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1. Introduction. The chemotaxis phenomenon is understood as the directed
movement of living organisms in response to chemical gradients. Keller and Segel [19]
proposed a mathematical model that describes the chemotactic aggregation of cellular
slime molds. These molds move preferentially toward relatively high concentrations
of a chemical substance secreted by the amoebae themselves. Such a mechanism
is called chemo-attraction with production. Conversely, when the regions of high
chemical concentration generate a repulsive effect on the organisms, the phenomenon
is called chemo-repulsion.

Bilinear control problems are a special class of nonlinear control problems in which
a nonlinear term is constructed by multiplication of the control and state variables.
In fact, the control acts as the coefficient of a reaction term depending linearly on the
state. In this work we study an optimal control problem subject to a chemo-repulsion
system with a linear production term and in which a bilinear control acts injecting
or extracting a chemical substance on a subdomain of control \Omega c \subset \Omega . Specifically,
let \Omega \subset \BbbR 3 be a bounded domain with boundary \partial \Omega of class C2,1 and (0, T ) a time
interval, with 0 < T < +\infty . Then a control problem is studied which is related to
the system in the time-space domain Q := (0, T )\times \Omega ,

(1)

\biggl\{ 
\partial tu - \Delta u= \nabla \cdot (u\nabla v),

\partial tv  - \Delta v + v = u+ f v 1\Omega c
,

with initial conditions

(2) u(0, \cdot ) = u0 \geq 0, v(0, \cdot ) = v0 \geq 0 in \Omega ,
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and nonflux boundary conditions

(3)
\partial u

\partial n
= 0,

\partial v

\partial n
= 0 on (0, T )\times \partial \Omega ,

where n denotes the outward unit normal vector to \partial \Omega . In (1), the unknowns are
the cell density u(t, x) \geq 0 and chemical concentration v(t, x) \geq 0. The function
f = f(t, x) denotes a bilinear control acting in the chemical equation. It is observed
that, in the subdomains of \Omega c where f \geq 0, such a control acts as a proliferation
coefficient of the chemical substance, and conversely, where f \leq 0, the control acts as
a degradation coefficient of the chemical substance. In particular, with this choice of
the bilinear control, the solution (u, v) of system (1)--(3) always remains nonnegative.
By considering a distributed control with a negative sign, the positivity of v could
not be guaranteed.

System (1)--(3) without control (i.e., f \equiv 0) has been studied in [11] and [33].
In [11], the authors proved the global existence and uniqueness of smooth classical
solutions in 2D domains and global existence of weak solutions in dimensions 3 and
4. In [33], on a bounded convex domain \Omega \subset \BbbR n (n \geq 3), it is proved that a modified
system of (1)--(3), changing the chemotactic term \nabla \cdot (u\nabla v) by \nabla \cdot (g(u)\nabla v) with an
adequate density-dependent chemotactic function g(u), has a unique global-in-time
classical solution. This result is not applicable to problem (1) (even for f = 0) because
g(u) = u does not satisfy the hypothesis imposed in [33]. Both [11] and [33] (and
many others studying chemotaxis models) are based in the abstract theory of classical
solutions for quasi-linear parabolic systems (see, for instance, [3]) by applying the
existence and uniqueness of local-in-time classical solutions and extensibility criteria of
these classical solutions. In the case treated in this work, such a theory is not directly
applicable due to the influence of the bilinear control term because no regularity is
required for the derivatives of the control.

There is an extensive literature devoted to the study of control problems with
PDEs; see, for instance, [2, 7, 8, 18, 20, 22, 25, 26, 32, 37] and references therein. In
all previous works, the control is of distributed or boundary type. As far as we know,
the literature related to optimal control problems with PDEs and bilinear control is
scarce; see [5, 14, 17, 21, 36].

In the context of optimal control problems associated to chemotaxis models, the
literature is also scarce. In [14, 30], a 1D problem is studied. In [14], the authors
analyzed two problems for a chemoattractant model. The bilinear control acts on the
whole \Omega in the cells equation. The existence of optimal control is proved, and an
optimality system is derived. Also, a numerical scheme for the optimality system is
designed, and some numerical simulations are presented. In [30], a boundary control
problem for a chemotaxis reaction-diffusion system is studied. The control acts on
the boundary for the chemical substance, and the existence of optimal solution is
proved. A distributed optimal control problem for a 2D model of cancer invasion has
been studied in [12], proving the existence of an optimal solution and deriving an
optimality system. Rodr\'{\i}guez-Bellido, Rueda-G\'omez, and Villamizar-Roa [28] study
a distributive optimal control problem related to a 3D stationary chemotaxis model
coupled with the Navier--Stokes equations (chemotaxis-fluid system). The authors
prove the existence of an optimal solution and derive an optimality system using a
penalty method, taking into account that the relation control state is multivalued.
Ryu and Yagi [29] studied an extreme problem for a chemoattractant 2D model in
which the control variable is distributed in the chemical equation. They prove the
existence of optimal solutions and derive an optimality system, using the fact that
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the state is differentiable with respect to the control. Other studies related to control-
lability for the nonstationary Keller--Segel model and nonstationary chemotaxis-fluid
system can be consulted in [9] and [10], respectively.

In [17], an optimal bilinear control problem concerning strong solutions of system
(1)--(3) in 2D domains was studied, proving the existence and uniqueness of global
strong solutions and the existence of global optimal control. Moreover, using a La-
grange multiplier theorem, first-order optimality conditions are derived. Now, this
paper can be seen as a 3D version of [17]. Similarly to [17], the main objective now is
to prove the existence of global optimal solutions and to derive optimality conditions,
which will be now more complicated because the PDE system is considered in 3D
domains.

In fact, the regularity framework for system (1) in 2D and 3D problems is com-
pletely different. Note that, in 2D domains, the existence (and uniqueness) of a strong
solution has been established in [17]. However, the strong regularity in 3D domains
is not proved in general.

Therefore, in this case, two different types of solutions can be distinguished:
weak and strong. The existence of weak solutions can be obtained under minimal
assumptions (see Theorem 5). However, such a result is not sufficient to carry out the
study of the control problem due to the lack of regularity of weak solutions. In order
to overcome this problem, this paper introduces the regularity criterion u \in L20/7(Q)
that allows obtaining a (unique) global-in-time strong solution of (1)--(3) (see Theorem
7). As far as it is known, there are no results of global-in-time regularity of weak
solutions of system (1)--(3) in 3D domains. This is similar to what happens with the
Navier--Stokes equations (see [34]).

Consequently, here we deal with strong solutions of (1)--(3), which allows analyz-
ing the control problem. In fact, the existence of optimal control associated to strong
solutions will be proved, assuming the existence of controls such that the associated
strong solution of (1)--(3) exists. More concretely, it will be assumed that there exist
weak solutions (u, v, f) of (1)--(3) satisfying the regularity criterion u \in L20/7(Q). As
a matter of fact, this is true in the case of a control acting on the whole domain \Omega ,
that is, when \Omega c = \Omega , and strictly positive initial chemical concentration v0 \geq \alpha > 0
in \Omega ; see Remark 6 below.

Following the ideas of [7, 8], it is considered the L20/7(Q)-norm of the regularity
criterion in the objective functional in such a way that any weak solution of (1)--(3)
with a finite objective functional is also a strong solution.

This paper is organized as follows. In section 2, the notation has been fixed, the
functional spaces to be used have been introduced, and a regularity result for linear
parabolic-Neumann problems that will be used throughout this work is established.
In section 3, the existence of weak solutions of system (1)--(3) is proved through a
family of regularized problems (its existence is deduced in Appendix A). In section 4,
a regularity criterion under which weak solutions of (1)--(3) are also strong solutions is
established. Section 5 is dedicated to the study of a bilinear control problem related
to strong solutions of system (1)--(3), proving the existence of an optimal solution
and deriving the first-order optimality conditions based on a Lagrange multiplier
argument in Banach spaces. Finally, a regularity result for these Lagrange multipliers
is obtained.

2. Preliminaries. In this section, some notations will be introduced. The
Lebesgue space Lp(\Omega ), 1 \leq p \leq +\infty , with norm denoted by \| \cdot \| Lp will be used.
In particular, the L2-norm and its inner product will be denoted by \| \cdot \| and (\cdot , \cdot ),
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respectively. The usual Sobolev spaces Wm,p(\Omega ) = \{ u \in Lp(\Omega ) : \| \partial \alpha u\| Lp <
+\infty , \forall | \alpha | \leq m\} , with norm denoted by \| \cdot \| Wm,p , is considered. When p = 2, it
is established that Hm(\Omega ) := Wm,2(\Omega ), denoting the respective norm by \| \cdot \| Hm . The
space Wm,p

\bfn (\Omega ) = \{ u \in Wm,p(\Omega ) : \partial u
\partial \bfn = 0 on \partial \Omega \} (m > 1 + 1/p), and its norm

denoted by \| \cdot \| Wm,p
\bfn 

will also be used.
If X is a Banach space, Lp(X) indicates the space of valued functions in X defined

on the interval [0, T ] that are integrable in the Bochner sense, and its norm will be
denoted by \| \cdot \| Lp(X). In particular, when X is a Lebesgue space Lp(\Omega ) or a Sobolev
space Wm,q(\Omega ), Lp(X) will be denoted simply by Lp(Lq) or Lp(Wm,q), respectively.
For simplicity, one defines Lp(Q) := Lp(0, T ;Lp(\Omega )) if p \not = +\infty and its norm by
\| \cdot \| Lp(Q). In the case p = +\infty , L\infty (Q) means L\infty ((0, T ) \times \Omega ), and its norm, is
denoted by \| \cdot \| L\infty (Q). It is denoted by C([0, T ];X) the space of continuous functions
from [0, T ] into a Banach space X, whose norm is given by \| \cdot \| C(X). The topological
dual space of a Banach space X will be denoted by X \prime and the duality for a pair X
and X \prime by \langle \cdot , \cdot \rangle X\prime or simply by \langle \cdot , \cdot \rangle unless this leads to ambiguity. Moreover, the
letters C, K, C0, K0, C1, K1, . . . , denote positive constants, independent of the state
(u, v) and control f , but its value may change from line to line.

In order to study the existence of solution of system (1)--(3), the space is defined
by

\widehat W 2 - 2/p,p(\Omega ) :=

\biggl\{ 
W 2 - 2/p,p(\Omega ) if p < 3,

W
2 - 2/p,p
\bfn (\Omega ) if p > 3.

The following regularity result for the heat equation we will often be used (see [13, p.
344]).

Theorem 1. For \Omega \in C2, let 1 < p < +\infty (p \not = 3), u0 \in \widehat W 2 - 2/p,p(\Omega ), and
g \in Lp(Q). Then the problem\left\{     

\partial tu - \Delta u = g in Q,
u(0, \cdot ) = u0 in \Omega ,

\partial u

\partial n
= 0 on (0, T )\times \partial \Omega 

admits a unique solution u such that

u \in C([0, T ];\widehat W 2 - 2/p,p) \cap Lp(W 2,p
\bfn ), \partial tu \in Lp(Q).

Moreover, there exists a positive constant C := C(p,\Omega , T ) such that

\| u\| 
C(\widehat W 2 - 2/p,p)

+ \| \partial tu\| Lp(Q) + \| u\| Lp(W 2,p) \leq C(\| g\| Lp(Q) + \| u0\| \widehat W 2 - 2/p,p).

For simplicity, in what follows, the following notation for specific Banach spaces
will be used frequently in the paper:

Xp := \{ u \in C([0, T ];\widehat W 2 - 2/p,p) \cap Lp(W 2,p
\bfn ) : \partial tu \in Lp(Q)\} (p > 1),

(4) X := C([0, T ];L2) \cap L2(H1).

Moreover, its norm will be denoted by \| \cdot \| Xp
and \| \cdot \| X , respectively.

The Leray--Schauder fixed-point theorem will be used several times to prove the
existence of solution for some different problems.
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Theorem 2 (Leray--Schauder fixed-point theorem). Let \scrX be a Banach space
and T : \scrX \rightarrow \scrX a continuous and compact operator. If the set

\{ x \in \scrX : x = \alpha Tx for some 0 \leq \alpha \leq 1\} 

is bounded, then T has (at least) a fixed point.

In this paper, the Leray--Schauder theorem will be applied considering the follow-
ing steps.

Lemma 1. T : \scrX \rightarrow \scrY is well defined and maps bounded sets of \scrX into bounded
sets of \scrY .

Lemma 2. \scrY is compactly embedded into \scrX .

Lemma 3. T : \scrX \rightarrow \scrX is a continuous and compact operator.

Lemma 4. The set \{ x \in \scrX : x = \alpha Tx for some 0 \leq \alpha \leq 1\} is bounded in \scrX 
(with respect to \alpha ).

In this paper, the following two compactness results will be applied.

Theorem 3 (Aubin--Lions lemma). Let \scrX , B, and \scrY be reflexive Banach spaces
such that \scrX \subset B \subset \scrY , with compact embedding \scrX \mapsto \rightarrow B and continuous embedding
B \lhook \rightarrow \scrY . It is defined by

W = \{ w : w \in Lp0(0, T ;\scrX )), \partial tw \in Lp1(0, T ;\scrY )\} 

for a finite T > 0 and p0, p1 \in (1,+\infty ). Then the injection of W into Lp0(0, T ;B) is
compact.

Proof. See [23, Theorem 5.1, p. 58].

Theorem 4 (Simon's compactness result). Let \scrX , B, and \scrY be Banach spaces
such that \scrX \subset B \subset \scrY , with compact embedding \scrX \mapsto \rightarrow B and continuous embedding
B \lhook \rightarrow \scrY . Let F be a bounded set in L\infty (0, T ;\scrX ) such that the set \partial tF = \{ \partial f

\partial t ; f \in F\} 
is bounded in Lr(0, T ;\scrY ) for some r > 1. Then F is relatively compact in C([0, T ];B).

Proof. See [31, Corollary 4].

Throughout this paper, the following equivalent norms in H1(\Omega ) and H2(\Omega ) will
be used, respectively (see [27] for details):

\| u\| 2H1 \simeq \| \nabla u\| 2 +
\biggl( \int 

\Omega 

u

\biggr) 2

\forall u \in H1(\Omega ),(5)

\| u\| 2H2 \simeq \| \Delta u\| 2 +
\biggl( \int 

\Omega 

u

\biggr) 2

\forall u \in H2
\bfn (\Omega ).(6)

Also, the classical interpolation inequality in 3D domains will be used:

(7) \| u\| L3 \leq C\| u\| 1/2\| u\| 1/2H1 \forall u \in H1(\Omega ).

To obtain the regularity of different terms in the equations, some embedding
results will be used. In the following, some results in this setting are established.

As a consequence of the interpolation inequality

\| u\| Lp \leq \| u\| 1 - \theta 
Lp1 \| u\| \theta Lp2 , with

1

p
=

1 - \theta 

p1
+

\theta 

p2
and \theta \in [0, 1],

the following Lp(Lq)-interpolation result can be deduced.
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Lemma 5. Let p1, p2, q1, q2, p, q \geq 1 be such that

1

q
=

1 - \theta 

q1
+

\theta 

q2
and

1

p
=

1 - \theta 

p1
+

\theta 

p2
, with \theta \in [0, 1].

Then

(8) Lp1(Lq1) \cap Lp2(Lq2) \lhook \rightarrow Lp(Lq).

As a consequence of the Sobolev embeddings [1, Theorem 7.58, p. 218],

(9) W r,p(\Omega ) \lhook \rightarrow Hs(\Omega ), r, s > 0, 1 < p < 2, with s = N

\biggl( 
1

2
 - 1

p

\biggr) 
+ r,

(10) W r,p(\Omega ) \lhook \rightarrow Lq(\Omega ), with
1

q
=

1

p
 - r

N
,

where N is the space dimension. The following Lp(Hs)-interpolation result can be
obtained.

Lemma 6 ([24, Theorem 9.6, p. 49]). Let p1, p2, p \geq 1 and s1, s2, s \geq 0 be such
that

s = (1 - \theta )s1 + \theta s2 and
1

p
=

1 - \theta 

p1
+

\theta 

p2
, with \theta \in [0, 1].

Then Lp1(Hs1)\cap Lp2(Hs2) \lhook \rightarrow Lp(Hs). In particular, one has Lp1(Hs1)\cap Lp2(Hs2) \lhook \rightarrow 
Lp(Lq) with 1

q = 1
2  - s

N .

Corollary 1. L\infty (L2)\cap L2(H1) \lhook \rightarrow L10/3(Q) and L\infty (H1)\cap L2(H2) \lhook \rightarrow L10(Q).

Using the Sobolev embedding (10) and the Gagliardo--Nirenberg inequality (see
[15, Theorem 10.1]),

W s,p1(\Omega ) \cap Lp2(\Omega ) \lhook \rightarrow Lp(\Omega ), with
1

p
= \theta 

\biggl( 
1

p1
 - s

N

\biggr) 
+

1 - \theta 

p2
and \theta \in [0, 1],

the following Bochner--Sobolev-Lp embedding result can be deduced.

Lemma 7. Let p1, q1, p2, p, q \geq 1 be such that

1

q
=

1 - \theta 

q1
+ \theta 

\biggl( 
1

p1
 - r

N

\biggr) 
and

1

p
=

\theta 

p2
, with \theta \in [0, 1] and r > 0.

Then L\infty (Lq1) \cap Lp2(W r,p1) \lhook \rightarrow Lp(Lq).

Lemma 8 ([13]). Let \Omega \subset \BbbR N be a bounded Lipschitz domain. Then the inter-
polation inequality

(11) \| v\| W\alpha ,r(\Omega ) \leq C \| v\| \lambda W\beta ,p(\Omega )\| v\| 
1 - \lambda 
W\gamma ,q(\Omega ), 0 \leq \lambda \leq 1,

holds for 0 \leq \alpha , \beta , \gamma \leq 1, 1 < p, q, r < \infty , \alpha = \lambda \beta + (1 - \lambda ) \gamma , 1
r = \lambda 

p + 1 - \lambda 
q .

When using the Leray--Schauder fixed-point theorem, Lemma 2 needs to be
proved. The following results will be of great help for it.

Lemma 9. The space X20/13 is compactly embedded in X.
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Proof. Note that if w \in X20/13, then using (9) and Lemma 6,

w \in L\infty (W 7/10,20/13) \cap L20/13(W 2,20/13)(12)

\lhook \rightarrow L\infty (H1/4) \cap L20/13(H31/20) \lhook \rightarrow Lp(H1/4+2/p)

with p \geq 20/13. Thus, again from the definition of X20/13 and (12),

w \in L\infty (H1/4) \cap L2(H5/4), \partial tw \in L20/13(Q).

Therefore, the Aubin--Lions lemma (Theorem 3) and Simon's compactness result
(Theorem 4) can be applied, allowing us to deduce that X20/13 is compactly em-
bedded in X.

Since Xp \subset X20/13 for any p \geq 20/13, the following result can be concluded.

Corollary 2. The space Xp is compactly embedded in X for any p \geq 20/13.

3. Existence of weak solutions of problem (1)--(3).

Definition 1 (weak solution (u, v)). Let f \in L4(Qc) := L4(0, T ;L4(\Omega c)), u0 \in 
Lp0(\Omega ) for some p0 > 1, v0 \in H1(\Omega ) with u0 \geq 0, and v0 \geq 0 in \Omega . A pair (u, v) is
called a weak solution of problem (1)--(3) in (0, T ) if u \geq 0, v \geq 0 a.e. in Q:

u \in L5/3(Q) \cap L5/4(W 1,5/4), \partial tu \in L10/9((W 1,10)\prime ),(13)

v \in L\infty (H1) \cap L2(H2), \partial tv \in L5/3(Q).(14)

The following variational formulation holds for the u-equation:

(15)

\int T

0

\langle \partial tu, u\rangle +
\int T

0

(\nabla u,\nabla u) +

\int T

0

(u\nabla v,\nabla u) = 0 \forall u \in L10(W 1,10).

The v-equation (1)2 holds pointwisely a.e. (t, x) \in Q, and the boundary conditions for
v (3)2 and the initial conditions for (u, v) (2) are satisfied.

Remark 1. Taking u = 1 in (15), one has

u \in L\infty (L1) and

\int 
\Omega 

u(t) =

\int 
\Omega 

u0 := m0.

In addition to this conservation property, the cornerstone to prove the existence
of a weak solution of (1)--(3) is the following energy law, which can be computed
only in a formal way, testing (1)1 by ln(u) plus (1)2 by  - \Delta v. Since chemotactic and
production terms cancel, one arrives at

d

dt
E(u(t), v(t)) +

\int 
\Omega 

\Bigl( 
4| \nabla 

\surd 
u| 2 + | \Delta v| 2 + | \nabla v| 2

\Bigr) 
=  - 

\int 
\Omega 

f v (\Delta v) 1\Omega c ,

where E(u, v) :=
\int 
\Omega 
(u ln(u) - u+ 1

2 | \nabla v| 2). See (139) in Appendix A, to find a rigorous
proof of an energy law for a regularized problem.

Finally, each term of (15) has a sense. In particular, from (13)--(14) one has that

u\nabla v \in L10/9(Q), and therefore
\int T

0
(u\nabla v,\nabla u) is finite for all u \in L10(W 1,10). Indeed,

from Corollary 1 it is known that \nabla v \in L\infty (L2)\cap L2(H1) \lhook \rightarrow L10/3(Q), which, jointly
with the fact that u \in L5/3(Q), implies that u\nabla v \in L10/9(Q).

Theorem 5 (existence of weak solutions of (1)--(3)). There exists a weak solu-
tion (u, v) of system (1)--(3) in the sense of Definition 1.

The proof of this theorem follows from the two next subsections.
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3.1. Regularized problem. In order to prove Theorem 5, the following family
of regularized problems related to system (1)--(3) will be studied for any \varepsilon \in (0, 1).
Given an adequate regularization (u\varepsilon 

0, v
\varepsilon 
0) of initial data (u0, v0), it is defined by

(u\varepsilon , z\varepsilon ) as the solution of

(16)

\left\{         
\partial tu

\varepsilon  - \Delta u\varepsilon = \nabla \cdot (u\varepsilon \nabla v(z\varepsilon )) in Q,
\partial tz

\varepsilon  - \Delta z\varepsilon + z\varepsilon = u\varepsilon + f v(z\varepsilon )+1\Omega c
in Q,

u\varepsilon (0) = u\varepsilon 
0, z\varepsilon (0) = v\varepsilon 0  - \varepsilon \Delta v\varepsilon 0 in \Omega ,

\partial u\varepsilon 

\partial n
= 0,

\partial z\varepsilon 

\partial n
= 0 on (0, T )\times \partial \Omega ,

where v\varepsilon (t, \cdot ) := v(z\varepsilon (t, \cdot )) for any t \in [0, T ] is the unique solution of the problem

(17)

\Biggl\{ 
v\varepsilon  - \varepsilon \Delta v\varepsilon = z\varepsilon in \Omega ,

\partial v\varepsilon 

\partial n
= 0 on \partial \Omega ,

and v+ := max\{ v, 0\} \geq 0.
The initial conditions u\varepsilon 

0 and v\varepsilon 0 such that u\varepsilon 
0 \geq 0 a.e. in \Omega , (u\varepsilon 

0, v
\varepsilon 
0  - \varepsilon \Delta v\varepsilon 0) \in 

W 4/5,5/3(\Omega )\times W
7/5,10/3
\bfn (\Omega ), are chosen, and

(18) (u\varepsilon 
0, v

\varepsilon 
0) \rightarrow (u0, v0) in Lp0(\Omega )\times H1(\Omega ) as \varepsilon \rightarrow 0 for p0 > 1.

In particular,

(19) z\varepsilon (0) = v\varepsilon 0  - \varepsilon \Delta v\varepsilon 0 \rightarrow v0 in (H1(\Omega ))\prime as \varepsilon \rightarrow 0.

In the remainder of this section, v(z\varepsilon ) will be denoted only by v\varepsilon .

Definition 2 (strong solution (u\varepsilon , z\varepsilon )). Let u\varepsilon 
0 \in W 4/5,5/3(\Omega ), v\varepsilon 0  - \varepsilon \Delta v\varepsilon 0 \in 

W
7/5,10/3
\bfn (\Omega ) with u\varepsilon 

0 \geq 0 in \Omega , and f \in L4(Qc). It is said that a pair (u\varepsilon , z\varepsilon ) is a
strong solution of problem (16) in (0, T ) if u\varepsilon \geq 0 a.e. in Q:

(u\varepsilon , z\varepsilon ) \in X5/3 \times X10/3.

Equations (16)1--(16)2 hold a.e. (t, x) \in Q, and the initial and boundary conditions
(16)3--(16)4 are satisfied.

Remark 2. Notice that each function w \in Xp in particular belongs to

C([0, T ];\widehat W 2 - 2/p,p). Since the regularity obtained is (u\varepsilon , z\varepsilon ) \in X5/3 \times X10/3, from

Theorem 1 it is necessary to impose u\varepsilon 
0 \in \widehat W 2 - 2/(5/3),5/3(\Omega ) = W 4/5,5/3(\Omega ) (in this

case, p = 5/3 < 3) and z\varepsilon 0 \in \widehat W 2 - 2/(10/3),10/3(\Omega ) = W
7/5,10/3
\bfn (\Omega ) (in this case,

p = 10/3 > 3). Additionally, assuming more regularity of data (u\varepsilon 
0, z

\varepsilon 
0), more regular-

ity can be deduced from the solution (u\varepsilon , z\varepsilon ) making a bootstrapping argument using

Theorem 1, as in the proof of Theorem 7 below. For instance, if (u\varepsilon 
0, z

\varepsilon 
0) \in W

3/2,4
\bfn (\Omega )2,

then (u\varepsilon , z\varepsilon ) \in X4 \times X4.

Theorem 6. There exists a strong solution (u\varepsilon , z\varepsilon ) \in X5/3 \times X10/3 of system
(16) in (0, T ) in the sense of Definition 2.

The proof of Theorem 6 is carried out in Appendix A.
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3.2. Proof of Theorem 5. Taking limits as \bfitvarepsilon \rightarrow 0. Following the proof of
Lemma 15 in Appendix A, using in particular the conservation property (138) and
the energy inequality (143), and taking into account that

\int 
\Omega 
(u\varepsilon 

0 + 1) ln(u\varepsilon 
0 + 1) \leq 

C\| u\varepsilon 
0 + 1\| Lp0 for any p0 > 1 and (18), the following estimates can be deduced from

the Gronwall lemma (uniformly with respect to \varepsilon ):
(20)\left\{       

\{ \nabla 
\surd 
u\varepsilon + 1\} \varepsilon >0 is bounded in L2(Q),

\{ 
\surd 
u\varepsilon + 1\} \varepsilon >0 is bounded in L\infty (L2) \cap L2(L6) \lhook \rightarrow L10/3(Q) \cap L8(L12/5),

\{ v\varepsilon \} \varepsilon >0 is bounded in L\infty (H1) \cap L2(H2) \lhook \rightarrow L10(Q),
\{ 
\surd 
\varepsilon \Delta v\varepsilon \} \varepsilon >0 is bounded in L\infty (L2) \cap L2(H1).

From (20)2, one has

(21) \{ u\varepsilon \} \varepsilon >0 is bounded in L\infty (L1) \cap L5/3(Q) \cap L4(L6/5).

Moreover, taking into account that \nabla u\varepsilon = 2
\surd 
u\varepsilon + 1\nabla 

\surd 
u\varepsilon + 1, from (20)1 and

(20)2 it is deduced that

(22) \{ u\varepsilon \} \varepsilon >0 is bounded in L5/4(W 1,5/4).

From (20)3, one also has that \{ \nabla v\varepsilon \} \varepsilon >0 is bounded in L\infty (L2)\cap L2(H1) \lhook \rightarrow L10/3(Q),
which, jointly with (21), implies that

(23) \{ u\varepsilon \nabla v\varepsilon \} \varepsilon >0 is bounded in L10/9(Q).

Looking at the u\varepsilon -equation and previous estimates (22) and (23), it is deduced
that

(24) \{ \partial tu\varepsilon \} \varepsilon >0 is bounded in L10/9((W 1,10)\prime ).

From (20)3,4 and the equality z\varepsilon = v\varepsilon  - \varepsilon \Delta v\varepsilon , one has that

(25) \{ z\varepsilon \} \varepsilon >0 is bounded in L\infty (L2) \cap L2(H1).

Looking at the z\varepsilon -equation and previous estimates (20)3, (21), and (25), it is deduced
that

(26) \{ \partial tz\varepsilon \} \varepsilon >0 is bounded in L5/3((H1)\prime ).

Notice that from (17) and (20)4, it is obtained that

(27) z\varepsilon  - v\varepsilon =  - \varepsilon \Delta v\varepsilon \rightarrow 0 as \varepsilon \rightarrow 0 in the L\infty (L2) \cap L2(H1)-norm.

Therefore, from (20)3, (21), (22), and (27), it is deduced that that there exist limit
functions (u, v) such that \biggl\{ 

u \in L5/3(Q) \cap L5/4(W 1,5/4),
v \in L\infty (H1) \cap L2(H2),

and for some subsequence of \{ (u\varepsilon , v\varepsilon , z\varepsilon )\} \varepsilon >0, still denoted by \{ (u\varepsilon , v\varepsilon , z\varepsilon )\} \varepsilon >0, the
following convergences hold as \varepsilon \rightarrow 0:

(28)

\left\{           
u\varepsilon \rightarrow u weakly in L5/3(Q) \cap L5/4(W 1,5/4),
v\varepsilon \rightarrow v weakly in L2(H2) and weakly* in L\infty (H1),
z\varepsilon \rightarrow v weakly in L2(H1) and weakly* in L\infty (L2),

\partial tu
\varepsilon \rightarrow \partial tu weakly* in L10/9((W 1,10)\prime ),

\partial tz
\varepsilon \rightarrow \partial tv weakly* in L5/3((H1)\prime ).
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It will be verified that (u, v) is a weak solution of (1)--(3). Indeed, from (21), (22),
and (24), by applying compactness results Theorems 3 and 4, it is deduced that

(29) \{ u\varepsilon \} \varepsilon >0 is relatively compact in L5/4(L2) \cap C([0, T ]; (W 1,q)\prime ) (q > 3).

In particular, since u\varepsilon is bounded in L5/3(Q),

(30) \{ u\varepsilon \} \varepsilon >0 is relatively compact in Lp(Q) \forall p < 5/3.

Taking into account (23), the weak convergence

(31) u\varepsilon \nabla v\varepsilon \rightarrow \chi weakly in L10/9(Q)

is obtained. From (28)2, one also has \nabla v\varepsilon \rightarrow \nabla v weakly in L10/3(Q). Thus, (30) and
(31) allow us to identify \chi with u\nabla v, and

(32) u\varepsilon \nabla v\varepsilon \rightarrow u\nabla v weakly in L10/9(Q).

Furthermore, from (28)3 and (28)5 and again using the compactness results from
Theorems 3 and 4, it is obtained that

(33) z\varepsilon \rightarrow v strongly in L2(Q) \cap C([0, T ]; (H1)\prime ).

In particular, from (29) and (33), (u\varepsilon (0), z\varepsilon (0)) converges to (u(0), v(0)) in (W 1,q)\prime 

\times (H1)\prime ; then from (18), (19), and the uniqueness of the limit, the identification
(u(0), v(0)) = (u0, v0) holds in Lp0(\Omega )\times H1(\Omega ) (p0 > 1), which is the initial condition
given in (2).

From (27), (28)2, and (33), it is deduced that v\varepsilon converges to v strongly in L2(Q),
which implies that

v\varepsilon + \rightarrow v+ strongly in L2(Q).

Then, using (20)3 and f \in L4(Qc), it is deduced that

(34) f v\varepsilon +1\Omega c \rightarrow f v+1\Omega c weakly in L20/7(Q).

Therefore, taking to the limit in the regularized problem (16), as \varepsilon \rightarrow 0, and
taking into account (28), (32), and (34), it is concluded that the limit (u, v) satisfies
the weak formulation

(35) \int T

0

\langle \partial tu, u\rangle +
\int T

0

(\nabla u,\nabla u) +

\int T

0

(u\nabla v,\nabla u) = 0 \forall u \in L10(W 1,10),

(36)\int T

0

\langle \partial tv, z\rangle +
\int T

0

(\nabla v,\nabla z) +

\int T

0

(v, \=z) =

\int T

0

(u, z) +

\int T

0

(f v+1\Omega c
, z) \forall z \in L5/2(H1).

Note that (35) is exactly the variational formulation given in (15). Moreover, integrat-
ing by parts in (36) and using that u \in L5/3(Q) and v \in L2(H2

\bfn ), it can be deduced
that

(37) \partial tv  - \Delta v + v = u+ f v+1\Omega c in L5/3(Q).

Finally, the positivity of (u, v) will be checked. Indeed, the positivity of u follows
from (29) and the fact that u\varepsilon \geq 0 a.e. (t, x) \in Q (see Lemma 15 in Appendix A). In
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order to check that v \geq 0, (37) is tested by v - := min\{ v, 0\} \leq 0. Taking into account
that u \geq 0 and using that v - = 0 if v \geq 0, \nabla v - = \nabla v if v \leq 0, and \nabla v - = 0 if v > 0,
it is obtained that

1

2

d

dt
\| v - \| 2 + \| \nabla v - \| 2 + \| v - \| 2 = (u, v - ) + (f v+1\Omega c

, v - ) \leq 0,

which implies that v - \equiv 0; then v \geq 0 a.e. (t, x) \in Q (the fact of taking v+ in the
control term is used here to guarantee the positivity of v). From (37) and v+ \equiv v, v
satisfies the v-equation (1)2 pointwisely a.e. (t, x) \in Q.

4. Regularity criterion. In this section, a regularity criterion of system (1)--(3)
will be given.

Definition 3 (strong solution (u, v)). Let f \in L4(Qc) and (u0, v0) \in W
3/2,4
\bfn (\Omega )2

with u0 \geq 0 and v0 \geq 0 a.e. in \Omega . A pair (u, v) is called a strong solution of problem
(1)--(3) in (0, T ) if u \geq 0, v \geq 0 a.e. in Q,

(u, v) \in X4 \times X4,(38)

the system (1) holds a.e. (t, x) \in Q, and the initial and boundary conditions (2) and
(3) are satisfied.

Remark 3. Using the interpolation inequality (7) and the Gronwall lemma and
following similar arguments to those presented in [17] (in the 2D case), the uniqueness
of strong solutions of (1)--(3) can be deduced. In fact, comparing two possible solutions
(ui, vi), for i = 1, 2, with (u, v) = (u1  - u2, v1  - v2) and testing by u and  - \Delta v, one
has uniqueness via the Gronwall lemma if u1,\nabla v2 \in L4(0, T ;L6).

Theorem 7 (regularity criterion). Let (u, v) be a weak solution of (1)--(3). If,

in addition, (u0, v0) \in W
3/2,4
\bfn (\Omega )2 and the regularity criterion

(39) u \in L20/7(Q)

holds, then (u, v) is a strong solution of (1)--(3) in the sense of Definition 3. Moreover,
there exists a positive constant K = K(\| u0\| W 3/2,4

\bfn 
, \| v0\| W 3/2,4

\bfn 
, \| f\| L4(Q)) such that

(40) \| (u, v)\| X4\times X4
\leq K.

Remark 4. From the definition of X4 and some Sobolev continuous embeddings,
one has

(41) w \in X4 \lhook \rightarrow L\infty (W 3/2,4) \lhook \rightarrow L\infty (Q) and \Delta w \in L4(Q).

Moreover, looking at the proof of Step 5 of Theorem 7, from (70) it is deduced in
particular that

(42) w \in X4 \Rightarrow \nabla w \in L20(Q).

The proof of Theorem 7 follows from the next subsection.

4.1. Proof of Theorem 7. Starting from the weak regularity of (u, v) and the
hypothesis u \in L20/7(Q), the regularity for u and v will be improved several times
using a bootstrapping argument, arriving at the optimal regularity (u, v) \in X4 \times X4.

The proof of Theorem 7 is carried out in four steps:
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Step 1: v \in X20/7 and \nabla v \in L20/3(Q).
From Theorem 5, it is known that there exists a weak solution (u, v) of system

(1)--(3) in the sense of Definition 1. Thus, since v \in L\infty (H1) \cap L2(H2), v \in L10(Q)
(Corollary 1), then f v 1\Omega c \in L20/7(Q), which implies, using hypothesis (39), that
u + f v 1\Omega c \in L20/7(Q). Then, applying Theorem 1 (for p = 20/7) to (1)2, one has
v \in X20/7. In particular, using Sobolev embeddings, it holds that

(43) v \in L\infty (Q),

(44) \nabla v \in L\infty (L4) \cap L20/7(W 1,20/7) \lhook \rightarrow L\infty (L4) \cap L20/7(L60).

From (44) and applying Lemma 5 (for p1 = \infty , q1 = 4, p2 = 20/7, and q2 = 60, hence
p = q = 20/3), one has

(45) \nabla v \in L20/3(Q).

Step 2: u \in L\infty (L2) \cap L2(H1).
Starting from u \in L20/7(Q) \cap L5/4(W 1,5/4) and v \in X20/7, the regularity of u is

improved by a bootstrapping argument in eight substeps:
(i) u \in X20/19. Using that (u,\Delta v) \in L20/7(Q)\times L20/7(Q), u\Delta v \in L10/7(Q), and

using that (\nabla u,\nabla v) \in L5/4(Q)\times L20/3(Q), \nabla u \cdot \nabla v \in L20/19(Q). Therefore,

\nabla \cdot (u\nabla v) = u\Delta v +\nabla u \cdot \nabla v \in L20/19(Q).

Thus, applying Theorem 1 (for p = 20/19) to (1)1, it is obtained that u \in X20/19.
(ii) u \in X10/9. Since u \in X20/19,

u \in L\infty (W 1/10,20/19) \cap L20/19(W 2,20/19).

Observe that, denoting by D1/10u the 1/10-derivatives of u,

(46) D1/10u \in L\infty (L20/19)\cap L20/19(W 19/10,20/19) \lhook \rightarrow L\infty (L20/19)\cap L20/19(W 1,20/13).

Applying Lemma 8 to (46) for (\alpha , r) = (9/10, r), (\beta , p) = (1, 20/13), and (\gamma , q) =
(0, 20/19), (\lambda , r) = (9/10, 25/17) is obtained, and D1/10u satisfies

(47) \| D1/10u\| sW 9/10,25/17 \leq C\| D1/10u\| s \lambda W 1,20/13\| D1/10u\| s(1 - \lambda )

L20/19 ,

where expression (47) is integrable in time if s \lambda = 20/19, and thus s = 200/171.
Therefore, u \in L200/171(W 1,25/17) and

(48) \nabla u \in L200/171(L25/17).

Moreover, from (44), using (8) (for p1 = \infty , q1 = 4, p2 = 20/7, q2 = 60, and
p = 10, hence q = 60/11), it is obtained that

(49) \nabla v \in L\infty (L4) \cap L10(L60/11).

Thus, from (48) and (49), \nabla u \cdot \nabla v \in L200/171(L100/93) \cap L200/191(L300/259) is de-
duced. Then, owing to (8) applied to (p1, q1) = (200/171, 100/93) and (p2, q2) =
(200/191, 300/259) implies that p = q = 10/9; hence,

\nabla u \cdot \nabla v \in L10/9(Q).
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Since u\Delta v \in L10/7(Q), \nabla \cdot (u\nabla v) \in L10/9(Q) holds. Then, applying Theorem 1 (for
p = 10/9) to (1)1, it is deduced that u \in X10/9.

(iii) u \in X20/17. Since u \in X10/9,

u \in L\infty (W 1/5,10/9) \cap L10/9(W 2,10/9).

Observe that, denoting by D1/5u the 1/5-derivatives of u,

(50) D1/5u \in L\infty (L10/9) \cap L10/9(W 9/5,10/9) \lhook \rightarrow L\infty (L10/9) \cap L10/9(W 1,30/19).

Applying Lemma 8 to (50) for (\alpha , r) = (4/5, r), (\beta , p) = (1, 30/19), and (\gamma , q) =
(0, 10/9), we obtain (\lambda , r) = (4/5, 150/103), and D1/5u satisfies

(51) \| D1/5u\| sW 4/5,150/103 \leq C\| D1/5u\| s \lambda W 1,30/19\| D1/5u\| s(1 - \lambda )

L10/9 ,

where expression (51) is integrable in time if s \lambda = 10/9, and thus s = 25/18. There-
fore, u \in L25/18(W 1,150/103) and

(52) \nabla u \in L25/18(L150/103).

Now, from (44), using (8) (for p1 = \infty , q1 = 4, p2 = 20/7, q2 = 60, and p = 5, hence
q = 60/7),

\nabla v \in L\infty (L4) \cap L5(L60/7),

which jointly with (52) implies that \nabla u \cdot \nabla v \in L25/18(L300/281) \cap L25/23(L300/241).
Then using (8) with (p1, q1) = (25/18, 300/281), (p2, q2) = (25/23, 300/241) implies
that p = q = 20/17; hence,

\nabla u \cdot \nabla v \in L20/17(Q).

Since u\Delta v \in L10/7(Q), it is deduced that \nabla \cdot (u\nabla v) \in L20/17(Q). Then, applying
Theorem 1 (for p = 20/17) to (1)1, one has that u \in X20/17.

(iv) u \in X5/4. Since u \in X20/7,

u \in L\infty (W 3/10,20/17) \cap L20/17(W 2,20/17).

Observe that, denoting by D3/10u the 3/10-derivatives of u,

(53) D3/10u \in L\infty (L20/17)\cap L20/17(W 17/10,20/17) \lhook \rightarrow L\infty (L20/17)\cap L20/17(W 1,60/37).

Applying Lemma 8 to (53) for (\alpha , r) = (7/10, r), (\beta , p) = (1, 60/37), and (\gamma , q) =
(0, 20/17), we obtain (\lambda , r) = (7/10, 150/103), and D3/10u satisfies

(54) \| D3/10u\| sW 7/10,150/103 \leq C\| D3/10u\| s \lambda W 1,60/37\| D3/10u\| s(1 - \lambda )

L20/17 ,

where expression (54) is integrable in time if s \lambda = 20/17, and thus s = 200/119.
Therefore, u \in L200/119(W 1,150/103) and

\nabla u \in L200/119(L150/103).

Now, from (44), using (8) (for p1 = \infty , q1 = 4, p2 = 20/7, q2 = 60, and p = 4; hence,
q = 12),

\nabla v \in L\infty (L4) \cap L4(L12).
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Then \nabla u \cdot \nabla v \in L200/119(L300/281) \cap L200/169(L100/77), which thanks to (8) applied
to (p1, q1) = (200/119, 300/281), (p2, q2) = (200/169, 100/77) implies p = q = 5/4;
hence,

\nabla u \cdot \nabla v \in L5/4(Q).

Since u\Delta v \in L10/7(Q), it is obtained that \nabla \cdot (u\nabla v) \in L5/4(Q). Then, applying
Theorem 1 (for p = 5/4) to (1)1, it is deduced that u \in X5/4.

(v) u \in X4/3. Using that u \in X5/4,

u \in L\infty (W 2/5,5/4) \cap L5/4(W 2,5/4).

Observe that, denoting by D2/5u the 2/5-derivatives of u,

(55) D2/5u \in L\infty (L5/4) \cap L5/4(W 8/5,5/4) \lhook \rightarrow L\infty (L5/4) \cap L5/4(W 1,5/3).

Applying Lemma 8 to (55) for (\alpha , r) = (3/5, r), (\beta , p) = (1, 5/3), and (\gamma , q) = (0, 5/4),
we obtain (\lambda , r) = (3/5, 25/17), and D2/5u satisfies

(56) \| D2/5u\| sW 3/5,25/17 \leq C\| D2/5u\| s \lambda W 1,5/3\| D2/5u\| s(1 - \lambda )

L5/4 ,

where expression (56) is integrable in time if s \lambda = 5/4, and thus s = 25/12. Therefore,
u \in L25/12(W 1,25/17) and

(57) \nabla u \in L25/12(L25/17).

From (44), using (8) (for p1 = \infty , q1 = 4, p2 = 20/7, q2 = 60, and p = 3, hence
q = 36), it holds that

\nabla v \in L\infty (L4) \cap L3(L36);

then, from the latter regularity and (57) having

\nabla u \cdot \nabla v \in L25/12(L100/93) \cap L75/61(L900/637),

which thanks to (8) applied to (p1, q1) = (25/12, 100/93), (p2, q2) = (75/61, 900/637)
implies p = q = 4/3; hence,

\nabla u \cdot \nabla v \in L4/3(Q).

Since u\Delta v \in L10/7(Q), it is obtained that \nabla \cdot (u\nabla v) \in L4/3(Q). Then, applying
Theorem 1 (for p = 4/3) to (1)1, it is deduced that u \in X4/3.

(vi) u \in X10/7. Since u \in X4/3,

u \in L\infty (W 1/2,4/3) \cap L4/3(W 2,4/3).

Observe that, denoting by D1/2u the 1/2-derivatives of u,

(58) D1/2u \in L\infty (L4/3) \cap L4/3(W 3/2,4/3) \lhook \rightarrow L\infty (L4/3) \cap L4/3(W 1,12/7).

Applying Lemma 8 to (58) for (\alpha , r) = (1/2, r), (\beta , p) = (1, 12/7), and (\gamma , q) =
(0, 4/3), we obtain (\lambda , r) = (1/2, 3/2), and D1/2u satisfies

(59) \| D1/2u\| sW 1/2,3/2 \leq C\| D1/2u\| s \lambda W 1,12/7\| D1/2u\| s(1 - \lambda )

L4/3 ,
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where expression (59) is integrable in time if s \lambda = 4/3, and thus s = 8/3. Therefore,
u \in L8/3(W 1,3/2) and

\nabla u \in L8/3(L3/2).

Again using that \nabla v \in L3(L36), it is obtained that

\nabla v \in L\infty (L4) \cap L3(L36)

and \nabla u \cdot \nabla v \in L8/3(L12/11)\cap L24/17(L36/25), which thanks to (8) applied to (p1, q1) =
(8/3, 12/11), (p2, q2) = (24/17, 36/25) implies p = q = 10/7; hence,

\nabla u \cdot \nabla v \in L10/7(Q).

Since u\Delta v \in L10/7(Q), it is obtained that \nabla \cdot (u\nabla v) \in L10/7(Q). Then, applying
Theorem 1 (for p = 10/7) to (1)1, it is deduced that u \in X10/7.

(vii) u \in X20/13. Since u \in X10/7,

(60) u \in L\infty (W 3/5,10/7) \cap L10/7(W 2,10/7) \lhook \rightarrow L\infty (L2) \cap L10/7(L30).

In particular, it follows that

(61) \nabla u \in L10/7(W 1,10/7) \lhook \rightarrow L10/7(L30/11).

Observe that, denoting by D3/5u the 3/5-derivatives of u,

(62) D3/5u \in L\infty (L10/7) \cap L10/7(W 7/5,10/7) \lhook \rightarrow L\infty (L10/7) \cap L10/7(W 1,30/17).

Applying Lemma 8 to (62) for (\alpha , r) = (2/5, r), (\beta , p) = (1, 30/17), and (\gamma , q) =
(0, 10/7), we obtain (\lambda , r) = (2/5, 150/97), and D3/5u satisfies

(63) \| D3/5u\| sW 2/5,150/97 \leq C\| D3/5u\| s \lambda W 1,30/17\| D3/5u\| s(1 - \lambda )

L10/7 ,

where expression (63) is integrable in time if s \lambda = 10/7, and thus s = 25/7. From
(63), it can be deduced that

D3/5u \in L25/7(W 2/5,150/97),

which implies

(64) \nabla u = D2/5(D3/5u) \in L25/7(L150/97).

Therefore, thanks to (60), (61), and (64), u \in L25/7(W 1,150/97)\cap L10/7(L30/11). Ap-
plying Lemma 5 to (60) and using the previous regularity, it is deduced that
(65)\Biggl\{ 

u \in L\infty (W 3/5,10/7) \cap L10/7(W 2,10/7) \lhook \rightarrow L\infty (L2) \cap L10/7(L30) \lhook \rightarrow L10/3(Q),

\nabla u \in L25/7(L150/97) \cap L10/7(L30/11).

This time, (8) is used in (65)2 (for (p1, q1) = (25/7, 150/97) and (p2, q2) = (10/7, 30/11)
and p = q = 2), obtaining

\nabla u \in L2(Q).
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The latter regularity, (65), (45), and the fact that \Delta v \in L20/7(Q) imply

u\Delta v, \nabla u \cdot \nabla v \in L20/13(Q).

Then, applying Theorem 1 (for p = 20/13) to (1)1, it is deduced that u \in X20/13.

(viii) u \in L\infty (L2) \cap L2(H1). From (9), it is known that W 7/10,20/13(\Omega ) \lhook \rightarrow 
H1/4(\Omega ) and W 2,20/13(\Omega ) \lhook \rightarrow H31/20(\Omega ). Therefore, from u \in X20/13, the regularity

u \in L\infty (H1/4) \cap L20/13(H31/20)

can be deduced. Moreover, from Lemma 6 for (p1, s1) = (\infty , 1/4), (p2, s2) =
(20/13, 31/20), one has that u \in L2(H5/4) \lhook \rightarrow L2(H1). Therefore, from the latter
regularity and (65)1, it can be deduced that

(66) u \in L\infty (L2) \cap L2(H1) \lhook \rightarrow L10/3(Q).

Step 3: (u, v) \in X5/3 \times X10/3. In particular, u \in L5(Q) and \nabla u \in L20/9(Q).
From (43), (66), and the fact that f \in L4(Qc), it implies that u + f v 1\Omega c

\in 
L10/3(Q). Then, applying Theorem 1 (for p = 10/3) to (1)2, one has v \in X10/3. In
particular, from Lemma 7 (for p1 = p2 = 10/3, q1 = 6, r = 1, and p = q = 10),
\nabla v \in L\infty (L6) \cap L10/3(W 1,10/3) \lhook \rightarrow L10(Q) is obtained. Then, using that (u,\Delta v) \in 
L10/3(Q)\times L10/3(Q), \nabla v \in L10(Q) and taking into account that \nabla u \in L2(Q), it holds
that

\nabla \cdot (u\nabla v) = u\Delta v +\nabla u \cdot \nabla v \in L5/3(Q).

Thus, applying Theorem 1 (for p = 5/3) to (1)1, u \in X5/3 is obtained. Moreover,
from Sobolev embeddings and again Lemma 7 (for p1 = p2 = 5/3, q1 = 3, r = 2, and
p = q = 5), the regularity

(67) u \in L\infty (L3) \cap L5/3(W 2,5/3) \lhook \rightarrow L5(Q)

holds.
From (9), the embeddings W 4/5,5/3(\Omega ) \lhook \rightarrow H1/2(\Omega ) and W 2,5/3(\Omega ) \lhook \rightarrow H17/10(\Omega )

hold. Thus, since u \in X5/3, one has

u \in L\infty (H1/2) \cap L5/3(H17/10).

Moreover, from Lemma 6 (for (p1, s1) = (\infty , 1/2) and (p2, s2) = (5/3, 17/10)),
it can be deduced that u \in L20/9(H7/5), and in particular \nabla u \in L20/9(H2/5) \lhook \rightarrow 
L20/9(Q).

Step 4: (u, v) \in X2 \times X4.
From (43), (67), and using that f \in L4(Qc), one has u+ f v 1\Omega c \in L4(Q). Then,

applying Theorem 1 (for p = 4) to (1)2, it can be deduced that v \in X4 and satisfies
the estimate

(68)

\| v\| X4
\leq C(\| u+ fv\| L4(Q) + \| v0\| W 3/2,4

\bfn 
)

\leq C(\| u\| L4(Q) + \| f\| L4(Q)\| v\| L\infty (Q) + \| v0\| W 3/2,4
\bfn 

)

\leq C0(\| u0\| W 4/5,5/3 , \| v0\| W 3/2,4
\bfn 

, \| f\| L4(Q)).

In particular, by Sobolev embeddings and Lemma 7 (for p1 = p2 = 4, q1 = 12, r = 1,
hence p = q = 20), the regularity \nabla v \in L\infty (L12) \cap L4(W 1,4) \lhook \rightarrow L20(Q) is deduced.
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Now, using that (u,\Delta v) \in L5(Q) \times L4(Q) and (\nabla u,\nabla v) \in L20/9(Q) \times L20(Q),
one has

\nabla \cdot (u\nabla v) = u\Delta v +\nabla u \cdot \nabla v \in L2(Q).

Therefore, applying Theorem 1 (for p = 2) to (1)1, it is deduced that u \in X2 and

\| u\| X2
\leq C(\| u\| L5(Q)\| \Delta v\| L4(Q) + \| \nabla u\| L20/9(Q)\| \nabla v\| L20(Q) + \| u0\| H1)

\leq C1(\| u0\| H1 , \| v0\| W 3/2,4
\bfn 

, \| f\| L4(Q)).(69)

Step 5: u \in X4.
Observe that the regularity v \in X4 cannot be improved because f \in L4(Qc);

hence, f v 1\Omega c
\in L4(Q) and no more. However, the regularity for u can increase from

X2 to X4.
(i) u \in X20/7. Since (u, v) \in X2 \times X4, it is deduced that u \in L10(Q), \nabla u \in 

L10/3(Q), \Delta v \in L4(Q), and, by using Lemma 7, one has

(70) \nabla v \in L\infty (W 1/2,4) \cap L4(W 1,4) \lhook \rightarrow L\infty (L12) \cap L4(W 1,4) \lhook \rightarrow L20(Q).

Therefore, \nabla \cdot (u\nabla v) = u\Delta v+\nabla u \cdot \nabla v \in L20/7(Q). Again from Theorem 1, it can be
deduced that u \in X20/7 and

\| u\| X20/7
\leq C(\| u\| L10(Q)\| \Delta v\| L4(Q) + \| \nabla u\| L10/3(Q)\| \nabla v\| L20(Q) + \| u0\| W 13/10,20/7)

\leq C1(\| u0\| W 13/10,20/7 , \| v0\| W 3/2,4
\bfn 

, \| f\| L4(Q)).(71)

(ii) u \in X4. Since v \in X4, \nabla v \in L20(Q) and \Delta v \in L4(Q). From u \in X20/7,

the Sobolev embedding u \in L\infty (W 13/10,20/7) \lhook \rightarrow L\infty (Q) can be deduced. Moreover,
using Lemma 7, it is known that \nabla u \in L\infty (W 3/10,20/7)\cap L20/7(W 1,20/7) \lhook \rightarrow L20/3(Q).
Therefore,

\nabla \cdot (u\nabla v) = u\Delta v +\nabla u \cdot \nabla v \in L4(Q).

Thus, Theorem 1 implies that u \in X4 and

\| u\| X4 \leq C(\| u\| L\infty (Q)\| \Delta v\| L4(Q) + \| \nabla u\| L20/3(Q)\| \nabla v\| L20(Q) + \| u0\| W 3/2,4)

\leq C1(\| u0\| W 3/2,4
\bfn 

, \| v0\| W 3/2,4
\bfn 

, \| f\| L4(Q)).(72)

Finally, observe that estimate (40) follows from (68) and (72).

5. The optimal control problem. In this section, the statement of the bilinear
control problem is established. Following [7, 8], the control problem in such a way
that any admissible state is a strong solution of (1)--(3) is formulated. It is supposed
that

(73) \scrF \subset L4(Qc) := L4(0, T ;L4(\Omega c)) is a nonempty, closed, and convex set,

where \Omega c \subset \Omega is the control domain. Note that the physically relevant case where
pointwise control constraints are imposed is a particular case in this analysis because
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the set

\scrF = \{ f \in L4(0, T ;L4(\Omega c)) :  - \infty < a \leq f(t, x) \leq b < +\infty a.e. (t, x) \in (0, T )\times \Omega c\} 

is a nonempty closed convex set in L4(0, T ;L4(\Omega c)).

Consider (u0, v0) \in W
3/2,4
\bfn (\Omega )2 the initial data with u0 \geq 0 and v0 \geq 0 in \Omega and

the function f \in \scrF describing the bilinear control acting on the v-equation.
Now the following constrained minimization problem related to system (1)--(3) is

defined:
(74)\left\{                     

Find (u, v, f) \in X4 \times X4 \times \scrF such that the functional

J(u, v, f) :=
\gamma u
20/7

\int T

0

\| u(t) - ud(t)\| 20/7L20/7(\Omega )
dt+

\gamma v
2

\int T

0

\| v(t) - vd(t)\| 2L2(\Omega )dt

+
\gamma f
4

\int T

0

\| f(t)\| 4L4(\Omega c)
dt

is minimized, subject to (u, v, f), and satisfies the PDE system (1)--(3).

Here (ud, vd) \in L20/7(Q)\times L2(Q) represents the desired states, and the real numbers
\gamma u, \gamma v, and \gamma f measure the cost of the states and control, respectively. These numbers
satisfy

(75) \gamma u > 0 and \gamma v, \gamma f \geq 0.

In fact, it is assumed that either \gamma f > 0 or \scrF is bounded in L4(Qc).
The admissible set for the optimal control problem (74) is defined by

\scrS ad = \{ s = (u, v, f) \in X4 \times X4 \times \scrF : s is a strong solution of (1)--(3) in (0, T )\} .

The functional J defined in (74) describes the deviation of the cell density u and the
chemical concentration v from a desired cell density ud and chemical concentration
vd, respectively, plus the cost of the control measured in the L4-norm. Since there
is no existence result of global-in-time strong solutions of (1)--(3), it is necessary to
choose a suitable objective functional, considering particularly the L20/7(Q)-norm for
u. Consequently, if (u, v) is a weak solution of (1)--(3) in (0, T ) such that J(u, v, f) <
+\infty , then u \in L20/7(Q) and, by Theorem 7, (u, v) \in X4 \times X4 is a strong solution of
(1)--(3) in (0, T ). In what follows, the hypothesis will be assumed:

(76) \scrS ad \not = \emptyset .

Remark 5. The reason for choosing the first term of the objective functional in
the L20/7-norm is that any weak solution of (1)--(3) such that J(u, v, f) < +\infty satisfies
that u \in L20/7(Q), and therefore, by virtue of Theorem 7, (u, v) is the unique solution
of (1)--(3) in the sense of Definition 3. Thus, the admissible states of problem (74) to
the strong solutions of (1)--(3) are reduced. With this formulation, the existence of
a global optimal solution will be proved, and the optimality conditions associated to
any local optimal solution will be derived.

Remark 6. The hypothesis (76) holds when the control acts on the whole domain
\Omega , that is, \Omega c = \Omega , and the initial chemical concentration is strictly positive, v0 \geq 
\alpha > 0 in \Omega . In this case, we will furnish a particular (u, v, f) \in \scrS ad.
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Indeed, by applying Theorem 1 for p = 4, one first considers v \in X4 as the
global-in-time strong solution of the heat problem

\partial tv  - \Delta v = 0 in Q, v(0, \cdot ) = v0 in \Omega ,
\partial v

\partial n
= 0 on (0, T )\times \partial \Omega .

This v is strictly positive because v \geq v0 \geq \alpha > 0 in Q. Second, given this v \in X4,
we define u \in X4 as the strong solution of the linear parabolic problem

\partial tu - \Delta u - \nabla \cdot (u\nabla v) = 0, u(0, \cdot ) = u0 in \Omega ,
\partial v

\partial n
= 0 on (0, T )\times \partial \Omega .

In fact, the existence (and uniqueness) of u \in X20/11 using Theorem 2 for \scrX = X
(X defined in (4)) and \scrY = X20/11 can be proved. The embedding from X20/11

into L20/3(Q) (see (109) below) implies in particular that the regularity criterion
u \in L20/7(Q) (given in Theorem 7) holds. Therefore, it can be deduced that u \in X4.

Finally, if f is defined such that v = u + f v (i.e., f = 1  - u/v), which is well
defined and regular because v \geq v0 \geq \alpha > 0 in Q, then (u, v, f) \in \scrS ad.

5.1. Existence of global optimal solution.

Definition 4. An element (\~u, \~v, \~f) \in \scrS ad will be called a global optimal solution
of problem (74) if

(77) J(\~u, \~v, \~f) = min
(u,v,f)\in \scrS ad

J(u, v, f).

Theorem 8. Let u0, v0 \in W
3/2,4
\bfn (\Omega ) with u0 \geq 0 and v0 \geq 0 in \Omega . Assuming

that either \gamma f > 0 or \scrF is bounded in L4(Qc) and hypothesis (76), the bilinear optimal

control problem (74) has at least one global optimal solution (\~u, \~v, \~f) \in \scrS ad.

Proof. From hypothesis (76), \scrS ad \not = \emptyset . Let \{ sm\} m\in \BbbN := \{ (um, vm, fm)\} m\in \BbbN \subset 
\scrS ad be a minimizing sequence of J , that is, limm\rightarrow +\infty J(sm) = infs\in \scrS ad

J(s). Then,
by definition of \scrS ad, for each m \in \BbbN , sm satisfies system (1) a.e. (t, x) \in Q.

From the definition of J and the assumption \gamma f > 0 or \scrF is bounded in L4(Qc),
it follows that

(78) \{ fm\} m\in \BbbN is bounded in L4(Qc)

and
\{ um\} m\in \BbbN is bounded in L20/7(Q).

From (40) there exists a positive constant C, independent of m, such that

(79) \| (um, vm)\| X4\times X4
\leq C.

Therefore, from (78), (79), and taking into account that \scrF is a closed convex subset
of L4(Qc) (hence is weakly closed in L4(Qc)), it is deduced that there exists \~s =
(\~u, \~v, \~f) \in X4 \times X4 \times \scrF such that, for some subsequence of \{ sm\} m\in \BbbN , still denoted
by \{ sm\} m\in \BbbN , the following convergences hold as m \rightarrow +\infty :

um \rightarrow \~u weakly in L4(W 2,4) and weakly* in L\infty (W 3/2,4
\bfn );(80)

vm \rightarrow \~v weakly in L4(W 2,4) and weakly* in L\infty (W 3/2,4
\bfn );(81)

\partial tum \rightarrow \partial t\~u weakly in L4(Q);(82)

\partial tvm \rightarrow \partial t\~v weakly in L4(Q);(83)

fm \rightarrow \~f weakly in L4(Qc) and \~f \in \scrF .(84)
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From (80)--(83), Theorems 3 and 4, and using Sobolev embedding, one has

(um, vm) \rightarrow (\~u, \~v) strongly in (C([0, T ];Lq) \cap L4(W 1,q))2 \forall q < +\infty .(85)

In particular, the limit of the nonlinear terms of (1) can be controlled as follows:

\nabla \cdot (um\nabla vm) \rightarrow \nabla \cdot (\~u\nabla \~v) weakly in L10/3(Q),(86)

fmvm1\Omega c
\rightarrow \~f \~v 1\Omega c

weakly in L4(Q).(87)

Moreover, from (85) it implies that (um(0), vm(0)) converges to (\~u(0), \~v(0)) in Lq(\Omega )\times 
Lq(\Omega ), and since um(0) = u0, vm(0) = v0, it is deduced that \~u(0) = u0 and \~v(0) =
v0. Thus, \~s satisfies the initial conditions given in (2). Therefore, considering the
convergences (80)--(87) and taking the limit in (1) replacing (u, v, f) by (um, vm, fm)
as m goes to +\infty , it is possible to conclude that \~s = (\~u, \~v, \~f) is a solution of the
system (1) pointwisely, that is, \~s \in \scrS ad. Therefore,

(88) lim
m\rightarrow +\infty 

J(sm) = inf
s\in \scrS ad

J(s) \leq J(\~s).

Additionally, since J is lower semicontinuous on \scrS ad, one has

J(\~s) \leq lim inf
m\rightarrow +\infty 

J(sm),

which, jointly with (88), implies (77).

5.2. Optimality system related to local optimal solutions. The first-order
necessary optimality conditions for a local optimal solution (\~u, \~v, \~f) of problem (74)
will be derived, applying a Lagrange multiplier theorem. The argument is based
on a generic result given by Zowe and Kurcyusz [38] (see also [35, Chapter 6] for
more details) on the existence of Lagrange multiplier in Banach spaces. In order to
introduce the concepts and results given in [38], the following optimization problem
will be considered:

(89) min
s\in \BbbM 

J(s) subject to G(s) = 0.

Here, J : \BbbX \rightarrow \BbbR is a functional, G : \BbbX \rightarrow \BbbY is an operator, \BbbX and \BbbY are Banach
spaces, and \BbbM is a nonempty closed and convex subset of \BbbX . The admissible set for
problem (89) is defined by

\scrS = \{ s \in \BbbM : G(s) = 0\} .

Definition 5 (Lagrangian). The functional \scrL : \BbbX \times \BbbY \prime \rightarrow \BbbR , given by

(90) \scrL (s, \xi ) = J(s) - \langle \xi ,G(s)\rangle \BbbY \prime ,

is called the Lagrangian functional related to problem (89).

Definition 6 (Lagrange multiplier). Let \~s \in \scrS be a local optimal solution for
problem (89). Suppose that J and G are Fr\'echet differentiable in \~x, with derivatives
J \prime (\~s) and G\prime (\~s), respectively. Then any \xi \in \BbbY \prime is called a Lagrange multiplier for (89)
at the point \~s if

(91)

\biggl\{ 
\langle \xi ,G(\~s)\rangle \BbbY \prime = 0,
\scrL \prime (\~s, \xi )[r] = J \prime (\~s)[r] - \langle \xi ,G\prime (\~s)[r]\rangle \BbbY \prime \geq 0 \forall r \in \scrC (\~s),

where \scrC (\~s) = \{ \theta (s - \~s) : s \in \BbbM , \theta \geq 0\} is the conical hull of \~s in \BbbM .
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Definition 7. Let \~s \in \scrS be a local optimal solution for problem (89). It will be
said that \~s is a regular point if

G\prime (\~s)[\scrC (\~s)] = \BbbY .

Theorem 9 ([35, Theorem 6.3, p. 330], [38, Theorem 3.1]). Let \~s \in \scrS be a local
optimal solution for problem (89). Suppose that J is a Fr\'echet differentiable function
and G is continuous Fr\'echet differentiable. If \~s is a regular point, then the set of
Lagrange multipliers for (89) at \~s is nonempty.

Now the optimal control problem (74) will be reformulated in the abstract setting
(89). The Banach spaces

\BbbX := \widehat X4 \times \widehat X4 \times L4(Qc), \BbbY := L4(Q)\times L4(Q),

are considered, where \widehat X4 = \{ u \in X4 : u(0) = 0\} 
and the operator G = (G1, G2) : \BbbX \rightarrow \BbbY , where

G1 : \BbbX \rightarrow L4(Q), G2 : \BbbX \rightarrow L4(Q),

are defined at each point s = (u, v, f) \in \BbbX by\Biggl\{ 
G1(s) = \partial tu - \Delta u - \nabla \cdot (u\nabla v),

G2(s) = \partial tv  - \Delta v + v  - u - f v 1\Omega c
.

Thus, the optimal control problem (74) is reformulated as

(92) min
s\in \BbbM 

J(s) subject to G(s) = 0,

where

\BbbM := (\^u, \^v, \^f) + \widehat X4 \times \widehat X4 \times (\scrF  - \^f),

where (\^u, \^v, \^f) is a global strong solution of (1)--(3) and \scrF is defined in (73).

Remark 7. From Definition 5, it is deduced that the Lagrangian associated to
optimal control problem (92) is the functional \scrL : \BbbX \times L4/3(Q)\times L4/3(Q) \rightarrow \BbbR given
by

\scrL (s, \lambda , \eta ) = J(s) - \langle \lambda ,G1(s)\rangle L4/3  - \langle \eta ,G2(s)\rangle L4/3 .

It can be observed that \BbbM is a closed convex subset of \BbbX and that the set of
admissible solutions of control problem (92) is

(93) \scrS ad = \{ s = (u, v, f) \in \BbbM : G(s) = 0\} .

Concerning the differentiability of the constraint operator G and the functional J ,
one has the following results.

Lemma 10. The functional J : \BbbX \rightarrow \BbbR is Fr\'echet differentiable, and the Fr\'echet
derivative of J in \~s = (\~u, \~v, \~f) \in \BbbX in the direction r = (U, V, F ) \in \BbbX is

(94)

J \prime (\~s)[r] = \gamma u

\int T

0

\int 
\Omega 

sgn(\~u - ud)| \~u - ud| 13/7U + \gamma v

\int T

0

\int 
\Omega 

(\~v  - vd)V + \gamma f

\int T

0

\int 
\Omega c

( \~f)3F.
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Lemma 11. The operator G : \BbbX \rightarrow \BbbY is continuous Fr\'echet differentiable, and the
Fr\'echet derivative of G in \~s = (\~u, \~v, \~f) \in \BbbX in the direction r = (U, V, F ) \in \BbbX is the
linear operator G\prime (\~s)[r] = (G\prime 

1(\~s)[r], G
\prime 
2(\~s)[r]) defined by

(95)

\biggl\{ 
G\prime 

1(\~s)[r] = \partial tU  - \Delta U  - \nabla \cdot (U\nabla \~v) - \nabla \cdot (\~u\nabla V ),

G\prime 
2(\~s)[r] = \partial tV  - \Delta V + V  - U  - \~f V 1\Omega c

 - F \~v.

The aim is to prove the existence of Lagrange multipliers, which is guaranteed if a
local optimal solution of problem (92) is a regular point of operator G (by virtue of
Theorem 9).

Remark 8. From Definition 7 it is concluded that \~s = (\~u, \~v, \~f) \in \scrS ad is a regular

point if for any (gu, gv) \in \BbbY there exists r = (U, V, F ) \in \widehat X4 \times \widehat X4 \times \scrC ( \~f) such that

G\prime (\~s)[r] = (gu, gv),

where \scrC ( \~f) := \{ \theta (f  - \~f) : \theta \geq 0, f \in \scrF \} is the conical hull of \~f in \scrF .

Lemma 12. Let \~s = (\~u, \~v, \~f) \in \scrS ad (\scrS ad defined in (93)). Then \~s is a regular
point.

Proof. For a fixed point (\~u, \~v, \~f) \in \scrS ad, let (gu, gv) \in \BbbY = L4(Q)2. Since 0 \in 
\scrC ( \~f) = \{ \theta (f - \~f) : \theta \geq 0, f \in \scrF \} , it suffices to show the existence of (U, V ) \in X4\times X4

solving the linear problem

(96)

\left\{         
\partial tU  - \Delta U  - \nabla \cdot (U\nabla \~v) - \nabla \cdot (\~u\nabla V ) = gu in Q,

\partial tV  - \Delta V + V  - U  - \~f V 1\Omega c
= gv in Q,

U(0) = 0, V (0) = 0 in \Omega ,
\partial U

\partial n
= 0,

\partial V

\partial n
= 0 on (0, T )\times \partial \Omega .

In order to prove the existence of solution of (96), Theorem 2 (Leray--Schauder fixed-
point theorem) will be utilized for \scrX = X\times X (X is defined in (4)) and \scrY = X20/11\times 
X20/11. Therefore, the operator

(97) S : (U, V ) \in X \times X \mapsto \rightarrow (U, V ) \in X20/11 \times X20/11

is considered, where (U, V ) is the solution of the decoupled problem

(98)

\biggl\{ 
\partial tU  - \Delta U  - \nabla \cdot (\~u\nabla V ) = \nabla \cdot (U\nabla \~v) + gu in Q,

\partial tV  - \Delta V + V = U + \~fV 1\Omega c + gv in Q,

endowed with the corresponding initial and boundary conditions.
Step 1: In order to prove Lemma 1 for the operator S defined in (97), starting from

(U, V ), one first finds V and later finds U . Indeed, from Corollary 1, it is known that
U, V \in L10/3(Q); hence, f \=V 1\Omega c \in L20/11(Q). Applying Theorem 1 (for p = 20/11)
to (98)2, it is deduced that V \in X20/11 and

(99)

\| V \| X20/11
\leq C

\Bigl( 
\| U + \~fV 1\Omega c

+ gv\| L20/11(Q)

\Bigr) 
\leq C

\Bigl( 
\| U\| X + \| \~f\| L4(Q)\| V \| X + \| gv\| L4(Q)

\Bigr) 
.

Owing to Remark 4, it is known that \~v \in X4 implies \nabla \~v \in L20(Q), and it can be
deduced that

(100) \nabla \cdot (U\nabla \~v) = U \Delta \~v +\nabla U \cdot \nabla \~v \in L20/11(Q).
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Observe that, using (9) and Lemma 6,
(101)
V \in X20/11 \lhook \rightarrow L\infty (W 9/10,20/11) \cap L20/11(W 2,20/11) \lhook \rightarrow L\infty (H3/4) \cap L20/11(H37/20).

In particular, from (101), V \in X20/11 \lhook \rightarrow L20/7(H29/20). Therefore, using again
Lemma 6,

(102) \nabla V \in L20/7(H9/20) \lhook \rightarrow L20/7(Q),

and thus

(103) \nabla \cdot (\~u\nabla V ) = \~u\Delta V +\nabla \~u \cdot \nabla V \in L20/11(Q) + L5/2(Q)

thanks to (41) and (42).
Therefore, from (100), (103), and Theorem 1, it is deduced that U \in X20/11 and

(104)
\| U\| X20/11

\leq C \| \nabla \cdot (U\nabla \~v) +\nabla \cdot (\~u\nabla V ) + gu\| L20/11(Q)

\leq C
\bigl( 
\| U\| X\| \~v\| X4

+ \| V \| X20/11
\| \~u\| X4

\bigr) 
.

Finally, from (99) and (104), it is deduced that bounded sets in X \times X are mapped
in bounded sets in X20/11 \times X20/11.

Step 2: From Corollary 2 it can be deduced that X20/11 is compactly embedded
in X. Therefore, Lemma 2 is proved in this case.

Step 3: In particular, using the argument of Lemma 14 (see Appendix A), it is
not difficult to prove the continuity of S from X \times X to itself.

Step 4: Now the aim is to show that the set S\alpha := \{ (U, V ) \in X20/11 \times X20/11 :
(U, V ) = \alpha S(U, V ) for some \alpha \in [0, 1]\} is bounded in X \times X (with respect to \alpha ).
Indeed, if (U, V ) \in S\alpha , then (U, V ) \in X20/11 \times X20/11 and solves the coupled linear
problem

(105)

\biggl\{ 
\partial tU  - \Delta U  - \nabla \cdot (\~u\nabla V ) = \alpha \nabla \cdot (U\nabla \~v) + \alpha gu in Q,

\partial tV  - \Delta V + V = \alpha U + \alpha \~fV 1\Omega c
+ \alpha gv in Q,

with the corresponding initial and boundary conditions. Then, testing (105)1 by U ,
one obtains
(106)
d

dt
\| U\| 2 + \| \nabla U\| 2 \leq C \alpha 4

\bigl( 
1 + \| \nabla \~v\| 4L6

\bigr) 
\| U\| 2 +C \| \~u\| 2L\infty \| \nabla V \| 2 +\alpha 

\bigl( 
\| gu\| 2 + \| U\| 2

\bigr) 
.

Now, testing (105)2 by V , it holds that

(107)
d

dt
\| V \| 2 + \| V \| 2H1 \leq C \alpha 4\| f\| 4L2 \| V \| 2 + \alpha 

\bigl( 
\| gv\| 2 + \| U\| 2 + \| V \| 2

\bigr) 
.

Considering an adequate constant K > 2C \| \~u\| 2L\infty (recall that \~u \in L\infty (Q)), it is
deduced from (106) and (107) that

d

dt

\bigl( 
\| U\| 2 +K\| V \| 2

\bigr) 
+ \| \nabla U\| 2 + (K  - 2C \| \~u\| 2L\infty )\| V \| 2H1

\leq C \alpha 4
\bigl( 
1 + \| \nabla \~v\| 4L6

\bigr) 
\| U\| 2 + C K \alpha 4\| f\| 4L2 \| V \| 2

+ \alpha 
\Bigl( 
\| gu\| 2 +K\| gv\| 2 + (1 +K)\| U\| 2 +K\| V \| 2

\Bigr) 
.
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Using that U(0) = V (0) = 0 and \| gu\| L2(L2), \| gv\| L2(L2), \| f\| L4(L2), \| \~u\| L\infty (Q),
and \| \nabla \~v\| L4(L6) are constant finite values. In fact, the data are even more regu-
lar because gu, gv \in L4(Q), and since \~v \in X4, \~u \in L\infty (Q) (thanks to (41)) and
\nabla \~v \in L4(0, T ;L6(\Omega ). Therefore, the Gronwall lemma implies that

(108) \| (U, V )\| X\times X \leq C.

Consequently, by applying the Leray--Schauder fixed-point theorem, one has the
existence of (U, V ) \in X20/11 \times X20/11 a solution of problem (96). The uniqueness of
solution is directly deduced from the linearity of problem (96).

Finally, it suffices to prove that this solution is in fact more regular; namely,
(U, V ) \in X4 \times X4. Indeed, from (108) and using (101) and Lemma 6, it can be
deduced that

(109) U, V \in X20/11 \lhook \rightarrow L\infty (L4) \cap L20/11(H37/20) \lhook \rightarrow L20/3(Q),

and since \~f \in L4(Qc), one has \~f V 1\Omega c \in L5/2(Q). Then, applying Theorem 1 (for
p = 5/2) to (105)2, it can be deduced that

V \in X5/2.

By Sobolev embeddings, for p = 5/2, one has W 2 - 2/p,p(\Omega ) \lhook \rightarrow Lq(\Omega ) for any q < +\infty .
Then V \in Lq(Q) (q < +\infty ); hence, \~f V 1\Omega c

is bounded in L4 - \varepsilon (Q), for any \varepsilon > 0.
Thus, using (109), U \in L20/3(Q). Again, from Theorem 1 (for p = 4 - \varepsilon ), one deduces
that V \in X4 - \varepsilon . This last regularity implies that V \in L\infty (Q), and the same argument
leads to

(110) V \in X4.

Now, using that U \in X20/11 and therefore satisfies (102) and (109) and that the
regularity (110) implies that \Delta \~v \in L4(Q) and from (70) \nabla \~v \in L20(Q), it is obtained
that

\nabla \cdot (U\nabla \~v) = U \Delta \~v +\nabla U \cdot \nabla \~v \in L5/2(Q).

Now, using that \Delta V \in L4(Q) and \~u \in X4 (hence, \~u \in L\infty (Q), \nabla \~u \in L20(Q), and
\Delta \~u \in L4(Q)),

\nabla \cdot (\~u\nabla V ) = \~u\Delta V +\nabla \~u \cdot \nabla V \in L4(Q).

Applying Theorem 1 (for p = 5/2) to (96)1, it is first deduced that U \in X5/2. Second,
using the reasoning made for V above, it is deduced that U \in Lq(Q) (for any q < +\infty ).
Moreover, U \in L\infty (W 6/5,5/2) \cap L5/2(W 2,5/2), and thus

\nabla U \in L\infty (W 1/5,5/2) \cap L5/2(W 1,5/2) \lhook \rightarrow L\infty (L3) \cap L5/2(W 1,5/2) \lhook \rightarrow L5(Q),

which implies

\nabla \cdot (U\nabla \~v) = U \Delta \~v +\nabla U \cdot \nabla \~v \in L4 - \varepsilon (Q) + L4(Q) \varepsilon > 0 (small),

and therefore U \in X4 - \varepsilon . This last condition guarantees that U \in L\infty (Q), and thus
it can easily be deduced that U \in X4.

Now the existence of Lagrange multiplier for problem (74) associated to any local
optimal solution \~s = (\~u, \~v, \~f) \in \scrS ad will be shown.
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Theorem 10. Let \~s = (\~u, \~v, \~f) \in \scrS ad be a local optimal solution for the control
problem (74). Then there exists a Lagrange multiplier \xi = (\lambda , \eta ) \in L4/3(Q)\times L4/3(Q)

such that for all (U, V, F ) \in \widehat X4 \times \widehat X4 \times \scrC ( \~f)

\gamma u

\int T

0

\int 
\Omega 

sgn(\~u - ud)| \~u - ud| 13/7U + \gamma v

\int T

0

\int 
\Omega 

(\~v  - vd)V

+ \gamma f

\int T

0

\int 
\Omega c

( \~f)3F  - 
\int T

0

\int 
\Omega 

\biggl( 
\partial tU  - \Delta U  - \nabla \cdot (U\nabla \~v) - \nabla \cdot (\~u\nabla V )

\biggr) 
\lambda 

 - 
\int T

0

\int 
\Omega 

\biggl( 
\partial tV  - \Delta V + V  - U  - \~fV 1\Omega c

\biggr) 
\eta +

\int T

0

\int 
\Omega c

F \~v\eta \geq 0.(111)

Proof. From Lemma 12, \~s \in \scrS ad is a regular point. Then, from Theorem 9, there
exists a Lagrange multiplier \xi = (\lambda , \eta ) \in L4/3(Q) \times L4/3(Q) such that by (91)2 and
Remark 7, one must satisfy

(112) \scrL \prime (s, \lambda , \eta )[r] = J \prime (\~s)[r] - \langle \lambda ,G\prime 
1(\~s)[r]\rangle L4/3  - \langle \eta ,G\prime 

2(\~s)[r]\rangle L4/3 \geq 0

for all r = (U, V, F ) \in \widehat X4 \times \widehat X4 \times \scrC ( \~f). Thus, the proof follows from (94), (95), and
(112).

From Theorem 10, an optimality system for problem (74) can be derived.

Corollary 3. Let \~s = (\~u, \~v, \~f) \in \scrS ad be a local optimal solution for the control
problem (74). Then the Lagrange multiplier (\lambda , \eta ) \in L4/3(Q)\times L4/3(Q), provided by
Theorem 10, satisfies the system\int T

0

\int 
\Omega 

\biggl( 
\partial tU  - \Delta U  - \nabla \cdot (U\nabla \~v)

\biggr) 
\lambda  - 

\int T

0

\int 
\Omega 

U\eta 

= \gamma u

\int T

0

\int 
\Omega 

sgn(\~u - ud)| \~u - ud| 13/7U \forall U \in \widehat X4,(113) \int T

0

\int 
\Omega 

\biggl( 
\partial tV  - \Delta V + V

\biggr) 
\eta  - 

\int T

0

\int 
\Omega c

\~fV \eta  - 
\int T

0

\int 
\Omega 

\nabla \cdot (\~u\nabla V )\lambda 

= \gamma v

\int T

0

\int 
\Omega 

(\~v  - vd)V \forall V \in \widehat X4(114)

and the optimality condition

(115)

\int T

0

\int 
\Omega c

(\gamma f ( \~f)
3 + \~v\eta )(f  - \~f) \geq 0 \forall f \in \scrF .

Proof. From (111), taking (V, F ) = (0, 0) and using that \widehat X4 is a vectorial space,
(113) holds. Similarly, taking (U,F ) = (0, 0) in (111) and taking into account that\widehat X4 is a vectorial space, (114) is deduced. Finally, taking (U, V ) = (0, 0) in (111), it
holds that

\gamma f

\int T

0

\int 
\Omega c

( \~f)3F +

\int T

0

\int 
\Omega c

\~v\eta F \geq 0, \forall F \in \scrC ( \~f).

Thus, choosing F = \theta (f  - \~f) \in \scrC ( \~f) for all f \in \scrF and \theta \geq 0 in the last inequality,
(115) is deduced.
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Remark 9. A pair (\lambda , \eta ) \in L4/3(Q)\times L4/3(Q) satisfying (113)--(114) corresponds
to the concept of very weak solution of the linear system
(116)\left\{         

 - \partial t\lambda  - \Delta \lambda +\nabla \lambda \cdot \nabla \~v  - \eta = \gamma usgn(\~u - ud)| \~u - ud| 13/7 in Q,

 - \partial t\eta  - \Delta \eta  - \nabla \cdot (\~u\nabla \lambda ) + \eta  - \~f \eta 1\Omega c
= \gamma v(\~v  - vd) in Q,

\lambda (T ) = 0, \eta (T ) = 0 in \Omega ,
\partial \lambda 

\partial n
= 0,

\partial \eta 

\partial n
= 0 on (0, T )\times \partial \Omega .

Theorem 11. Let \~s = (\~u, \~v, \~f) \in \scrS ad be a local optimal solution for the problem
(74) and ud \in L26/7(Q). Then the system (116) has a unique solution (\lambda , \eta ) such that

\lambda \in X20/13,(117)

\eta \in X20/13.(118)

Proof. Since the desired state ud \in L20/7(Q), it can be deduced that h(\~u) :=
sgn(\~u - ud)| \~u - ud| 13/7 \in L20/13(Q). Let s = T  - t, with t \in (0, T ) and \~\lambda (s) = \lambda (t),
\~\eta (s) = \eta (t). Then system (116) is equivalent to

(119)

\left\{           
\partial s\~\lambda  - \Delta \~\lambda +\nabla \~\lambda \cdot \nabla \~v  - \~\eta = \gamma uh(\~u) in Q,

\partial s\~\eta  - \Delta \~\eta  - \nabla \cdot (\~u\nabla \~\lambda ) + \~\eta  - \~f \~\eta 1\Omega c
= \gamma v(\~v  - vd) in Q,

\~\lambda (0) = 0, \~\eta (0) = 0 in \Omega ,

\partial \~\lambda 

\partial n
= 0,

\partial \~\eta 

\partial n
= 0 on (0, T )\times \partial \Omega .

In order to prove the existence of a solution for (119), as before the Leray--
Schauder fixed-point theorem it will be applied over the operator

(120) \widehat T : (\=\lambda , \=\eta ) \in X \times X \mapsto \rightarrow (\lambda , \eta ) \in X20/13 \times X20/13,

where the space X is defined in (4). This time, it is wanted to prove Theorem 2 for

operator \widehat T , using \scrX = X \times X and \scrY = X20/13 \times X20/13, and (\lambda , \eta ) = \widehat T (\=\lambda , \=\eta ) solving
the decoupled problem

(121)

\left\{         
\partial s\lambda  - \Delta \lambda +\nabla \=\lambda \cdot \nabla \~v  - \=\eta = \gamma uh(\~u) in Q,

\partial s\eta  - \Delta \eta  - \nabla \cdot (\~u\nabla \lambda ) + \eta  - \~f \=\eta 1\Omega c
= \gamma v(\~v  - vd) in Q,

\lambda (0) = 0, \eta (0) = 0 in \Omega ,
\partial \lambda 

\partial n
= 0,

\partial \eta 

\partial n
= 0 on (0, T )\times \partial \Omega .

Step 1: In order to prove Lemma 1, (\=\lambda , \=\eta ) \in X \times X is taken. Reasoning over
(121)1 and using Corollary 1, it can be deduced that

 - \nabla \=\lambda \cdot \nabla \~v + \=\eta + \gamma uh(\~u) \in L20/11(Q) + L10/3(Q) + L20/13(Q),

which implies (by Theorem 1) that \lambda \in X20/13. Such regularity cannot be improved
due to the regularity of \gamma uh(\~u).

Now the reasoning focus on (121)2. Observe that

(122) \~f \=\eta 1\Omega c
+ \gamma v(\~v  - vd) \in L20/11(Q) + L2(Q).

From \lambda \in X20/13, it can be deduced that

(123)
\lambda \in L\infty (W 7/10,20,13) \cap L20/13(W 2,20/13) \lhook \rightarrow L\infty (H1/4) \cap L20/13(H31/20)

\lhook \rightarrow Lp(H1/4+2/p) p \geq 20/13.
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Therefore, \nabla \lambda \in Lp(H - 3/4+2/p) \lhook \rightarrow L20/9(Q) and

(124) \nabla \cdot (\~u\nabla \lambda ) = \~u\Delta \lambda +\nabla \~u \cdot \nabla \lambda \in L20/13(Q) + L2(Q).

From (122) and (124), it is deduced that \eta \in X20/13. Again, the regularity for \eta 
cannot be improved because the regularity of \lambda cannot either. In conclusion, one has
that operator \widehat T is well defined from X \times X in X20/13 \times X20/13 and maps bounded
sets of X \times X in bounded sets of X20/13 \times X20/13.

Step 2: Lemma 9 guarantees that X20/13 is compactly embedded in X. Therefore,
Lemma 2 is true in this case.

Step 3: In particular, using the argument of Lemma 14, it is not difficult to prove
the continuity of \widehat T from X \times X to itself.

Step 4: The aim is to show that the set

\widehat T\alpha := \{ (\lambda , \eta ) \in X20/13 \times X20/13 : (\lambda , \eta ) = \alpha \widehat T (\lambda , \eta ) for some \alpha \in [0, 1]\} 

is bounded in X \times X (with respect to \alpha ). Indeed, if (\lambda , \eta ) \in \widehat T\alpha , then (\lambda , \eta ) \in 
X20/13 \times X20/13 and solves the coupled linear problem

(125)

\left\{         
\partial s\lambda  - \Delta \lambda + \alpha \nabla \lambda \cdot \nabla \~v  - \alpha \eta = \alpha \gamma uh(\~u) in Q,

\partial s\eta  - \Delta \eta  - \nabla \cdot (\~u\nabla \lambda ) + \eta  - \alpha \~f \eta 1\Omega c = \alpha \gamma v(\~v  - vd) in Q,
\lambda (0) = 0, \eta (0) = 0 in \Omega ,
\partial \lambda 

\partial n
= 0,

\partial \eta 

\partial n
= 0 on (0, T )\times \partial \Omega .

Taking \lambda as test function in (125)1, it is obtained that

(126)

1

2

d

dt
\| \lambda \| 2 + \| \nabla \lambda \| 2

\leq \alpha 
\bigl( 
\| \eta \| 2 + \| \lambda \| 2

\bigr) 
+ \alpha \| \lambda \| H1\| \nabla \~v\| L6\| \lambda \| L3 + \alpha \gamma u \| h(\~u)\| L20/13\| \lambda \| 20/7

\leq \varepsilon 
\bigl( 
\| \nabla \lambda \| 2 + \| \lambda \| 2

\bigr) 
+ \alpha 

\bigl( 
\| \eta \| 2 + \| \lambda \| 2

\bigr) 
+ C\varepsilon 

\Bigl( 
\alpha 4 \| \nabla \~v\| 4L6\| \lambda \| 2 + \alpha 40/31 \| h(\~u)\| 20/13

L20/13 \| \lambda \| 2 + \alpha 40/31 \| h(\~u)\| 15/13
L20/13

\Bigr) 
.

Taking \eta as test function in (125)2, it is obtained that

(127)

1

2

d

dt
\| \eta \| 2 + \| \eta \| 2H1

\leq \| \~u\| L\infty \| \nabla \lambda \| \| \nabla \eta \| + \alpha \| \~f\| \| \eta \| L6\| \eta \| L3 + \alpha \gamma v \| \~v  - vd\| \| \eta \| 
\leq \varepsilon \| \nabla \eta \| 2 + C\varepsilon 

\Bigl( 
\| \~u\| 2L\infty \| \nabla \lambda \| 2 + \alpha \| \~f\| 4\| \eta \| 2 + \alpha 

\bigl( 
\gamma 2
v \| \~v  - vd\| 2 + \| \eta \| 2

\bigr) \Bigr) 
.

Considering an adequate constant K > C\varepsilon \| \~u\| 2L\infty (recall that \~u \in L\infty (Q)), it can be
deduced from (126) and (127) that

d

dt

\bigl( 
\| \eta \| 2 +K\| \lambda \| 2

\bigr) 
+ \| \eta \| 2H1 +K\| \nabla \lambda \| 2

\leq C(\alpha )

\biggl\{ \biggl( 
1 + \| \nabla \~v\| 4L6

+
\Bigl( 
1 + \| \~f\| 4

\Bigr) 
\| \eta \| 2\| h(\~u)\| 20/13

L20/13

\biggr) 
\| \lambda \| 2 + \| \~v  - vd\| 2 + \| h(\~u)\| 15/13

L20/13

\biggr\} 
.
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Using Remark 4, the hypotheses of the Gronwall lemma are satisfied, which implies
that

\| (\lambda , \eta )\| X\times X \leq C(\| \~u\| X4 , \| \~v\| X4 , \| \~f\| L4(Q), \| ud\| L20/7(Q), \| vd\| L2(Q)).

Therefore, by applying the Leray--Schauder fixed-point theorem, the existence of
a solution of problem (116), (\lambda , \eta ) \in X20/13 \times X20/13, is obtained. The uniqueness of
a solution is directly deduced from the linearity of problem (116).

In the following result, more regularity for the Lagrange multiplier (\lambda , \eta ) than
provided by Theorem 10 will be obtained.

Theorem 12. Let \~s = (\~u, \~v, \~f) \in \scrS ad be a local optimal solution for the control
problem (74). Then the Lagrange multiplier, provided by Theorem 10, satisfies (\lambda , \eta ) \in 
X20/13 \times X20/13.

Proof. Let (\lambda , \eta ) be the Lagrange multiplier given in Theorem 10, which is a very
weak solution of problem (116). In particular, (\lambda , \eta ) satisfies (113)--(114).

Furthermore, from Theorem 11, system (116) has a unique solution (\lambda , \eta ) \in 
X20/13\times X20/13. Then it suffices to identify (\lambda , \eta ) with (\lambda , \eta ). With this objective, the

unique solution (U, V ) \in X4\times X4 of linear system (96) for gu := sgn(\lambda  - \lambda )| \lambda  - \lambda | 1/3 \in 
L4(Q) and gv := sgn(\eta  - \eta )| \eta  - \eta | 1/3 \in L4(Q) is considered (see Lemma 12). Then,
writing (116) for (\lambda , \eta ) (instead of (\lambda , \eta )), testing the first equation by U and the
second one by V , and integrating by parts in \Omega , it is obtained that
(128)\int T

0

\int 
\Omega 

\biggl( 
\partial tU  - \Delta U  - \nabla \cdot (U\nabla \~v)

\biggr) 
\lambda  - 

\int T

0

\int 
\Omega 

U\eta = \gamma u

\int T

0

\int 
\Omega 

sgn(\~u - ud)| \~u - ud| 13/7U,

(129)

\int T

0

\int 
\Omega 

\biggl( 
\partial tV  - \Delta V +V  - \~fV 1\Omega c

\biggr) 
\eta  - 
\int T

0

\int 
\Omega 

\nabla \cdot (\~u\nabla V )\lambda = \gamma v

\int T

0

\int 
\Omega 

(\~v - vd)V.

Making the difference between (113) for (\lambda , \eta ) and (128) for (\lambda , \eta ) and between (114)
and (129) and then adding the respective equations, since the right-hand-side terms
vanish, it can be deduced that

\int T

0

\int 
\Omega 

\biggl( 
\partial tU  - \Delta U  - \nabla \cdot (U\nabla \~v) - \nabla \cdot (\~u\nabla V )

\biggr) 
(\lambda  - \lambda )

+

\int T

0

\int 
\Omega 

\biggl( 
\partial tV  - \Delta V + V  - U  - \~fV 1\Omega c

\biggr) 
(\eta  - \eta ) = 0.(130)

Therefore, taking into account that (U, V ) is the unique solution of (96) for gu =
sgn(\lambda  - \lambda )| \lambda  - \lambda | 1/3 and gv = sgn(\eta  - \eta )| \eta  - \eta | 1/3, from (130) it is deduced that

\| \lambda  - \lambda \| 4/3
L4/3(Q)

+ \| \eta  - \eta \| 4/3
L4/3(Q)

= 0,

which implies that (\lambda , \eta ) = (\lambda , \eta ) in L4/3(Q) \times L4/3(Q). As a consequence of the
regularity of (\lambda , \eta ), it holds that (\lambda , \eta ) \in X20/13 \times X20/13.

Corollary 4 (optimality system). Let \~s = (\~u, \~v, \~f) \in \scrS ad be a local optimal
solution for the control problem (74). Then the Lagrange multiplier (\lambda , \eta ) \in X20/13 \times 
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X20/13 satisfies the optimality system
(131)\left\{                   

 - \partial t\lambda  - \Delta \lambda +\nabla \lambda \cdot \nabla \~v  - \eta = \gamma usgn(\~u - ud)| \~u - ud| 13/7 a.e. (t, x) \in Q,

 - \partial t\eta  - \Delta \eta  - \nabla \cdot (\~u\nabla \lambda ) + \eta  - \~f \eta 1\Omega c
= \gamma v(\~v  - vd) a.e. (t, x) \in Q,

\lambda (T ) = 0, \eta (T ) = 0 in \Omega ,
\partial \lambda 

\partial n
= 0,

\partial \eta 

\partial n
= 0 on (0, T )\times \partial \Omega ,\int T

0

\int 
\Omega c

(\gamma f ( \~f)
3 + \~v \eta )(f  - \~f) \geq 0 \forall f \in \scrF .

Remark 10. If \gamma f > 0 and there is no convexity constraint on the control, that
is, \scrF \equiv L4(Qc), then (131)5 becomes

\gamma f ( \~f)
31\Omega c

+ \~v \eta 1\Omega c
= 0.

Thus, the control \~f is given by

\~f =

\biggl( 
 - 1

\gamma f
\~v \eta 

\biggr) 1/3

1\Omega c .

Appendix A. Existence of strong solutions of Problem (16). In this
appendix, Theorem 6 will be proved. By considering the weak space

X := C(L2) \cap L2(H1),

and the operator R : X\times X \rightarrow X5/3\times X10/3 \lhook \rightarrow X\times X defined by R(u\varepsilon , z\varepsilon ) = (u\varepsilon , z\varepsilon ),
where (u\varepsilon , z\varepsilon ) is the solution of the decoupled linear problem

(132)

\left\{         
\partial tu

\varepsilon  - \Delta u\varepsilon = \nabla \cdot (u\varepsilon 
+\nabla v(z\varepsilon )) in Q,

\partial tz
\varepsilon  - \Delta z\varepsilon + z\varepsilon = u\varepsilon + f v\varepsilon +1\Omega c

in Q,
u\varepsilon (0) = u\varepsilon 

0, z\varepsilon (0) = v\varepsilon 0  - \varepsilon \Delta v\varepsilon 0 in \Omega ,
\partial u\varepsilon 

\partial n
= 0,

\partial z\varepsilon 

\partial n
= 0 on (0, T )\times \partial \Omega ,

being v\varepsilon := v(z\varepsilon ) is the unique solution of problem (17) and v\varepsilon + its positive part.
Then a solution of system (16) is a fixed point of R. Therefore, in order to prove
the existence of solution to system (16), we will use the Leray--Schauder fixed-point
theorem (Theorem 2) taking T = R, \scrX = X \times X, and \scrY = X5/3 \times X10/3.

Step 1: Now Lemma 1 is rewritten as follows.

Lemma 13. The operator R is well defined from X\times X to X5/3\times X10/3 and maps
bounded set of X \times X into bounded sets of X5/3 \times X10/3

Proof. Let (u\varepsilon , z\varepsilon ) \in X \times X. From the H2 and H3-regularity of problem (17)
(see [16, Theorems 2.4.2.7 and 2.5.11], respectively, and recall that \partial \Omega \in C2,1), it can
be obtained that

v\varepsilon \in L\infty (H2) \cap L2(H3).

Thus, it has been deduced that \nabla v\varepsilon \in L\infty (H1) \cap L2(H2) \lhook \rightarrow L10(Q) and \Delta v\varepsilon \in 
L\infty (L2) \cap L2(H1) \lhook \rightarrow L10/3(Q). Then, taking into account that u\varepsilon \in X \lhook \rightarrow L10/3(Q),
it can also be deduced that \nabla \cdot (u\varepsilon 

+\nabla v\varepsilon ) = u\varepsilon 
+\Delta v\varepsilon + \nabla u\varepsilon 

+ \cdot \nabla v\varepsilon \in L5/3(Q). Then,
by Theorem 1 (for p = 5/3), there exists a unique solution u\varepsilon \in X5/3 of (132)1 that
satisfies

(133) \| u\varepsilon \| X5/3
\leq C(\| u\varepsilon 

0\| W 4/5,5/3 , \| u\varepsilon \| X , \| z\varepsilon \| X).
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Now, since X \lhook \rightarrow L10/3(Q) and v\varepsilon \in L\infty (Q), it follows that u\varepsilon + f v\varepsilon +1\Omega c
\in 

L10/3(Q). Then, by Theorem 1 (for p = 10/3), there exists a unique solution z\varepsilon of
(132)2 belonging to X10/3 and

(134) \| z\varepsilon \| X10/3
\leq C(\| z\varepsilon 0\| W 7/5,10/3

\bfn 
, \| u\varepsilon \| X , \| z\varepsilon \| X , \| f\| L4(Q)).

Therefore, R is well defined from X \times X in X5/3 \times X10/3 and maps bounded set
of X \times X into bounded sets of X5/3 \times X10/3.

Step 2: From Corollary 2, the compact embedding of X10/3 and X5/3 in X can
be deduced. Therefore, Lemma 2 is proved in this case.

Step 3: Now Lemma 3 is rewritten as follows.

Lemma 14. The operator R : X \times X \rightarrow X \times X is continuous.

Proof. Let \{ (u\varepsilon 
m, z\varepsilon m)\} m\in \BbbN \subset X \times X be a sequence such that

(135) (u\varepsilon 
m, z\varepsilon m) \rightarrow (u\varepsilon , z\varepsilon ) in X \times X.

In particular, \{ (u\varepsilon 
m, z\varepsilon m)\} m\in \BbbN is bounded in X \times X. Thus, from (133) and (134),

the boundedness of the sequence \{ (u\varepsilon 
m, z\varepsilon m) := R(u\varepsilon 

m, z\varepsilon m)\} m\in \BbbN in X5/3 \times X10/3 can
be deduced. Then there exists a subsequence of \{ R(u\varepsilon 

m, z\varepsilon m)\} m\in \BbbN , still denoted by
\{ R(u\varepsilon 

m, z\varepsilon m)\} m\in \BbbN , and an element (\widehat u\varepsilon , \widehat z\varepsilon ) \in X5/3 \times X10/3 such that

(136) R(u\varepsilon 
m, z\varepsilon m) \rightarrow (\widehat u\varepsilon , \widehat z\varepsilon ) weakly in X5/3 \times X10/3 and strongly in X \times X.

Now system (132) written for (u\varepsilon , z\varepsilon ) = R(u\varepsilon 
m, z\varepsilon m) and (u\varepsilon , z\varepsilon ) = (u\varepsilon 

m, z\varepsilon m) is consid-
ered. From (135) and (136), taking the limit in the system depending on m, as m goes
to +\infty , it is deduced that (\widehat u\varepsilon , \widehat z\varepsilon ) = R(limm\rightarrow +\infty (u\varepsilon 

m, z\varepsilon m)). Then by the uniqueness
of the limit, the whole sequence \{ R(u\varepsilon 

m, z\varepsilon m)\} m\in \BbbN converges to (\widehat u\varepsilon , \widehat z\varepsilon ) strongly in
X \times X. Thus, operator R : X \times X \rightarrow X \times X is continuous.

Step 4: The proof of the boundedness of the set \{ x \in \scrX : x = \alpha Rx for some
0 \leq \alpha \leq 1\} in this case follows from the following result.

Lemma 15. Let (u\varepsilon 
0, v

\varepsilon 
0  - \varepsilon \Delta v\varepsilon 0) \in W 4/5,5/3(\Omega ) \times W

7/5,10/3
\bfn (\Omega ) with u\varepsilon 

0 \geq 0 in \Omega 
and f \in L4(Qc). Then the possible fixed points (u\varepsilon , v\varepsilon ) of \alpha R are bounded in X \times X,
independently of \alpha \in [0, 1], with u\varepsilon \geq 0.

Proof. Assume that \alpha \in (0, 1] (the case \alpha = 0 is trivial). Notice that if (u\varepsilon , z\varepsilon )
is a fixed point of \alpha R(u\varepsilon , z\varepsilon ), then (u\varepsilon , z\varepsilon ) \in X5/3 \times X10/3 and satisfies a.e. in Q the
following problem:

(137)

\left\{         
\partial tu

\varepsilon  - \Delta u\varepsilon = \alpha \nabla \cdot (u\varepsilon 
+\nabla v\varepsilon ) in Q,

\partial tz
\varepsilon  - \Delta z\varepsilon + z\varepsilon = \alpha u\varepsilon + \alpha f v\varepsilon +1\Omega c

in Q,
u\varepsilon (0) = u\varepsilon 

0, z\varepsilon (0) = v\varepsilon 0  - \varepsilon \Delta v\varepsilon 0 in \Omega ,
\partial u\varepsilon 

\partial n
= 0,

\partial z\varepsilon 

\partial n
= 0 on (0, T )\times \partial \Omega .

The proof is carried out in three steps.
Step 1: u\varepsilon is bounded in L\infty (L1). In fact, one has

(138) u\varepsilon \geq 0 a.e. in Q and

\int 
\Omega 

u\varepsilon (t) =

\int 
\Omega 

u\varepsilon 
0 \forall t > 0.

Let (u\varepsilon , z\varepsilon ) be a solution of (137). Then (u\varepsilon , z\varepsilon ) \in X5/3 \times X10/3. In particular,

\partial tu
\varepsilon , \Delta v\varepsilon , and \nabla \cdot (u\varepsilon 

+\nabla v\varepsilon ) belong to L5/3(Q). Testing (137)1 by u\varepsilon 
 - \in X \lhook \rightarrow 
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L10/3(Q) \lhook \rightarrow L5/2(Q), where u\varepsilon 
 - := min\{ u\varepsilon , 0\} \leq 0, and taking into account that

u\varepsilon 
 - = 0 if u\varepsilon \geq 0, \nabla u\varepsilon 

 - = \nabla u\varepsilon if u\varepsilon \leq 0, and \nabla u\varepsilon 
 - = 0 if u\varepsilon > 0, it can be obtained

that
1

2

d

dt
\| u\varepsilon 

 - \| 2 + \| \nabla u\varepsilon 
 - \| 2 =  - \alpha (u\varepsilon 

+\nabla v\varepsilon ,\nabla u\varepsilon 
 - ) = 0,

which, jointly with u\varepsilon 
0 \geq 0 a.e. in \Omega , implies that u\varepsilon 

 - \equiv 0; hence, u\varepsilon \geq 0 a.e. in Q
and u\varepsilon 

+ \equiv u\varepsilon (the fact of taking u\varepsilon 
+ in the chemotactic term in (137)1 is used here to

guarantee the positivity of u\varepsilon ). Finally, integrating (137)1 in \Omega ,
\int 
\Omega 
u\varepsilon (t) =

\int 
\Omega 
u\varepsilon 
0 :=

m\varepsilon 
0 holds.
Step 2: z\varepsilon is bounded in X.

It can be observed that u\varepsilon + 1 \geq 1 and u\varepsilon + 1 \in L\infty (L1). Then, in particular,
u\varepsilon + 1 \in L1(Q) and

2

5
ln(u\varepsilon + 1) = ln

\Bigl[ 
(u\varepsilon + 1)2/5

\Bigr] 
\leq (u\varepsilon + 1)2/5 \in L5/2(Q);

hence, ln(u\varepsilon + 1) \in L5/2(Q). Note that an extension of this argument yields to\int 
\Omega 

(u\varepsilon + 1) ln(u\varepsilon + 1) \leq C(\| u\varepsilon \| Lp) for any p > 1.

Now, testing (137)1 by ln(u\varepsilon + 1) \in L5/2(Q) and (137)2 (rewritten in terms of v\varepsilon ) by
 - \Delta v\varepsilon \in L10/3(W 2,10/3), it can be obtained that

d

dt

\biggl( \int 
\Omega 

(u\varepsilon + 1) ln(u\varepsilon + 1) +
1

2
\| \nabla v\varepsilon \| 2 + \varepsilon 

2
\| \Delta v\varepsilon \| 2

\biggr) 
+ 4\| \nabla 

\surd 
u\varepsilon + 1\| 2

+ \| \Delta v\varepsilon \| 2 + \| \nabla v\varepsilon \| 2 + \varepsilon \| \Delta v\varepsilon \| 2 + \varepsilon \| \nabla (\Delta v\varepsilon )\| 2

=  - \alpha 

\int 
\Omega 

u\varepsilon 

u\varepsilon + 1
\nabla v\varepsilon \cdot \nabla u\varepsilon + \alpha 

\int 
\Omega 

\nabla u\varepsilon \cdot \nabla v\varepsilon  - \alpha 

\int 
\Omega 

f v\varepsilon +1\Omega c
\Delta v\varepsilon 

= \alpha 

\int 
\Omega 

1

u\varepsilon + 1
\nabla u\varepsilon \cdot \nabla v\varepsilon  - \alpha 

\int 
\Omega 

f v\varepsilon +1\Omega c
\Delta v\varepsilon .(139)

Applying H\"older and Young inequalities, the following inequalities hold:

(140)

\alpha 

\int 
\Omega 

1

u\varepsilon + 1
\nabla u\varepsilon \cdot \nabla v\varepsilon \leq \alpha 

2

\int 
\Omega 

| \nabla u\varepsilon | 2

u\varepsilon + 1
+

\alpha 

2

\int 
\Omega 

| \nabla v\varepsilon | 2

u\varepsilon + 1
\leq 2\alpha \| \nabla 

\surd 
u\varepsilon + 1\| 2 + \alpha 

2
\| \nabla v\varepsilon \| 2,

(141)

 - \alpha 

\int 
\Omega 

f v\varepsilon +1\Omega c
\Delta v\varepsilon \leq \alpha \| f\| L4\| v\varepsilon \| L4\| \Delta v\varepsilon \| \leq \delta \| v\varepsilon \| 2H2 + \alpha 2C\delta \| f\| 2L4\| v\varepsilon \| 2H1 .

Moreover, integrating (137)2 in \Omega , using (138), and taking into account that v\varepsilon 

is the unique solution of the problem (17), it holds that

d

dt

\biggl( \int 
\Omega 

v\varepsilon 
\biggr) 
+

\int 
\Omega 

v\varepsilon = \alpha 

\int 
\Omega 

u\varepsilon 
0 + \alpha 

\int 
\Omega 

f v\varepsilon +1\Omega c .

Multiplying this equation by
\int 
\Omega 
v\varepsilon and using the H\"older and Young inequalities, one

has

1

2

d

dt

\biggl( \int 
\Omega 

v\varepsilon 
\biggr) 2

+

\biggl( \int 
\Omega 

v\varepsilon 
\biggr) 2

= \alpha 

\biggl( \int 
\Omega 

u\varepsilon 
0

\biggr) \biggl( \int 
\Omega 

v\varepsilon 
\biggr) 
+ \alpha 

\biggl( \int 
\Omega 

f v\varepsilon +1\Omega c

\biggr) \biggl( \int 
\Omega 

v\varepsilon 
\biggr) 

\leq 1

2

\biggl( \int 
\Omega 

v\varepsilon 
\biggr) 2

+ \alpha 2C

\biggl( \int 
\Omega 

u\varepsilon 
0

\biggr) 2

+ \alpha 2C\| f\| 2\| v\varepsilon \| 2.(142)
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Adding (142) to (139) and then replacing (140) and (141) in the resulting inequality
and taking into account that \alpha \leq 1, it can be deduced that

d

dt

\biggl( \int 
\Omega 

(u\varepsilon + 1) ln(u\varepsilon + 1) +
1

2
\| v\varepsilon \| 2H1 +

\varepsilon 

2
\| \Delta v\varepsilon \| 2

\biggr) 
+ 2\| \nabla 

\surd 
u\varepsilon + 1\| 2

+ C\| v\varepsilon \| 2H2 + \varepsilon \| \nabla (\Delta v\varepsilon )\| 2 \leq C

\Biggl( \biggl( \int 
\Omega 

u\varepsilon 
0

\biggr) 2

+ \| f\| 2L4\| v\varepsilon \| 2H1

\Biggr) 
.(143)

From (143) and the Gronwall lemma, taking into account
\int 
\Omega 
(u\varepsilon + 1) ln(u\varepsilon + 1) \leq 

C\| u\varepsilon + 1\| Lp , for any p > 1, it holds that

\| v\varepsilon \| 2L\infty (0,T ;H2(\Omega )) \leq 1

\varepsilon 
exp

\Biggl( 
C

\int T

0

\| f(s)\| 2L4ds

\Biggr) \Biggl( 
\| u\varepsilon 

0\| 2Lp0 + \| v\varepsilon 0\| 2H2 + C

\biggl( \int 
\Omega 

u\varepsilon 
0

\biggr) 2

T

\Biggr) 
:= K\varepsilon 

0

\bigl( 
T, \| u\varepsilon 

0\| Lp0 , \| v\varepsilon 0\| H2 , \| f\| L2(L4)

\bigr) 
.(144)

Now, integrating (143) in (0,T) and using (144), it follows that

\int T

0

\| v\varepsilon (s)\| 2H3ds

\leq 1

\varepsilon 
C

\Biggl( 
\| u\varepsilon 

0\| 2Lp0 + \| v\varepsilon 0\| 2H2 +

\biggl( \int 
\Omega 

u\varepsilon 
0

\biggr) 2

T +

\biggl( 
sup

0\leq s\leq T
\| v\varepsilon (s)\| 2H2

\biggr) 
\| f\| 2L2(L4)

\Biggr) 
:= K\varepsilon 

1(T, \| u\varepsilon 
0\| Lp0 , \| v\varepsilon 0\| H2 , \| f\| L2(L4)).(145)

Therefore, from (144) and (145), the boundedness of v\varepsilon in L\infty (H2) \cap L2(H3) can be
deduced (independently of \alpha \in (0, 1]), which implies that z\varepsilon is bounded in X.

Step 3: u\varepsilon is bounded in X.
Testing (137)1 by u\varepsilon , one has

(146)
1

2

d

dt
\| u\varepsilon \| 2 + \| \nabla u\varepsilon \| 2 \leq \alpha \| u\varepsilon \| L3\| \nabla v\varepsilon \| L6\| \nabla u\varepsilon \| .

Since v\varepsilon is bounded in L\infty (H2), in particular \nabla v\varepsilon is bounded in L\infty (L6), by applying
(7) and Young inequalities and adding \| u\varepsilon \| 2 to both sides of (146), the following
inequality holds:

(147)
d

dt
\| u\varepsilon \| 2 + \| u\varepsilon \| 2H1 \leq C \| u\varepsilon \| 2.

Then the Gronwall lemma can be applied in (147), obtaining that u\varepsilon is bounded in
\scrX . Consequently, the fixed points of \alpha R are bounded in X \times X, independently of
\alpha > 0.

Finally, from Lemmas 13, 14, and 15, one follows that the operator R satisfies
the hypotheses of the Leray--Schauder fixed-point theorem (Theorem 2). Thus, it
is concluded that the map R has a fixed point (u\varepsilon , z\varepsilon ) \in X5/3 \times X10/3, that is,
R(u\varepsilon , z\varepsilon ) = (u\varepsilon , z\varepsilon ), which is a (strong) solution of system (16).
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