CONNECTIVITY CONSTRAINTS: THE CONTINUOUS VERSION

Alberto Donoso Ernesto Aranda David Ruiz

Departamento de Matemáticas (UCLM)

Characterization of enclosed voids

Characterization of enclosed voids

Characterization of enclosed voids

There is no enclosed voids \iff "Void set" of extended domain is connected

$$\left\{ egin{array}{ll} \Delta\phi=\mu\phi & {
m in}\,\,\omega,\ rac{\partial\phi}{\partial n}=0 & {
m on}\,\,\partial\omega. \end{array}
ight.$$

 $\omega = \omega_1 \cup \omega_2$

Multiplicity of zero eigenvalue = Number of connected components

Densities in a reference domain Ω

Densities in a reference domain Ω

$$ho = arepsilon + (1 - arepsilon) \chi_{\omega}$$

Densities in a reference domain $\boldsymbol{\Omega}$

$$ho = arepsilon + (1 - arepsilon) \chi_{\omega}$$

$$\rho_n \longrightarrow \varepsilon + (1 - \varepsilon) \chi_\omega$$

$$(P_n) \quad \begin{cases} -\operatorname{div}(\rho_n \nabla \phi) = \lambda_n \rho_n \phi & \text{in } \Omega, \\ \frac{\partial \phi}{\partial n} = 0 & \text{on } \partial \Omega. \end{cases}$$

$$\rho_n \to \rho \Longrightarrow \lambda_n \longrightarrow \lambda$$

With of without weights

$$\begin{cases} -\operatorname{div}(\rho\nabla\phi) = \lambda\rho\phi & \text{in }\Omega,\\ \frac{\partial\phi}{\partial n} = 0 & \text{on }\partial\Omega. \end{cases}$$
$$\rho = \varepsilon + (1 - \varepsilon)\chi_{\omega}$$

With of without weights

$$\begin{cases} -\operatorname{div}(\rho\nabla\phi) = \lambda\rho\phi & \text{in }\Omega,\\ \frac{\partial\phi}{\partial n} = 0 & \text{on }\partial\Omega. \end{cases}$$
$$\rho = \varepsilon + (1 - \varepsilon)\chi_{\omega}$$

 $\omega = \omega_1 \cup \omega_2$

With of without weights

$$\begin{cases} -\operatorname{div}(\rho\nabla\phi) = \lambda\rho\phi & \text{in }\Omega,\\ \frac{\partial\phi}{\partial n} = 0 & \text{on }\partial\Omega. \end{cases}$$
$$\rho = \varepsilon + (1 - \varepsilon)\chi_{\omega}$$

 $\omega = \omega_1 \cup \omega_2$

$$\left\{ \begin{array}{ll} -\Delta\phi = \mu\phi & \text{in } \omega, \\ \frac{\partial\phi}{\partial n} = 0 & \text{on } \partial\omega. \end{array} \right.$$

Theorem: $\exists C > 0$ such that $\lambda_2 - \mu_2 < C\varepsilon$

Dirichlet boundary values without extended domain

$$\left\{ egin{array}{ll} -\operatorname{div}(
ho
abla\phi)=\lambda
ho\phi & {
m in}\,\,\Omega,\ \phi=0 & {
m on}\,\,\partial\Omega. \end{array}
ight.$$

$$ho = arepsilon + (1 - arepsilon) \chi_{\omega}$$

Dirichlet boundary values without extended domain

$$\left\{ egin{array}{ll} -\operatorname{div}(
ho
abla\phi)=\lambda
ho\phi & ext{in }\Omega,\ \phi=0 & ext{on }\partial\Omega. \end{array}
ight.$$

$$ho = arepsilon + (1 - arepsilon) \chi_{\omega}$$

Theorem: $\exists C > 0$ such that $\lambda_1 < C \varepsilon$

