 0
. . .

Problem 12: Boussinesq viscous heat sources + Navier-slip and Robin?
ut + (u · ∇)u− ν∆u +∇p = 0, ∇ · u = 0
θt + u · ∇θ − κ∆θ = 2νDu : ∇u
. . .
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Controlling equations with nonlocal terms
Results for linearized Oldroyd systems

Results for linearized Oldroyd systems
ut −∆u +∇p = ∇ · τ , ∇ · u = 0
τ t + aτ = bDu
u = f1Γ on ∂Ω× (0,T )
+ . . .

Navier-Stokes + PDE for τ (elastic tensor), linearized system
Particle interaction: inertia + friction (viscosity) + memory (elasticity)

¿Boundary control?
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Controlling equations with nonlocal terms
Results for linearized Oldroyd systems

Figure: A visco-elastic fluid
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Controlling equations with nonlocal terms
Results for linearized Oldroyd systems

Figure: A visco-elastic fluid
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Controlling equations with nonlocal terms
Results for linearized Oldroyd systems


Linearized Oldroyd
u = f1Γ on ∂Ω× (0,T )
u|t=0 = u0 + . . .

u0 is given. ¿AC? ¿∀ε > 0 ∃fε with ‖u|t=T‖ ≤ ε?

¿NC? ¿∃f with u|t=T = 0?

Results (with A. Doubova, D.A. Souza and others):

AC holds

In general, NC does not

Problem 13: Computation of fε (?)
Problem 14: What about the original nonlinear problem?

ut + (u · ∇)u −∆u +∇p = ∇ · τ , ∇ · u = 0
τ t + (u · ∇)τ + aτ + g(∇u, τ) = bDu
+ . . .
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THANK YOU VERY MUCH . . .
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