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/Ome   
research group

a 



Avoiding enclosed voids



Avoiding enclosed voids



Avoiding enclosed voids



Avoiding enclosed voids



Characterization of enclosed voids



Characterization of enclosed voids



Characterization of enclosed voids

There is no enclosed voids ⇐⇒ “Void set” of extended domain is connected



Connectivity characterization

Neumann-Laplacian eigenvalue problem:{
∆ϕ = µϕ in ω,
∂ϕ
∂n = 0 on ∂ω.

ω1

ω2

ω = ω1 ∪ ω2

Multiplicity of zero eigenvalue = Number of connected components
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Ω

ρn −→ ε+ (1− ε)χω
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Dirichlet boundary values without extended domain
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