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Optimal design in conduction

A typical optimal design problem in conductivity is the following:

max
κ∈A

min
H1

0 (Ω)

[
1

2

∫
Ω

κ(x)|∇u(x)|2 dx −
∫
Ω

f (x)u(x) dx

]
where Ω ⊂ Rn a bounded, open domain, γ ∈ (0, 1) and

A =

{
κ ∈ L∞(Ω) : κ(x) ∈ [κ, κ̄],

∫
Ω

κ(x) dx ≤ γ|Ω|
}

José Carlos Bellido Anton Evgrafov (Aalborg, Denmark) Nonlocal basis pursuit: Nonlocal optimal design of conductive domains in the vanishing material limit



Basis pursuit local problem
Basis pursuit nonlocal problem
Nonlocal to local basis pursuit

Optimal design in conduction

A typical optimal design problem in conductivity is the following:

max
κ∈A

min
H1

0 (Ω)

[
1

2

∫
Ω

κ(x)|∇u(x)|2 dx −
∫
Ω

f (x)u(x) dx

]
where Ω ⊂ Rn a bounded, open domain, γ ∈ (0, 1) and

A =

{
κ ∈ L∞(Ω) : κ(x) ∈ [κ, κ̄],

∫
Ω

κ(x) dx ≤ γ|Ω|
}

This is max-min of compliance maximization in optimal design of

conducting materials, using the Dirichlet’s principle.
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Optimal design in conduction

Alternatively to using Dirichlet’s principle we could use that of Kelvin for
the fluxes, where the heat flux is given by the variational principle

q = argminp∈Q(f )Iloc(κ; p),

with

Iloc(κ; p) =
1

2

∫
Ω

κ−1(x)|p(x)|2 dx ,

and
Q(f ) = {q ∈ H(div,Ω,Rn) : div(q) = f } .
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Optimal design in conduction

Alternatively to using Dirichlet’s principle we could use that of Kelvin for
the fluxes, where the heat flux is given by the variational principle

q = argminp∈Q(f )Iloc(κ; p),

with

Iloc(κ; p) =
1

2

∫
Ω

κ−1(x)|p(x)|2 dx ,

and
Q(f ) = {q ∈ H(div,Ω,Rn) : div(q) = f } .

Then, the optimal design problem is equivalently written as:

min
(κ,q)∈A×Q(f )

Iloc(κ; q).
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Optimal design in conduction

Alternatively to using Dirichlet’s principle we could use that of Kelvin for
the fluxes, where the heat flux is given by the variational principle

q = argminp∈Q(f )Iloc(κ; p),

with

Iloc(κ; p) =
1

2

∫
Ω

κ−1(x)|p(x)|2 dx ,

and
Q(f ) = {q ∈ H(div,Ω,Rn) : div(q) = f } .

Then, the optimal design problem is equivalently written as:

min
(κ,q)∈A×Q(f )

Iloc(κ; q).

Due to joint-convexity of the functional Iloc , this problem attains its
minimum.
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Vanishing material fraction limit

Now, our interest is to study the limit as γ ↘ 0.
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Vanishing material fraction limit

Now, our interest is to study the limit as γ ↘ 0. It is not difficult to
obtain this limit formally, as the problem:

inf
q

∫
Ω

|q(x)| dx ,

subject to
div q = f in Ω.
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Vanishing material fraction limit

Now, our interest is to study the limit as γ ↘ 0. It is not difficult to
obtain this limit formally, as the problem:

inf
q

∫
Ω

|q(x)| dx ,

subject to
div q = f in Ω.

Obviously, due to lack of weak compactness in L1(Ω), the infimum is not
necessarily attained. Therefore, relaxation in the spaces of Radon
measures M(Ω̄;Rn) is required.
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Vanishing material fraction limit

Now, our interest is to study the limit as γ ↘ 0. It is not difficult to
obtain this limit formally, as the problem:

inf
q

∫
Ω

|q(x)| dx ,

subject to
div q = f in Ω.

Obviously, due to lack of weak compactness in L1(Ω), the infimum is not
necessarily attained. Therefore, relaxation in the spaces of Radon
measures M(Ω̄;Rn) is required.

This problem has a basis pursuit structure: we look for the sparsest
solution in the L1 sense of the underdetermined system of PDE’s.
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Vanishing material fraction limit

This problem has been studied in the context of elasticity:

In the pioneering paper by Michell (The limits of economy of
material in frame-structures. Phil. Mag. 1904): Michell trusses.

By Allaire and Kohn (Optimal design of minimum weight and
compliance in place stress using extrema microstructures Eur. J.
Mech. A Solids, 1993): which formally obtained the vanishing
material limit in elasticity

Olbermann (Michell trusses in two dimensions as a Γ-limit of
optimal design in linear elasticity. Cal. Var. 2017): studied the
previous formal result in the context of Γ-convergence

Bouchitté, Gangbo, Seppecher (Michell trusses and lines of principal
action. M3AS, 2008): study the relaxed problem, obtaining
properties of optimal measures

Evgrafov, Sigmund (Sparse basis pursuit for compliance
minimization in the vanishing volume ratio limit, ZAMM, 2020):
Attempt of numerical approximation of the limit problem
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Nonlocal optimal design

Given a horizon if interaction between particles, we define
Ωδ = ∪x∈ΩB(x , δ), where Γδ = Ωδ\Ω is the nonlocal boundary.
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Nonlocal optimal design

Given a horizon if interaction between particles, we define
Ωδ = ∪x∈ΩB(x , δ), where Γδ = Ωδ\Ω is the nonlocal boundary.

Nonlocal kernel: a radial non-negative function wδ with support in
B(0, δ) such that

∫
Rn |x |2w2

δ (x) dx = K2,n.
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Nonlocal optimal design

Given a horizon if interaction between particles, we define
Ωδ = ∪x∈ΩB(x , δ), where Γδ = Ωδ\Ω is the nonlocal boundary.

Nonlocal kernel: a radial non-negative function wδ with support in
B(0, δ) such that

∫
Rn |x |2w2

δ (x) dx = K2,n.

NONLOCAL OPERATORS:

Nonlocal two-points gradient of u:

G̃δu(x , x
′) = |u(x)− u(x ′)|wδ(x , x

′)

Nonlocal divergence of q̃: Dδ is the negative adjoint of G̃δ,

(Dδq̃, v)L2(Ω) = −(q̃, G̃δv)L2(Ωδ,Ωδ), ∀ q̃, v
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Nonlocal optimal design

We are interested in a nonlocal Kelvin’s principle for fluxes:

min
Qδ(f )

I (κ̃, q̃),

with
Qδ(f ) =

{
q̃ ∈ L2(Ωδ × Ωδ) : Dδq̃ = f

}
,

and

I (κ̃, q̃) =
1

2

∫
Ωδ

∫
Ωδ

κ̃−1(x , x ′)|q̃(x , x ′)|2 dx dx ′.
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Nonlocal optimal design

Nonlocal optimal design for fluxes

The following nonlocal optimal design problem admits solutions:

min
(κ,q̃)∈Aδ×Qδ(f )

I (κ̃, q̃),

where given

κ ∈ Aδ =

{
κ ∈ L∞(Ωδ) : κ(x) ∈ [κ, κ̄],

∫
Ωδ

κ(x) dx ≤ γ|Ωδ|
}
,

κ̃ is defined as the parametrization (through harmonic averaging)

κ̃ = 2κ(x)κ(x ′)[κ(x) + κ(x ′)]−1.

José Carlos Bellido Anton Evgrafov (Aalborg, Denmark) Nonlocal basis pursuit: Nonlocal optimal design of conductive domains in the vanishing material limit



Basis pursuit local problem
Basis pursuit nonlocal problem
Nonlocal to local basis pursuit

Nonlocal optimal design

THEOREM: Limit as δ ↘ 0

Nonlocal optimal design problem

min
(κ,q̃)∈Aδ×Qδ(f )

I (κ̃, q̃),

Γ-converges as δ ↘ 0 to the local optimal design problem

min
(κ,q)∈A×Q(f )

Iloc(κ; q).
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Vanishing volume fraction limit in the nonlocal case

Lebesgue spaces with mixed exponents (Benedek, Panzone, Duke
Math. J., 1961): Lp,q(Ωδ × Ωδ), 1 ≤ p, q ≤ +∞, is the space of
measurable functions q̃ : Ωδ × Ωδ → R such that

∥q̃∥Lp,q(Ωδ×Ωδ) =

{∫
Ωδ

[∫
Ωδ

|q̃(x , x ′)|q dx ′
] p

q

dx

} 1
p

< +∞.
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Vanishing volume fraction limit in the nonlocal case

Lebesgue spaces with mixed exponents (Benedek, Panzone, Duke
Math. J., 1961): Lp,q(Ωδ × Ωδ), 1 ≤ p, q ≤ +∞, is the space of
measurable functions q̃ : Ωδ × Ωδ → R such that

∥q̃∥Lp,q(Ωδ×Ωδ) =

{∫
Ωδ

[∫
Ωδ

|q̃(x , x ′)|q dx ′
] p

q

dx

} 1
p

< +∞.

L1,2(Ωδ × Ωδ) is a separable, non-reflexive Banach space, whose dual is
L∞,2(Ωδ × Ωδ).
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Vanishing volume fraction limit in the nonlocal case

Lebesgue spaces with mixed exponents (Benedek, Panzone, Duke
Math. J., 1961): Lp,q(Ωδ × Ωδ), 1 ≤ p, q ≤ +∞, is the space of
measurable functions q̃ : Ωδ × Ωδ → R such that

∥q̃∥Lp,q(Ωδ×Ωδ) =

{∫
Ωδ

[∫
Ωδ

|q̃(x , x ′)|q dx ′
] p

q

dx

} 1
p

< +∞.

L1,2(Ωδ × Ωδ) is a separable, non-reflexive Banach space, whose dual is
L∞,2(Ωδ × Ωδ).

We denote Lp,qa (Ωδ × Ωδ) the subspace of antisymmetric
(q̃(x , x ′) = −q̃(x ′, x)) functions in Lp,q(Ωδ × Ωδ).
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Vanishing volume fraction limit in the nonlocal case

Formal limit as γ ↘ 0

The formal limit as γ ↘ 0 of

min
(κ,q̃)∈Aδ×Qδ(f )

I (κ̃, q̃),

where
inf

Q̄a
δ(f )

∥q̃∥L1,2(Ωδ×Ωδ),

is
Q̄a

δ(f ) =
{
q̃ ∈ L1,2a (Ωδ × Ωδ) : Dδ(q̃) = f

}
.
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Vanishing volume fraction limit in the nonlocal case

Theorem

The unit ball BL1,2
a
(Ωδ × Ωδ) is sequentially compact with respect to

biting convergence in L1,2(Ωδ × Ωδ), i.e, any sequence q̃k admits a
subsequence (still denoted the same) such that there exists a
non-increasing sequence of sets Em ⊂ Ωδ with measures converging to
zero, such that q̃k is weakly convergent in L1,2((Ωδ\Em)× Ωδ) for any
m ≥ 1.

Theorem

In high constrast with local problem, basis pursuit nonlocal problem

inf
Q̄a

δ(f )
∥q̃∥L1,2(Ωδ×Ωδ),

admits solution
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Recovering of the local basis pursuit problem

Partial approximation result

inf
div (q)=f

∫
Ω

|q(x)| dx ≤ lim inf
δ↘0

[
inf

Q̄a
δ(f )

∥q̃∥L1,2(Ωδ×Ωδ)

]
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