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Abstract. For the latest ten years, many authors have focused their
investigations in wireless sensor networks. Different researching issues
have been extensively developed: power consumption, MAC protocols,
self-organizing network algorithms, data-aggregation schemes, routing
protocols, QoS management, etc. Due to the constraints on data pro-
cessing and power consumption, the use of artificial intelligence has been
historically discarded. However, in some special scenarios the features of
neural networks are appropriate to develop complex tasks such as path
discovery. In this paper, we explore the performance of two very well
known routing paradigms, directed diffusion and Energy-Aware Routing,
and our routing algorithm, named SIR, which has the novelty of being
based on the introduction of neural networks in every sensor node. Ex-
tensive simulations over our wireless sensor network simulator, OLIMPO,
have been carried out to study the efficiency of the introduction of neural
networks. A comparison of the results obtained with every routing pro-
tocol is analyzed. This paper attempts to encourage the use of artificial
intelligence techniques in wireless sensor nodes.

Keywords: Wireless sensor networks (WSN); Ad hoc networks, Quality of
service (QoS); Artificial neural networks (ANN); Routing; Self-Organizing Map
(SOM), ubiquitous computing.

1 Introduction

In recent years technological advances have made the manufacturing of small
and low-cost sensors economically and technically possible. These sensors can
be used to measure ambient conditions in the environment surrounding them.
Typically, wireless sensor networks (WSNs) contain hundreds or thousands of
those sensors nodes. Due to the sensor features (low-power consumption, low
radio range, low memory, low processing capacity, and low cost), self-organizing
network is the best suitable network architecture to support applications in
such a scenario. Goals like efficient energy management [1], high reliability and
availability, communication security, and robustness have become very important



issues to be considered. this is one of the many reasons why we can not neglect
the study of the collision effects and the noise influence.

Many research centers worldwide (specially in Europe and USA) have focused
their investigations on this kind of networks. Ian Akyldiz et al. [2] and Holger
Karl et al. [3] have made great effort to describe the state-of-the-art of this
subject.

Our research group, Computer Science for Industrial Applications, from the
University of Seville, is working on the development of protocols and system
architectures on Wireless Sensor Networks to support Supervisory Control and
Data Acquisition (SCADA) applications. We present in this paper a new routing
algorithm which introduces artificial intelligence (AI) techniques to measure the
QoS supported by the network.

This paper is organized as follows. In section 2, we relate the main routing
features we should consider in a network communication system. A description
of the defined network topology is given. Section 3 introduces the use of neural
networks in sensors for determining the quality of neighborhood links, giving a
QoS model for routing protocols. The performance of the use of this technique
in existing routing protocols for sensor networks is evaluated by simulation in
section 4. Concluding remarks and future works are given on section 5.

2 Designing the network topology

The WSN architecture as a whole has to take into account different aspects, such
as the protocol architecture; Quality-of-Service, dependability, redundancy and
imprecision in sensor readings; addressing structures, scalability and energy re-
quirements; geographic and data-centric addressing structures; aggregating data
techniques; integration of WSNs into larger networks, bridging different commu-
nication protocols; etc.

The protocol stack proposed by our research group is based on the OSI
model. In the lower layers we can use the well known IEEE wireless sensor
network standard 802.15.4 or our own protocol Arachne [4]. In the upper layers
there are other protocols, such as transmission clock to base station, ping, data
aggregation, and our SIR protocol.

If an application is able to perform at an acceptable level using data from a
number of different sensors set, like a typical SCADA application [5], we would
schedule the sets so as to maximize the sum of the time that all sensor sets
are used. Acknowledging the impact that route selection will have on network
lifetime, we would like to determine route selection in conjunction with the sensor
schedule. In general, the routes should be chosen so that nodes that are more
critical for use as sensors are routed around as often as possible. Many authors
have studied this problem [6],[7]. In this section, we model this scenario in which
sensors are working, and in section 3 we formalize the routing algorithm, SIR,
proposed to solve this problem.

Due to the desire to cover a large area, a communication strategy is needed.
there are many studies that approach the problem of high connectivity in wire-



less ad hoc networks [8], [9], [10], [11]. In our research we consider a random
distribution of sensors, as depicted in figure 1.
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Fig. 1. Event transmission from a source to a sink.

In this scenario, every node has a radio transmitter power and a radio re-
ceiver sensibility, which defines an average radio range. There are several net-
work routing protocols proposed for wireless networks that can be examined
in the context of wireless sensor networks. Two basic paradigms are minimum-
transmission-energy multi-hop routing protocol and direct communication. Us-
ing a direct communication protocol, each sensor sends its data directly to the
base station. If the base station is far away from the nodes, direct communi-
cation will require a large amount of transmitting power from each node. This
quickly drains the battery of the nodes and reduces the network lifetime. Using
minimum-transmission-energy routing protocol, nodes route data to the base
station through intermediate nodes. Thus nodes act as routers for others nodes’
data. The problem is how to elect intermediate nodes, in which the final objective
es to minimize the global energy consumption.

In general, routing in WSNs can be divided into flat-based routing , hierarchical-
base routing, and location-based routing. In this paper we study networks where
all nodes are supposed to be assigned equal roles or functionalities. In this sense,
flat-based routing is best suited for this kind of networks.

Among all the existing flat routing protocols, we have chosen directed diffu-

sion and Energy-Aware Routing (EAR) to evaluate the influence of the use of
AI techniques.

In directed diffusion [12], sensors measure events and create gradients of
information in their respective neighborhoods. The base station request data by
broadcasting interests. Each sensor that receives the interest sets up a gradient
toward the sensor nodes from which it has received the interest. This process
continues until gradients are set up from the sources back to the base station.

EAR [13] is similar to directed diffusion. Nevertheless it differs in the sense
that it maintains a set of paths instead of maintaining or enforcing one optimal



path at higher rates. These paths are maintained and chosen by means of a
certain probability. The value of this probability depends on how low the energy
consumption that each path can achieve is. By having paths chosen at different
times, the energy of any single path will not deplete quickly.

3 Introducing neurons in sensor nodes

The necessity of connectivity among nodes introduces the routing problem. In
a WSN we need a multi-hop scheme to travel from a source to a destiny. The
paths the packets have to follow can be established based on a specific criterion.
Possible criteria can be minimum number of hops, minimum latency, maximum
data rate, minimum error rate, etc. For example, imagine that all the nodes
desire to have a path to route data to the base station1. In this situation, the
problem is solved by a technique called network backbone formation.

Our approach to enhance this solution is based on the introduction of artificial
intelligence techniques in the WSNs: expert systems, artificial neural networks,
fuzzy logic and genetic algorithms. Due to the processing constraints we have
to consider in a sensor node, the best suited, among all these techniques, is the
self-organizing-map (SOM ). This is kind of artificial neural network based on
the self organization concept. A description of our SOM approach is detailed in
section 3.3.

3.1 Network backbone formation

This problem has been studied in mathematics as a particular discipline called
Graph Theory, which studies the properties of graphs.

A directed graph G is an ordered pair G := (V,A) with V , a set of vertices
or nodes, vi, and A, a set of ordered pairs of vertices, called directed edges, arcs,
or arrows.

An edge vxy = (x, y) is considered to be directed from x to y; where y is
called the head and x is called the tail of the edge.

In 1959, E. Dijkstra proposed an algorithm that solves the single-source short-
est path problem for a directed graph with nonnegative edge weights.

In our wireless sensor network we assume that all the links are symmetrical,
in the sense that if a node A can reach a node B, then the node B can reach the
node A. With these kinds of links, we can model our network as an undirected

graph G := (V,E).
We propose a modification on Dijkstra’s algorithm to form the network back-

bone, with the minimum cost paths from the base station or root, r, to every
node in the network. We have named this algorithm Sensor Intelligence Routing,
SIR [14]. In Dijkstra’s algorithm the graph has arrows and in our modification
the graph has edges. Every edge between nodes vi and vj has a weight, wij ,

1 In WSN, we often consider two kind of nodes, base stations and sensor nodes. There
is usually only one base station.



and it is easy to prove that wij = wji. The distance from the base station
to a node vi is named d(vi). The set of nodes which are successors or pre-
decessors of a node vi is denoted by Γ (vi), and can be defined in this way:
Γ (vi) = {vj ∈ V | (vi, vj) ∈ E}. If we denote a path from the root node to a
node vk by p, we can defined Γp(vj), if vj ∈ p, as the subset of nodes which are
predecessors or successors of node vj .

We also assume that V = {r, vi}i and that there is a subset of V , T , defined
as T := V −{r}. Furthermore, we can denote T as the complementary set of T ,
T = {r}.

With this terminology, our algorithm can be described as follows:
Step 1: Set up phase:

d(r) = 0

d(vi) =

{

wri if vi ∈ Γ (r)
∞ if vi /∈ Γ (r)

}

Γp(vi) =

{

r if vi ∈ Γ (r)
0 if vi /∈ Γ (r)

}

Step 2: Find a vj ∈ T such as d(vj) = min{d(vi)|vi ∈ T}
Do T = T − {vj}

Step 3: ∀ vi ∈ T ∩ Γ (vj) calculate ti := d(vj) + wji

If ti < d(vi) do d(vi) = ti

Step 4: If |T | > 0 go to step 2
If |T | = 0 stop

3.2 Quality of Service in Wireless Sensor Networks

Once the backbone formation algorithm is designed, a way of measuring the edge
weight parameter, wij , must be defined. On a first approach we can assume that
wij can be modelled with the number of hops. According to this assumption,
wij = 1 ∀ i, j ∈ R, i 6= j. However, imagine that we have another scenario in
which the node vj is located in a noisy environment. The collisions over vj can
introduce link failures increasing power consumption and decreasing reliability
in this area. In this case, the optimal path from node vk to the root node can
be p′, instead of p. It is necessary to modify wij to solve this problem. The
evaluation of the QoS in a specific area can be used to modify this parameter.

The traditional view of QoS in communication networks is concerned with
end-to-end delay, packet loss, delay variation and throughput. Numerous au-
thors have proposed architectures and integrated frameworks to achieve guaran-
teed levels of network performance [15], [16]. However, other performance-related
features, such as network reliability, availability, communication security and ro-
bustness are often neglected in QoS research. The definition of QoS requires some
extensions if we want to use it as a criterion to support the goal of controlling
the network. This way, sensors participate equally in the network, conserving
energy and maintaining the required application performance.

What is sensor network QoS? Ranjit Iyer and Leonard Kleinrock proposed
in [17] a definition of sensor network QoS based on sensor network resolution.
They define resolution as the optimum number of sensors sending information
toward information-collecting sinks, typically base stations. James Kay and Jeff
Frolik defined sensor network QoS in terms of how many of the deployed sensors
are active [18]. The same idea is discussed in [19] by Mark Perillo et al., and in
[20] by Veselin Rakocevic et al.



We use a QoS definition based on three types of QoS parameters: timeliness,
precision and accuracy. Due to the distributed feature of sensor networks, our
approach measures the QoS level in a spread way, instead of an end-to-end
paradigm. Each node tests every neighbor link quality with the transmissions
of a specific packet named ping. With these transmissions every node obtains
mean values of latency, error rate, duty cycle and throughput. These are the four
metrics we have defined to measure the related QoS parameters.

Once a node has tested a neighbor link QoS, it calculates the distance to the
root using the obtained QoS value. The expression 1 represents the way a node
vi calculates the distance to the root through node vj , where qos is a variable
whose value is obtained as an output of a neural network. This tool is described
in section 3.3.

d(vi) = d(vj) · qos (1)

3.3 SOM: Self Organizing Map

One of the most powerful mechanism developed in AI is the Self-Organizing
Map (SOM) model [21], created by Teuvo Kohonen in 1982, at the University
of Helsinky, Finland.

SOM is an unsupervised neural network. The neurons are organized in an
unidirectional two layers architecture (figure 2). The first one is the input or

Neuron (i,j)

Synapsis
w'ijk

w'ij

(i,j)

x(t)=[latency(t),throughput(t),error-rate(t),duty-cycle(t)]

Sensorial Layer
(input)

Map
(output)

Q(g)

Fig. 2. SOM architecture.

sensorial layer, formed by m neurons, one per each input variable. These neurons
work as buffers distributing the information sensed in the input space. The
input is formed by stochastic samples x(t) ∈ R

m from the sensorial space. The



second layer is usually formed by a rectangular grid with nxxn′y neurons2. Each
neuron (i, j) is represented by an m-dimensional weight or reference vector called
synapsis, w

′

ij = [w′
ij1, w

′
ij2, . . . , w

′
ijm], where m is the dimension of the input

vector x(t). The neurons in the output layer -also known as the competitive
Kohonen layer- are fully connected to the neurons in the input layer, meaning
that every neuron in the input layer is linked to every neuron in the Kohonen
layer. In SOM we can distinguish two phases:

Learning phase: In this phase, neurons from the second layer compete for
the privilege of learning among each other, while the correct answer(s) is
(are) not known. This implies that for a certain input vector, there is only
one neuron that gets activated. To determine which neuron is going to be
activated, the input vector is compared with the vector that is stored in
each of the neurons, the so-called synaptic-weight-vectors. Only the neuron
whose vector most closely resembles the current input vector dominates,
d(w′

g
,x) = minij {d(w′

ij ,x)}. Consequently, only the winning neuron is
allowed to learn; and its synaptic-weight-vector is updated.
This phase is executed in a central data processing unit (e.g. offline process-

ing).
Execution phase: The weights are declared fixed.

First, every neuron (i, j) calculates the similarity between the input vector
x(t), {xk | 1 ≤ k ≤ m} and its own synaptic-weight-vector w

′

ij . This func-
tion of similarity is based on a predefined similarity criterion.
Next, it is declared a winning neuron, g = (g1, g2), with a synaptic-weight-
vector, w

′

g
, similar to the input x. This phase is implemented in every node

as a C++ function (table 1).
SOM gives an output denoted by qos. This value is returned by a function Θ
defined by the SOM user, according to its aims. Θ depends on the winning
neuron: qos = Θ (g). In section 4.3 we define this function.
This phase is executed in every node (e.g. online processing).

4 Performance evaluation by simulation

Due to the desire to evaluate the SIR performance, we have created two simu-
lation experiments running on our wireless sensor network simulator OLIMPO
[4]. Every node in OLIMPO implements a neural network (SOM) running the
execution phase detailed in table 1 (online processing).

4.1 Radio channel analytical performance evaluation

In order to accurately model the sensor networks, the wireless channel is equipped
with certain propagation models which allows sensors to determine the strength

2 Although this architecture is the most customary in SOM, sometimes it is used
layers with only one dimension (linear neuron chain) or with three dimensions (par-
allelepiped) [21].



Table 1. Implementation of the winning neuron election in C++.

int WinnerNeuron(float *x)
{

float d2 = 0; % distance ˆ 2
float d[12]; % distance between input and every neuron weight
for (int m = 0; m < 12; m++)

d[m] = 0;
for (int i=0; i < 12; i++)
{

d2 = 0;
for (int j=0; j < 4; j++)
{

float aux = IW[i][j]-x[j]; % IW[i][j] is the input weights matrix,
%obtained in the learning phase

d2 += aux*aux;
}
d[i] = sqrt(d2);

}
float aux = d[0];
int neuron = 1;
for (int n=0; n<12; n++)
{

if (aux>d[n])
{

aux = d[n];
neuron = n+1;

}
}
return neuron;

}

of the incoming signal. These models are integrated in the channel object of the
simulation tool.

For the purpose of this research, the values shown in table 2 have been
considered.

Table 2. Values of radio communication parameters.

Resonating frequency†: 869.85 MHz Communication bandwidth† B: 0.5 %

Number of radio channels†: 1 Antenna gain‡: Gr = 1, Gt = 1
Radio transmitter power: Pt = 5mW Radio receiver sensibility: Ps = −101dB
System loss L = 1 Path loss exponent: n = 2
Modulation: FSK Transmission rate, R: 4800 b/s
Input noise power density Nin: -174 dBm/Hz Noise Figure (NF )dB : 10 dB

†Based on licensed free standard ETSI EN 301 291
‡Antennas are assumed to be omnidirectional.

In this scenario, two sensor nodes attempting to establish a radio communica-
tion link can be 218 meters separated3. In our simulations we have assumed that
the distance between every pair of sensor nodes is set up randomly, as shown in
figure 1. We have focused our simulation on a wireless sensor network composed
by 250 nodes.

4.2 Noise influence

Noise influence over a node has been modelled as an Additive Gaussian White
Noise, (AWGN), originating at the source resistance feeding the receiver. Ac-

3 According to free space propagation model [22]



cording to the radio communication parameters detailed in table 2 we can de-
termine the signal-to-noise ratio at the detector input with the equation 2 [22],
S/Nd = 26.7 dB. This signal-to-noise ratio can be expressed as an associated
BER (Bit Error Rate)4. If S/Nd is less than 26.7 dB the receiver can’t detect any
data on air. An increase of the noise can degrade the BER. In another way, due to
the relation between Eb/No and the transmission rate (R), Eb/No = (S/R)/No,
an increase of R can also degrade the BER.

(Ps)dBm = (Nin)dB + (NF )dB + (10 log B)dB + (S/N)d (2)

To evaluate the effect of noise we have defined a node state declared as failure.
When the BER goes down below a required value (typically 10−3) we assume
this node has gone to a failure state. We measure this metric as a percentage of
the total lifetime of a node. In section 4 we describe two experiments according
to different percentages of node failures.

4.3 SOM creation

Our SOM has a first layer formed by four input neurons, corresponding with
every metric defined in section 3.2 (latency, throughput, error rate and duty
cycle); and a second layer formed by twelve output neurons forming a 3x4 matrix.

Next, we detail our SOM implementation process.

Learning phase: In order to organize the neurons in a two dimensional map,
we need a set of input samples x(t)=[latency(t), throughput(t), error-rate(t),
duty-cycle(t)]. This samples should consider all the QoS environments in
which a communication link between a pair of sensor nodes can work. In this
sense, we have to simulate special ubiquitous computing environments. These
scenarios can be implemented by different noise and data traffic simulations.
In our research we create several WSNs over OLIMPO with 250 nodes and
different levels of data traffic. The procedure to measure every QoS link
between two neighbors is detailed as follows: every pair of nodes (eg. vi

and vj) is exposed to a level of noise. This noise is introduced increasing the
noise power density No in the radio channel in the proximity of a determined
node. Hence, the signal-to-noise ratio at the detector input of this selected
node decreases and consequently the BER related with its links with every
neighbor gets worse.
In order to measure the QoS metrics related with every No, we run a ping
application between a selected pair of nodes (eg. vi and vj). Node vi sends
periodically a ping message to node vj . Because the ping requires acknowl-
edgment (ACK), the way node vi receives this ACK determines a specific
QoS environment, expressed on the four metrics elected: latency (seconds),

4 The minimum probability of bit error Pe,min, in a FSK system with an adaptative
filter at the radio receiver, is typically expressed in the literature with the expression:

Pe,min = 1
2
erfc

(√

Eb

No

)

, where Eb

No
= (S/R)

No
= S

N
.



throughput (bits/sec), error rate (%) and duty cycle(%). For example, for
a noise power density of No = −80 dBm/Hz and a distance of separation5

between node vi and node vj of 60 meters the QoS measured in node vi and
expressed in the metrics defined is [0.58, 1440, 10.95, 2.50]. This process is
repeated 100 times with different No and d. This way, we obtain a set of
samples which characterize every QoS scenario.
With this information, we construct a self-organizing map using a high per-
formance neural network tool, such as MATLABr, on a Personal Computer.
This process is called training, and uses the learning algorithm detailed in
section 3.3. Because the training is not implemented by the wireless sensor
network, we have called this process offline processing.
Once we have ordered the neurons on the Kohonen layer, we identify each
one of the set of 100 input samples with an output layer neuron. According
to this procedure, the set of 100 input samples is distributed over the SOM.
The following phase is considered as the most difficult one. The samples
allocated in the SOM form groups, in such a way that all the samples in a
group have similar characteristics (latency, throughput, error rate and duty
cycle). This way, we obtain a map formed by clusters, where every cluster
corresponds with a specific QoS and is assigned a neuron of the output
layer. Furthermore, a synaptic-weight matrix w

′

ij = [w′
ij1, w

′
ij2, . . . , w

′
ij4]

is formed, where every synapsis identifies a connection between input and
output layer.
In order to quantify the QoS level, we study the features of every cluster and,
according to the QoS obtained in the samples allocated in the cluster, we as-
sign a value between 0 and 10. As a consequence, e define an output function
Θ(i, j), i ∈ [1, 3], j ∈ [1, 4] with twelve values corresponding with every neu-
ron (i, j), i ∈ [1, 3], j ∈ [1, 4]. The highest assignment (10) must correspond
to that scenario in which the link measured has the worst QoS predicted.
On the other hand, the lowest assignment (0) corresponds to that scenario
in which the link measured has the best QoS predicted. The assignment is
supervised by an engineer during the offline processing.

Execution phase: As a consequence of the learning phase, we have declared
an output function, that has to be run in every sensor node. This procedure
is named the wining neuron election algorithm.
In the execution phase, we create a WSN with 250 nodes. Every sensor
node measures the QoS periodically running a ping application with every
neighbor, which determines an input sample. After a node has collected a set
of input samples, it runs the wining neuron election algorithm. For example,
if a specific input sample is quite similar than the synaptic-weight-vector
of neuron (2,2), this neuron will be activated. After the winning neuron is
elected, the node uses the output function Θ to assign a QoS estimation, qos.

5 Considering the free space propagation model, the power transmitted from the source
decreases according the expression Pr = Pt

[

λ
4πdL

]2
GtGr, where Pr, is the radio

power received at a distance d from the transmitter; Pt is the transmitter signal
power, Gt and Gr are the antenna gains of the transmitter and the receiver respec-
tively; L (L ≤ 1) is the system loss and λ is the electromagnetic wavelength.



Finally, this value is employed to modify the distance to the root (eq. 1).
Because the execution phase is implemented by the wireless sensor network,
we have called this process online processing.

4.4 Evaluating SIR performance

Our SIR algorithm has been evaluated by the realization of three experiments
detailed as follows.

Experiment #1: No node failure. The purpose of this experiment is to eval-
uate the introduction of AI techniques in a scenario were there is no node
failure. This means that no node has gone to a failure state because of noise,
collision or battery fail influence.

To simulate this scenario, a wireless sensor network with 250 nodes is created
on our simulator OLIMPO. Node # 0 is declare as a sink and node # 22 is
declared as a source. At a specific time, an event (eg. an alarm) is provoked
in the source. Consequently, the problem now is how to route the event from
the specified source to the declared sink.

As detailed in section 2 we solve this problem with three different routing
paradigms: SIR, directed diffusion and EAR. We choose two metrics to an-
alyze the performance of SIR and to compare it to others schemes. These
metrics are:

– Average dissipated energy. This metric computes the average work done
by a node a in delivering useful tracking information to the sinks. This
metric also indicates the overall lifetime of sensor nodes.

According to the first energy consumption order model proposed by
Wendi Rabiner Heinzelman in the LEACH protocol [23], we can as-
sume the radio dissipates Eelec = 50 nJ/bit to run the transmitter or
receiver or receiver circuitry, and εamp = 100 pJ/bit/m2 for the transmit
amplifier to achieve an acceptable Eb

No
(figure 3). This way, to transmit

Transmit

Electronics
Tx Amplifier

Receive

Electronics

Eelec· k

k bit packet

ε
amp· k ·  d2 Eelec· k

d

k bit packet
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Fig. 3. Energy model.

a k -bit message a distance d using this radio model6, the radio expends:

ETx(k, d) = Eelec · k + εamp · k · d2 (3)

6 We assume the radio propagation model.



and to receive this message, the radio expends:

ERx(k) = Eelec · k (4)

We assume that the radio channel is symmetric, and that our simulation
is event-driven, that is, sensors only transmit data if some event occurs
in the environment. Due to transmission distance from a sensor node
to the base station is large on a global scale, the transmission energy is
much more higher than the received energy. In this network topology, as
detailed in section 2, the most energy-efficient protocol is the minimum-
transmission-energy.

– Average Delay. This metric measures the average one-way latency ob-
served between transmitting an event and receiving it at each sink.

We study these metrics as a function of sensor network size. The results are
shown in figure 4.
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Fig. 4. Average latency and average dissipated energy in a scenario with no simulta-
neous node failure.

Experiment #2: 20 % simultaneous node failures. The purpose of this
experiment is to evaluate the introduction of AI techniques in a scenario
where there is a 20 % of simultaneous node failures. This means that at any
instant, 20 % of the nodes in the network are unusable because of noise,
collision or battery failure influence.
To simulate these situations we create a WSN with 250 nodes. Amongst all
of them, we select 20 % of the nodes (50) to introduce one of the following
effects:
– S/N ratio degradation. Due to battery energy loss, the radio transmit-

ter power decays. Consequently, the S/N ratio in its neighbors radio
receivers is degraded, causing no detections with a certain probability,
P . In this situation, we can assume that the node affected by the lack of
energy is prone to failure with probability P .



– In many actual occasions, sensor nodes are exposed to high level of noise,
caused by inductive motors. Furthermore, the radio frequency band7 is
shared with other applications that can interfere with our WSN.

In these scenario we analyze the problem studied described in experiment
#1 with the three paradigms related. The results are shown in figure 6.
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Fig. 5. Average latency and average dissipated energy in a scenario with 20 % simul-
taneous node failures.

Experiment #3: 40 % simultaneous node failures. This experiment sim-
ulates a scenario with a 40 % of simultaneous node failures.

50 100 150 200 250
0

5

10

15

20

25

30

35

40

Network size (# nodes)

A
ve

ra
ge

 d
el

ay
 (s

ec
)

Directed diffusion

EAR

SIR

50 100 150 200 250
0.01

0.015

0.02

0.025

0.03

0.035

0.04

Network size (# nodes)

A
ve

ra
ge

 d
is

si
pa

te
d 

en
er

gy
 (J

/n
od

e/
R

ec
ei

ve
d 

da
ta

 p
ac

ke
t)

Directed diffusion

EAR

SIR

Fig. 6. Average latency and average dissipated energy in a scenario with 40 % simul-
taneous node failures.

7 The use of this band is regulated in Europe by the European Conference of Postal
and Telecommunications Administrations (CEPT) and the European Telecommuni-
cations Standards Institute (ETSI) by the technical standard EN 300 220-1.



5 Conclusion and future works

After comparing the results obtained with every routing paradigm, we can con-
clude that the differences are important when there is a significant percentage of
node failures. Thus, while the average delay goes up with the number of sensors
in directed diffusion and EAR, it maintains a low level of delay in SIR. The
cause of this effect can be found in the fact that while directed diffusion and
EAR elect the intermediate nodes using rules based on the propagation of the
interest, SIR elects the intermediate nodes running an AI-algorithm. Thus, the
path created by SIR avoids the election of intermediate nodes that are prone to
failure because of battery draining, interference or noisy environment. Further-
more, the average dissipated energy is less in SIR when the number of nodes in
the sensor goes up. We again find the reason in the effect of the election of the
intermediate nodes in SIR. The use of AI in every sensor dynamically varies the
assignment of this node role, distributing the energy consumption through the
network. When the number of nodes is increased, the number of possible paths is
increased too. Furthermore, when the percentage of node failures goes up (from
20 % to 40 %) SIR becomes the best suited protocol for these kinds of scenarios.

Although the results obtained with the inclusion of AI techniques in WSN
are important and encouraging, we must take in account some relevant remarks:

– What is the price WSNs have to pay for introducing AI techniques? Al-
though the computational payment for implementing the neural network in
a sensor is inapreciable, as detailed in table 1, the tradeoff associated with
this implementation is the increase of the overhead. However, in typical
SCADA applications, WSNs don’t have to attend high level of data traffic.
Consequently, the network can support an increase on the overhead.

– Nodes failures can be provoked by the following reasons:

• Sensor battery draining.

• Noise originating at industrial environments.

• Interference in the sensor surroundings.

These phenomena provoke an influence on the average dissipated energy.

SIR has been presented in this paper as an innovative QoS-driven routing
algorithm based on artificial intelligence. This routing protocol can be used
over wireless sensor networks standard protocols, such as IEEE 802.15.4 and
Bluetoothr, and over other well known protocols such as Arachne, SMACS,
PicoRadio, etc.

The inclusion of AI techniques (e.g. neural networks) in wireless sensor net-
works has been proved to be an useful tool to improve network performances.

The great effort made to implement a SOM algorithm inside a sensor node
means that the use of artificial intelligence techniques can improve the WSN per-
formance. According to this idea, we are working on the design of new protocols
using these kinds of tools.
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E. Çayircy, Ş. Baydere, and P. Havinga, editors, Proceedings of the Second Eu-

ropen Workshop on Wireless Sensor Networks, pages 176–187, Istanbul, Turkey,
February 2005. IEEE, IEEE Press.

11. S. Saginbekov and I. Korpeoglu. An energy efficient scatternet formation algorithm
for bluetooth-based sensor networks. In E. Çayircy, Ş. Baydere, and P. Havinga,
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