
© J.C. Baltzer AG, Science Publishers

Two-person non-zero-sum games
as multicriteria goal games

F.R. Fernándeza, J. Puertoa and L. Monroyb

aDepartamento Estadística e Investigación Operativa. Facultad de Matemáticas,
Universidad de Sevilla, E-41012 Sevilla, Spain

bDepartamento Economía Aplicada I, Facultad de Económicas y Empresariales,
Universidad de Sevilla, E-41012 Sevilla, Spain

     In this paper, we propose a new way to analyze bimatrix games. This new approach
consists of considering the game as a bicriteria matrix game. The solution concepts behind
this game are based on getting the probability to achieve some prespecified goals. We co-
nsider as a part of the solution, not only the payoff values, but also the probability to get
them. In addition, to avoid the choice of only one goal, two different approaches are used.
Firstly, sensitivity analysis of the solution set is carried out on the range of goals, secondly
a partition of the goal space in a finite number of regions is presented. Some examples are
included to illustrate the results in the paper.
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1. Introduction

From the seminal paper of Nash [1], it is known that any bimatrix game has at
least one equilibrium in mixed strategies. These equilibria for matrix games coincide
with saddle points, introduced by von Neumann [2]. However, the property that all
saddle points in matrix games have equal value is not verified by equilibria in bimatrix
games. Non-zero-sum games may have two or more equally attractive equilibrium
outcomes, each possessing equivalent status as a solution, with no compelling reason
to choose among them. Thus, multiplicity of Nash equilibria poses a problem for the
applicability of the concept of equilibrium as an unquestionable solution concept for
these games. Several authors have suggested choosing, as a solution to the game, a
subset of the equilibrium pairs with particular properties (see [4–8]).

As Luce and Raiffa [9] pointed out: “It is unfortunate that a unified theory for all
non-cooperative games does not seem possible. The only alternative seems to be to
complicate the problem by introducing more initial information in the form of bound-
ary and initial conditions.”
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Borm et al. [3] characterize  the Pareto equilibria of bimatrix games. This concept
induces a partial order in the set of equilibria based on vector domination. These
equilibria need not be unique, therefore the initial problem still remains. Despite these
difficulties, it is still possible to deal with this problem using an alternative analysis.
As the payoffs in these games are vectors, it seems to be logical to analyze these
situations from the beginning as a multicriteria decision problem.

The above comment could lead us to analyze bimatrix games as “bicriteria
matrix games”. To this end, Pareto-optimal security strategies (POSS) [10] have been
proposed as a solution concept for these games, based on the similarity with security
levels determined by saddle points in scalar matrix games. This concept is independent
of the notion of equilibrium so that the opponent is only taken into account to establish
the security levels for one’s own payoffs. When it is used to select strategies, the
concept of security levels has the important property that the payoff obtained by these
strategies cannot be diminished by the opponent’s deviation in strategy.

In [11], a methodology to get the whole set of POSS is developed, based
on solving a multiple-criteria linear program. This approach shows the parallelism
between these strategies in multicriteria games and minimax strategies in scalar zero-
sum matrix games. This notion of security is based on expected payoffs. For this
reason, only when the game is played many times can these strategies provide us with
a real sense of security. On the other hand, if the game is played only once, as in one-
shot games, a better analysis should consider not only the payoffs but also the prob-
ability to get them.

In this paper, we propose a new methodology to analyze bimatrix games. This
methodology is based on Pareto-optimal security strategies whose security levels are
defined for one of the players as the probability that self-determined goals may be
achieved [12,13]. Thus, we study as a part of the solution concept not only the payoff
values, but also the probability to get them. This means that the achieved payoff does
not depend on the repetition of the game, but rather the risk levels the player is able to
assume. For this reason, in this kind of analysis, goals represent a player’s risk attitude:
the higher the goals, the lower the probability of getting the payoffs.

Needless to say, the analysis depends on the risk attitude of the player who
determines his her goals. Nevertheless, if the player is not able to assume a concrete
goal, it is still possible to analyze the game for all possible goal values. This kind of
analysis is possible because it induces a finite partition in the solution space. Once the
player has all of this information, a decision may be made and a strategy can be chosen.
This procedure provides us with a general methodology to analyze bimatrix games
which, in turn, leads to a concrete strategy as soon as the player is willing to assume
his her risk attitude.

The paper is organized as follows. In the following section, we present the model
that we deal with and state the basic definitions that will be used in the rest of the
paper. In section 3, we obtain the set of efficient strategies with respect to a goal game
by means of a multiple linear problem. We cannot compare these strategies by the
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probability to get the different outcomes, but we may choose among them using some
decision rules, such as choosing the strategy that maximizes the expected value.

In section 4, we analyze the sensitivity of the efficient solution set regarding
modifications on the goals. Section 5 shows the decomposition of the goal space into
regions. The efficient solution set induced by all the goals within each of these regions
remains unchanged. This partition gives us the so-called “solution map”. With this
procedure, the player has information about all possible outcomes of the game. Finally,
section 6 presents our conclusions.

2. Model and definitions

Let A = (aij), B = (bij ), 1 ≤ i ≤ n, 1 ≤ j ≤ m, be the payoff matrices of a non-
zero-sum game, and the mixed strategy spaces for player I (PI) and player II (PII),
respectively:

  
X = x ∈R n , xi = 1, xi ≥ 0, i = 1,… , n

i =1

n

∑
 
 
 

  

 
 
 

  
,

In this section, we analyze these games under player I’s point of view, using
multicriteria goal games [12].

As player I’s decision affects the outcome of player II, this study can be made
under two different attitudes. Regarding the first attitude, named “positive attitude”,
player I tries to achieve the best outcome for both players. In the second attitude,
named “negative attitude”, player I tries to obtain the best outcome for himself to the
detriment of player II. Both approaches are similar; the only difference between them
is that for the “positive attitude” we consider a bicriteria game with matrix (A, B), and
for the “negative attitude” we consider a bicriteria game with matrix (A, – B). Notice
that this approach generalizes the method for obtaining optimal threat strategies for
bimatrix games, introduced by Owen [14]. He gets these strategies by solving the
zero-sum game whose payoff matrix is A – B, which in our approach is related to
solving the bicriteria game with weight values equal to one. Let us analyze the “posi-
tive attitude”.

Let P = (P1, P2) be goals specified by PI. These goals are the objectives that
player I would like to achieve as the consequence of the game. They represent not
only his her desired payoff, but also his her risk attitude. The goals should be fixed
by the player. Nevertheless, if the player were not able to choose the goals at the
beginning, there would exist a solution map which establishes a partition of the goal
space into a finite number of regions where the solution set remains unchanged.

  
Y = y ∈Rm , y j = 1, y j ≥ 0, j = 1, … , m

j =1

m

∑
 
 
 

  

 
 
 

  
.
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Definition 1.  The expected payoff of the game with goals P = (P1, P2), for each
strategy pair x ∈X and y ∈Y, is

υ( x, y) = (υ1(x, y), υ2(x, y)),
where

υ1(x, y) = x t APy, υ2( x, y) = x tBPy,

AP = (δij
1 ), BP = (δ ij

2 ), 1 ≤ i ≤ n, 1 ≤ j ≤ m,

δij
1 =

1 if aij ≥ P1 ,

0 otherwise;

 
 
 

  
δ ij

2 =
1 if bij ≥ P2 ,

0 otherwise.

 
 
 

  

Therefore, we associate each strategy pair (x, y) with the probability to get the
values P1 and P2.

As PI plays against PII, every strategy x ∈X defines goal security levels for PI.

Definition 2.  The P-goal security level vector of PI, for each x ∈X, is

υ P(x) = (υ1
P(x), υ2

P(x)),
where

υ1
P( x) = min

y ∈Y
υ1

P(x , y) = min
y ∈Y

x t APy = min
j

xiδij
1

i = 1

n

∑ 

  
 

  ,

υ2
P(x) = min

y ∈Y
υ2

P(x, y) = min
y ∈Y

xt BPy = min
j

xiδ ij
2

i = 1

n

∑
 

  
 

  .

It is easy to see that υs
P(x), s = 1, 2, is the minimum probability to achieve a

payoff at least of Ps when PI chooses strategy x, independently of player II.
Now, we establish a new analysis for bimatrix games based on goal security

levels. We propose to choose strategies which are non-dominated with respect to
the defined security levels in the modified game with matrices AP, BP. We call these
strategies P-goal security strategies.

Definition 3.  A strategy x* ∈X is a P-goal security strategy (PGSS) for PI if there is
no x  ∈X such that υ P(x*) ≤ υ P(x), υ P(x*) ≠ υ P(x).

These strategies have the property that with no other strategy can one have a
higher joint probability of getting the payoffs given by the prespecified goals. For this
reason, this approach is very convenient because it helps the players to make a decision
(to play) by showing the probability they have to get the payoffs that they would like
to have. We propose a characterization of PGSS using Multicriteria Linear Program-
ming. In this way, we can easily obtain all PGSS for player I.
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3. Determination of P-goal security strategies

Let us consider the following multiple-objective linear problem that we call the
P-goal game linear multicriteria problem (GLMP)P:

maximize υ1 ,υ2

subject to xt AP ≥ (υ1,… ,υ1),

xt BP ≥ (υ2 ,… ,υ 2),

xi = 1,
i = 1

n

∑
x ≥ 0.

(GLMP)P

Theorem 4 .  A strategy x* ∈X is a PGSS and υ* = (υ1, υ2) is its P-goal security level
vector iff (υ*, x*) is an efficient  solution of the problem (GLMP)P.

Proof.  Let x* be a PGSS, then there is no x  ∈X such that υ P(x*) ≤ υ P(x), υ P(x*) ≠
υ P(x). According to definition 2, it is equivalent to

min
j

xi δij
1

i = 1

n

∑
 

 
  

 

 
  , min

j
xiδij

2

i =1

n

∑
 

 
  

 

 
  

 

 
 
 

 

 
 
 ≥ min

j
xi

*δ ij
1

i =1

n

∑
 

 
  

 

 
  , min

j
xi

*δij
2

i =1

n

∑
 

 
  

 

 
  

 

 
 
 

 

 
 
 ,

min
j

xi δ ij
1

i = 1

n

∑
 

 
  

 

 
  , min

j
xiδ ij

2

i =1

n

∑
 

 
  

 

 
  

 

 
 
 

 

 
 
 

≠ min
j

xi
*δ ij

1

i =1

n

∑
 

 
  

 

 
  , min

j
xi

*δ ij
2

i =1

n

∑
 

 
  

 

 
  

 

 
 
 

 

 
 
 

,

Hence,  x  is an efficient solution of the problem

and this problem is equivalent to

maximize υ1 ,υ2

subject to xt AP ≥ (υ1,… ,υ1),

xt BP ≥ (υ2 ,… ,υ 2),

xi = 1,
i = 1

n

∑
x ≥ 0.

(GLMP)P

max
x ∈X

min
j

xiδ ij
1

i = 1

n

∑
 

 
  

 

 
  , min

j
xi δ ij

2

i = 1

n

∑
 

 
  

 

 
  

 

 
 
 

 

 
 
 

Conversely, assume that an efficient solution (υ*, x*) of (GLMP)P is not a PGSS.
Then there exists x  ∈X such that
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Taking υ = (υ 1,υ 2),  where υ 1 = min j ( x iδ ij
1 )i = 1

n∑ , υ 2 = min j( x i δ ij
2 )i =1

n∑ , the
vector (υ , x )  is a feasible solution of (GLMP)P dominating (υ*, x*), and this is a
contradiction because (υ*, x*) is an efficient solution of (GLMP)P. u

This result establishes that the probabilities of achieving PI’s prespecified goals
are given by the efficient solutions set of problem (GLMP)P.

Example 1.  Let the payoff matrices of a non-zero sum game be

A =
6 3 2 8

4 9 7 2

8 2 3 6

 

 

 
  

 

 

 
  

, B =
2 7 8 1

9 2 4 4

4 8 3 5

 

 

 
  

 

 

 
  

.

Suppose that player I has established goals P = (6, 5). Under positive attitude,
the P-goal security strategies and its P-goal security level vectors for PI are the convex
hull of the solutions

(υ1 , x1) = (υ1
1,υ 2

1 ; x2
1 , x2

1 , x3
1) = (1 2,1 4;1 4,1 2 , 1 4),

(υ 2 , x2) = (υ1
2 , υ2

2 ; x2
2 , x2

2 , x3
2 ) = (1 3,1 3;1 3,1 3,1 3).

If PI plays strategy x1 = (1 4, 1 2, 1 4), this means that he she gets P1 = 6 with
a probability of at least 1 2, and PII get P2 = 5 with a probability of at least 1 4.

The characterization given by theorem 4 allows us to develop several ways of
scalarization for the multicriteria game, in order to choose among the whole set of
PGSS. We consider the scalarization given through a scalar linear problem P(λ) asso-
ciated with (GLMP)P:

where   λ ∈ Λ0 = {λ ∈R2 λ > 0, λ s = 1}s = 1
2∑ .

min
j

x i δ ij
1

i = 1

n

∑
 

 
 

 

 
 , min

j
x iδ ij

2

i =1

n

∑
 

 
 

 

 
 

 

 
 

 

 
 ≥ min

j
xi

*δ ij
1

i =1

n

∑
 

 
 

 

 
 , min

j
xi

*δij
2

i =1

n

∑
 

 
 

 

 
 

 

 
 

 

 
 ,

min
j

x i δ ij
1

i = 1

n

∑
 

 
 

 

 
 , min

j
x iδ ij

2

i =1

n

∑
 

 
 

 

 
 

 

 
 

 

 
 ≠ min

j
xi

*δij
1

i =1

n

∑
 

 
 

 

 
 , min

j
xi

*δij
2

i =1

n

∑
 

 
 

 

 
 

 

 
 

 

 
 .

P(λ) maximize λ1υ1 + λ2υ2

subject to xt AP ≥ (υ1, … ,υ1),

xt BP ≥ (υ2 ,… ,υ 2),

xi = 1,
i = 1

n

∑
x ≥ 0,
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Theorem 5 .  A strategy x* ∈X is a PGSS and υ* = (υ*
1 , υ*

2) is its P-goal security level
vector iff λ* ∈Λ0 exists such that (υ*, x*) is an optimal solution of the problem P(λ).

Proof.  The proof is derived from the characterization of PGSS given in theorem 4
and the equivalence between efficient solutions of a multiobjective linear problem
and the solutions of the associated weighted sum problems. u

Each component λs of the parameter λ = (λ1, λ2) ∈Λ0 can be interpreted as the
relative importance that PI assigns to the corresponding scalar game with matrices AP,
BP. Thus, if PI sets up fixed values for λs, the objective function of P(λ) is perfectly
determined. If PI chooses λs = Ps, s = 1, 2, this function is the expected value of goals
P = (P1, P2). This is a logical way to choose among PGSS, so PI may select a P-goal
security strategy x* that gives the highest expected value, i.e., the optimal solution of
the scalar linear problem

maximize P1υ1 + P2υ2

subject to xt AP ≥ (υ1,… ,υ1),

xt BP ≥ (υ2 ,… , υ 2),

xi = 1,
i = 1

n

∑
x ≥ 0.

Example 2.  Consider the payoff matrices and goals P = (6, 5) of example 1. The
P-goal security strategy that gives the maximum expected valued for goals P is x1 =
(1 4, 1 2, 1 4).

4. Sensitivity analysis in the goals

Previously, we have obtained a P-goal security strategy and its P-goal security
level vector solving a multiobjective linear problem. However, it may occur that the
player is unable to determine “a priori” the risk level he she is willing to assume, that
is, to determine his her goals. There is still a way to avoid this problem and, therefore,
to apply this approach. As we state in the introduction, it is possible to establish a
partition of the goal space into a finite number of sets. Each of these sets has the
property that the final solutions are the same for any goal belonging to each of them.
Thus, the player only has to compare a finite number of  alternatives to decide with
which strategy to play. The player has the advantage of knowing the probabilities
assigned in order to achieve those goals.

We transform this problem into a sensitivity analysis of the solution sets of our
GLMP. To this end, we want to determine whether an efficient solution for this problem
remains efficient after changing the goals P = (P1, P2). This analysis is of crucial
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importance because it gives the player a way of avoiding the problem of assuming an
exact initial estimation of goals.

We consider two cases. In the first case, we assume that the goal P = (P1, P2)
increases to P ′ = (P ′1, P ′2). In the second case, we assume that the goal P decreases to
P ′.

(1)  If we increase P1 to P ′1 and P2 to P ′2, matrices AP ′ and BP ′ associated with
goal P ′ = (P ′1, P ′2) have more zero elements than matrices AP  and BP, respectively. For
this reason, the feasible set of the new linear problem (GLMP)P′ is  smaller. Hence, if
(υ*, x*) is still feasible for the problem associated to goals P ′, it will be efficient for
that problem.

We consider matrices MP
1 = (mij

1 )  and MP
2 = (mij

2 ),  1 ≤ i ≤ n, 1 ≤ j ≤ m, where

mij
1 =

1 if P1 ≤ aij < ′ P 1,

0 otherwise;

 
 
 

    mij
2 =

1 if P2 ≤ bij < ′ P 2 ,

0 otherwise.

 
 
 

Theorem 6.  Let (υ1
*, υ2

* , x*)  be an efficient solution of problem (GLMP)P. If

xi
*mij

s ≤ hj
* s ,   j = 1,… , m, s = 1, 2,

i =1

n

∑
where hj

*1, hj
*2 are the slack variables of the efficient solution, then (υ1

*, υ2
* , x*)  is an

efficient solution of problem (GLMP)P ′.

Proof.  We can write A ′ P = AP − MP
1 , B ′ P = BP − MP

2 .
If (υ1

*, υ2
* , x*)  is an efficient solution of problem (GLMP)P, then

x*t AP ≥ (υ1
* ,… ,υ1

*),

x*t BP ≥ (υ2
* ,… ,υ 2

*),

xi
* = 1,

i = 1

n

∑
x* ≥ 0

As we assume by hypothesis that

xi
*mij

s ≤ hj
*s ,   j = 1,… , m, s = 1, 2,

i =1

n

∑
these expressions can be rewritten as

x*t MP
1 ≤ x* tAP − (υ1

* ,… ,υ1
*),

x*t MP
2 ≤ x* tBP − (υ2

* ,… ,υ 2
*),
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which means

and

xi
* = 1,   x* ≥ 0,

i =1

n

∑

(υ1
* ,… ,υ1

* ) ≤ x*t AP − x*t MP
1 = x*t (AP − MP

1 ) = x*t A ′ P ,

(υ 2
* ,… ,υ2

* ) ≤ x*tBP − x*t MP
2 = x*t(BP − MP

2 ) = x*t B ′ P 

then (υ1
* , υ2

*, x*) is an efficient solution of problem (GLMP)P ′. u

(2)  We now assume that goal P1 decreases to P ′1  and P2 decreases to P′2. In this
case, matrices AP ′ and BP ′ have new elements with a value of 1, then the feasible set
of the problem associated with goal P ′ is larger. For this reason, if (υ*, x*) is an effi-
cient solution for the problem (GLMP)P, it is still a feasible solution for the problem
(GLMP)P ′, but may not be an efficient solution. To check whether (υ*, x*) is an effi-
cient solution for the new problem, subproblem testing can be used. Let AP ′ and BP ′ be
the  matrices induced by P ′. The new problem is

maximize υ1 ,υ2

subject to x tA ′ P ≥ (υ1 ,… ,υ1),

x tB ′ P ≥ (υ2 ,… ,υ2 ),

xi = 1,
i = 1

n

∑
x ≥ 0.

We can write A ′ P = AP + MP
1  and B ′ P = BP + MP

2 ,  where MP
1 = (mij

1 ),  MP
2 = (m2

ij ),
1 ≤ i ≤ n, 1 ≤ j ≤ m are matrices whose elements are

mij
1 =

1 if ′ P 1 ≤ aij < P1 ,

0 otherwise;

 
 
 

   mij
2 =

1 if ′ P 2 ≤ bij < P2 ,

0 otherwise.

 
 
 

Therefore, problem (GLMP)P ′ can be written as

maximize υ1 ,υ2

subject to x t(AP + MP
1 ) ≥ (υ1, … ,υ1),

x t(BP + MP
2) ≥ (υ2 ,… , υ2),

xi = 1,
i = 1

n

∑
x ≥ 0.

(GLMP)P ′

(GLMP)P ′
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Theorem 7.  Let (υ1
*, υ2

*, x*) be an efficient solution of problem (GLMP)P. If the scalar
linear problem

maximize t1 + t2

subject to x t(AP + MP
1 ) ≥ (υ1, … ,υ1),

x t(BP + MP
2) ≥ (υ2 ,… , υ2),

υs − t s = υs
* , s = 1, 2,

xi = 1,
i = 1

n

∑
x ≥ 0

has an optimal value of zero, then (υ1
*, υ2

*, x*) is an efficient solution for (GLMP)P′ .

Proof.  If the optimal objective value of this problem is zero, then t1 = 0 and t2 = 0.
That means, using the subproblem test for efficient points of Steuer [15], the solution
(υ1

* , υ2
*, x*) cannot be improved component-wise. This fact implies that (υ1

*, υ2
* , x*)

remains efficient in the new problem (GLMP)P ′ . u

5. Partition of the goal space

Based on the sensitivity analysis developed in the previous section, we present
in this section the partition of the goal space (GS) already commented on. We break
GS into a finite number of rectangular regions such that for all goals in one of these
regions, we obtain the same solution set. With this procedure, PI has information about
all possible outcomes of the game. Therefore, the proposed analysis can always be
applied even without the knowledge of “a priori” goals. This is because the player
only has to compare a finite number of alternatives. Any of the well-developed
methodologies of multicriteria decision making [16] may help him her to make the
decision.

Let α1,…, αr and β1,…, βs be, respectively, the entries of matrices A and B  ranked
in increasing order. The different regions in the partition of the goal space are

R11 = {(α1 , β1)},

R1 j = {α1} × (B j −1, β j ], j = 2,… , s,

Ri1 = (αi − 1,α i ] × {β1}, i = 2,… , r,

Rij = (α i −1, αi ] × (β j −1, β j ], i = 2,… , r, j = 2, … , s.

It should be noted that these regions correspond to rectangles, possibly degener-
ated to segments R1j , Ri1 , or to the point R11.
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If P = (P1, P2) ∈GS, we denote by CP the efficient solution set of problem
(GLMP)P:

CP = {(υ1
P ,υ2

P , xP) efficient solution of (GLMP)P}.

Theorem 8.  The following statements hold:

(1) For all P, P ′ belonging to Rij , CP = CP ′.

(2) Let P = (P1, P2) be a goal that belongs to Rij for a fixed i and j = 1,…, m. Let
υ 1

P  be the value of the zero-sum matrix game with payoff matrix AP, and let us  denote
by XP1 the whole set of optimal strategies for this game. Then (υ 1

P , υ 2
P , x P)  is an

efficient solution of (GLMP)P , where

Proof.  (1) By definition, for all P, P ′ ∈Rij , AP = AP′ and BP = BP′ , then (GLMP)P =
(GLMP)P ′ and CP = CP ′.

(2) For any P1 ∈ (α i −1 ,α i]  and P2 ∈(β j −1 , β j ],  j = 2,…, s, let us consider the
problem

maximize υ1,υ 2

subject to x t AP ≥ (υ1,… , υ1),

x t BP ≥ (υ 2 ,… ,υ2 ),

xi = 1,
i =1

n

∑
x ≥ 0.

If (υ 1
P , x P)  is an optimal solution of the scalar linear problem

maximize υ1

subject to x t AP ≥ (υ1,… , υ1),

xi = 1,
i =1

n

∑
x ≥ 0,

then, taking υ 2
P = min j ( xi

Pδij
2 ),i = 1

n∑ we obtain that (υ 1
P , υ 2

P , x P)  is  a lexicographical
solution of (GLMP)P. Hence, it is an efficient solution of problem (GLMP)P. u
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υ 2
P = max

x ∈X P1

min
j

xi
Pδ ij

2

i =1

n

∑
 

 
  

 

 
  ,

x P ∈ arg max
x ∈ X P1

min
j

xi
Pδij

2

i = 1

n

∑
 

 
  

 

 
  .
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Remark 1.  Given P = (P1, P2) ∈Rij , there is an efficient solution of problem (GLMP)P

such that it gives the maximum probability of getting P1, with P1 ∈(αi –1, αi], for any
P2. In the same way, there is an efficient solution of problem (GLMP)P which gives
the maximum probability to get P2, with P2 ∈(βj –1, βj], for any P1. If problem (GLMP)P

has only one efficient solution, then this solution gives the maximum joint probability
of getting P1 and P2.

We have broken GS into rectangular regions Rij such that all the goals in these
regions can be obtained with the same probability. Nevertheless, it may happen that
goals from different regions lead us to problems with the same solution sets.

Example 3.  Let the payoff matrices of a non-zero-sum game be

A =
3 3 2

1 3 0

0 0 3

 

 

 
  

 

 

 
  

,   B =
2 0 2

0 3 3

2 0 2

 

 

 
  

 

 

 
  

.

If we consider the positive attitude, the partition of the goal space is given by the
following solutions map (see table 1).

Table 1

Solution map of example 3.

3

(1, 0; 1, 0, 0)

(1, 0; 0, 0, 1) (1, 0; 1, 0, 0) (1, 0; 1, 0, 0) (1 2, 0; 1 2, 0, 1 2)

(1, 0; 0, 1, 0)

2

(1 2, 1 2; 1 2, 1 2, 0)  (1 2, 1 2; 1 2, 1 2, 0) (1 2, 1 2; 1 2, 1 2, 0) (1 4, 1 2; 1 4, 1 2, 1 4)

 (1 2, 1 2; 0, 1 2, 1/2) (1, 0; 1, 0, 0) (1/2, 0; 1/2, 0, 1/2)

(1,0;1,0,0)

(1, 1 2; 0, 1 2, 1 2)

0 1 2 3
(1, 1; 1, 0, 0)

(1, 1; 0, 1, 0) (1, 1; 1, 0, 0) (1, 1; 1, 0, 0)  (1 2, 1; 1 2, 0, 1 2)

(1, 1; 0, 0, 1)

Inside each region, we have written the efficient extreme solutions which give
the probabilities of getting goals  belonging to each of them, and their corresponding
strategies. As we can see, goals from different regions can be obtained with the same
probabilities and the same strategies, therefore these regions may be collapsed (see
table 2).
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Based on theorem 8, we establish a procedure to obtain the set CP, 8P ∈GS. In
order to do this, we denote by (GLMP)P(i, j) the problem (GLMP)(αi , βj).

The procedure consists of the following steps:

1. Consider goal P = (α1, β1), and solve the problem (GLMP)P(1, 1). The extreme
efficient solutions are the pure strategies of player I and the value of the game is
given by υ1 = 1, υ2 = 1.

2. Consider goal P = (α2, β1) and problem (GLMP)P(2, 1). This problem has more
constraints than (GLMP)P(1, 1); then we only need to check if the extreme effi-
cient solutions of the last problem verify these constraints. Three cases can occur:

2.1. If all extreme solutions verify these constraints, the solutions are still
extreme efficient solutions of problem (GLMP)P(2, 1).

2.2. If some of the extreme solutions verify the constraints but others do not,
the new efficient solutions of problem (GLMP)P(2, 1) are in the boundary
generated by the new constraints.

2.3. If any efficient solution of problem (GLMP)P (1, 1) does not verify the new
constraints of problem (GLMP)P (2, 1), all the efficient solutions of this
problem are in the boundary generated by the new constraints.

3. Consider goal P = (α3, β1) and repeat step 2 with problems (GLMP)P (2, 1) and
(GLMP)P (3, 1).

If we repeat this procedure in an orderly way for all goals, using the information
obtained in each step (efficient basis), we can obtain an iterative method which gives
us the efficient solutions of the new problem.

Table 2

Solution map of example 3.

3

(1, 0; 1, 0, 0)

(1 ,0; 0, 1, 0) (1, 0; 1, 0, 0) (1 2, 0; 1 2, 0, 1 2)

(1, 0; 0, 0, 1)

2

(1 2, 1 2; 1 2, 1 2, 0) (1 2, 1 2; 1 2, 1 2, 0)  (1 2, 1 2; 1 2, 1 2, 0) (1 4, 1 2; 1 4, 1 2, 1 4)

(1 2, 1 2; 0, 1 2, 1 2)  (1, 0; 1, 0, 0) (1 2, 0; 1 2, 0, 1 2)

(1,0;1,0,0)

(1, 1 2; 0, 1 2, 1 2)

0 1 2 3
(1, 1; 1, 0, 0)

(1, 1; 0, 1, 0) (1, 1; 1, 0, 0)  (1, 1; 1, 0, 0) (1 2, 1; 1 2, 0, 1 2)

(1, 1; 0, 0, 1)
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6. Conclusions

A new way to analyze two-person non-zero-sum games has been introduced.
This analysis is based on considering these games as bicriteria zero-sum matrix games.
Using goals, we consider as a solution not only the strategy played by the player, but
also the probability of getting at least these goal values. Therefore, with this approach,
each player has information about the probability of achieving the possible outcomes
of the game. Thus, he she does not take threats into account because the player knows
the probability of achieving the different goals. In addition, the player knows the
probability of getting different outcomes if cooperation exists. Therefore, this approach
is useful to point out that players will do better if they cooperate.
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