Alberto Donoso Ernesto Aranda David Ruiz

Departamento de Matemáticas (UCLM)

$$
\Delta
$$

Avoiding enclosed voids

Avoiding enclosed voids

Avoiding enclosed voids

Characterization of enclosed voids

Characterization of enclosed voids

Characterization of enclosed voids

There is no enclosed voids \Longleftrightarrow "Void set" of extended domain is connected

Connectivity characterization

Neumann-Laplacian eigenvalue problem:

$$
\begin{cases}\Delta \phi=\mu \phi & \text { in } \omega \\ \frac{\partial \phi}{\partial n}=0 & \text { on } \partial \omega\end{cases}
$$

$$
\omega=\omega_{1} \cup \omega_{2}
$$

Multiplicity of zero eigenvalue $=$ Number of connected components

Densities in a reference domain Ω

Densities in a reference domain Ω

Densities in a reference domain Ω

The weighted Laplacian

$$
\left(P_{n}\right)\left\{\begin{aligned}
-\operatorname{div}\left(\rho_{n} \nabla \phi\right)=\lambda_{n} \rho_{n} \phi & \text { in } \Omega, \\
\frac{\partial \phi}{\partial n}=0 & \text { on } \partial \Omega .
\end{aligned}\right.
$$

The weighted Laplacian

$$
\begin{gathered}
\left(P_{n}\right)\left\{\begin{aligned}
-\operatorname{div}\left(\rho_{n} \nabla \phi\right)=\lambda_{n} \rho_{n} \phi & \text { in } \Omega, \\
\frac{\partial \phi}{\partial n}=0 & \text { on } \partial \Omega .
\end{aligned}\right. \\
\downarrow \\
(P) \quad\left\{\begin{aligned}
-\operatorname{div}(\rho \nabla \phi)=\lambda \rho \phi & \text { in } \Omega, \\
\frac{\partial \phi}{\partial n}=0 & \text { on } \partial \Omega .
\end{aligned}\right.
\end{gathered}
$$

The weighted Laplacian

$$
\begin{gathered}
\left(P_{n}\right)\left\{\begin{array}{r}
-\operatorname{div}\left(\rho_{n} \nabla \phi\right)=\lambda_{n} \rho_{n} \phi \\
\frac{\partial \phi}{\partial n}=0
\end{array} \text { in } \Omega,\right. \\
\downarrow \\
(P)\left\{\begin{aligned}
-\operatorname{div}(\rho \nabla \phi)=\lambda \rho \phi & \text { in } \Omega, \\
\frac{\partial \phi}{\partial n}=0 & \text { on } \partial \Omega .
\end{aligned}\right.
\end{gathered}
$$

$$
\rho_{n} \rightarrow \rho \Longrightarrow \lambda_{n} \longrightarrow \lambda
$$

$$
\left\{\begin{aligned}
-\operatorname{div}(\rho \nabla \phi)=\lambda \rho \phi & \text { in } \Omega, \\
\frac{\partial \phi}{\partial n}=0 & \text { on } \partial \Omega . \\
\rho=\varepsilon+(1-\varepsilon) \chi_{\omega} &
\end{aligned}\right.
$$

$$
\left\{\begin{array}{rl}
-\operatorname{div}(\rho \nabla \phi)=\lambda \rho \phi & \text { in } \Omega, \\
\frac{\partial \phi}{\partial n}=0 & \text { on } \partial \Omega
\end{array},\right.
$$

$$
\left\{\begin{aligned}
-\Delta \phi=\mu \phi & \text { in } \omega \\
\frac{\partial \phi}{\partial n}=0 & \text { on } \partial \omega
\end{aligned}\right.
$$

$$
\omega=\omega_{1} \cup \omega_{2}
$$

$$
\left\{\begin{aligned}
-\operatorname{div}(\rho \nabla \phi)=\lambda \rho \phi & \text { in } \Omega, \\
\frac{\partial \phi}{\partial n}=0 & \text { on } \partial \Omega . \\
\rho=\varepsilon+(1-\varepsilon) \chi_{\omega} &
\end{aligned}\right.
$$

$$
\left\{\begin{aligned}
-\Delta \phi=\mu \phi & \text { in } \omega \\
\frac{\partial \phi}{\partial n}=0 & \text { on } \partial \omega .
\end{aligned}\right.
$$

Theorem: $\exists C>0$ such that $\lambda_{2}-\mu_{2}<C \varepsilon$

Dirichlet boundary values without extended domain

$$
\begin{gathered}
\left\{\begin{aligned}
&-\operatorname{div}(\rho \nabla \phi)=\lambda \rho \phi \text { in } \Omega, \\
& \phi=0 \text { on } \partial \Omega . \\
& \rho=\varepsilon+(1-\varepsilon) \chi_{\omega}
\end{aligned}\right.
\end{gathered}
$$

Dirichlet boundary values without extended domain

$$
\begin{gathered}
\left\{\begin{aligned}
&-\operatorname{div}(\rho \nabla \phi)=\lambda \rho \phi \text { in } \Omega, \\
& \phi=0 \text { on } \partial \Omega . \\
& \rho=\varepsilon+(1-\varepsilon) \chi_{\omega}
\end{aligned}\right.
\end{gathered}
$$

Theorem: $\exists C>0$ such that $\lambda_{1}<C \varepsilon$

Numerical results with different boundary conditions

Numerical results with different boundary conditions

Numerical results with different boundary conditions

