Group Announcement Logic

Thomas Ågotnes
joint work with:

Philippe Balbiani
Hans van Ditmarsch
Pablo Seban

Group Announcement Logic: background

- Two current trends in logics for multi-agent systems:
1.Logics of coalitional ability (Coalition Logic, ATL, Stit logic, ...)
- Recent interest: incomplete information
2.Dynamic epistemic logic
- Epistemic pre- and post- conditions of actions
- Recent interest: quantification over formulae (APAL, ...)
- We combine ideas from both in order to analyse the logic of group announcements

Elevator pitch

Group Announcement Logic extends public announcement logic with:

$\langle G\rangle \phi$: "Group G can make an announcement after which ϕ is true"

Public Announcement Logic (Plaza, 1989)

$$
\varphi::=p\left|K_{i} \varphi\right| \neg \varphi\left|\varphi_{1} \wedge \varphi_{2}\right|\left\langle\varphi_{1}\right\rangle \varphi_{2}
$$

ϕ_{1} is true, and ϕ_{2} is true after ϕ_{1} is announced

Formally:

$$
\begin{array}{ll}
M=\left(S, \sim_{1}, \ldots, \sim_{n}, V\right) \quad \sim_{i} \text { equivalence rel. over } \mathrm{S} \\
M, s \models K_{i} \phi & \Leftrightarrow \quad \forall t \sim_{i} s M, t \models \phi \\
M, s \models\left\langle\phi_{1}\right\rangle \phi_{2} & \Leftrightarrow \quad M, s \models \phi_{1} \text { and } M \mid \phi_{1}, s \models \phi_{2}
\end{array}
$$

The model resulting from removing states where ϕ_{1} is false

Example

Example

$$
\bullet_{t} \neg p_{B}, p_{A} \quad \text { Ann } \ominus_{s}^{p_{B}, p_{A} \ldots \ldots \ldots \ldots \bullet_{u}^{p_{B}}, \neg p_{A}}
$$

Example

Example

$\bullet \neg p_{B}, p_{A} \quad A n n \quad \bullet_{S}^{p_{B}, p_{A}}$

Example

$\bullet \neg p_{B}, p_{A} \quad A n n \quad \bullet_{S}^{p_{B}, p_{A}}$

$$
M, s \models\left\langle K_{A} p_{A}\right\rangle K_{B} p_{A}
$$

Example

Adding quantification: APAL

$$
M, s \models\left\langle\phi_{1}\right\rangle \phi_{2} \Leftrightarrow M, s \models \phi_{1} \text { and } M \mid \phi_{1}, s \models \phi_{2}
$$

Idea (van Benthem, Analysis, 2004): interpret the modal diamond as "there is an announcement such that.."

Arbitrary announcement logic (APAL) (Balbiani et al., TARK 2007):

$$
\begin{gathered}
\varphi::=p\left|K_{i} \varphi\right| \neg \varphi\left|\varphi_{1} \wedge \varphi_{2}\right|\left\langle\varphi_{1}\right\rangle \varphi_{2} \mid \diamond \phi \\
M, s \models \diamond \phi \Leftrightarrow \exists \psi M, s \models\langle\psi\rangle \phi
\end{gathered}
$$

Quantification in APAL

$$
M, s \models \diamond \phi \Leftrightarrow \exists \psi M, s \models\langle\psi\rangle \phi
$$

Note: the quantification includes announcements that cannot be truthfully made in the system

Quantification: announcements by an agent

Quantification: announcements by an agent

$$
M, s \models\langle i\rangle \phi \Leftrightarrow \exists \psi M, s \models\left\langle K_{i} \psi\right\rangle \phi
$$

Quantification: announcements by a group

$$
M, s \models\langle G\rangle \phi \quad \Leftrightarrow \quad \exists\left\{\psi_{i}: i \in G\right\} M, s \models\left\langle\bigwedge_{i \in G} K_{i} \psi\right\rangle \phi
$$

Group Announcement Logic (GAL):

$$
\varphi::=p\left|K_{i} \varphi\right| \neg \varphi\left|\varphi_{1} \wedge \varphi_{2}\right|\left\langle\varphi_{1}\right\rangle \varphi_{2} \mid\langle G\rangle \phi
$$

Similar to coalitional ability operators of Coalition Logic (Pauly, 2002) and ATL (Alur, Henzinger, Kupferman, 1997), with actions = public announcements

But GAL is not a Coalition Logic

Example: The Russian Cards Problem

From a pack of seven known cards 0,1,2,3,4,5,6 Anne and Bill each draw three cards and Cath gets the remaining card. How can Anne and Bill openly inform each other about their cards, without Cath learning who holds any of their cards?

Example: The Russian Cards Problem

From a pack of seven known cards $0,1,2,3,4,5,6$ Anne and Bill each draw three cards and Cath gets the remaining card. How can Anne and Bill openly inform each other about their cards, without Cath learning who holds any of their cards?
Formalisation: $\quad 012_{a}$: "Ann has cards 0,1 and $2 "$

$$
\begin{aligned}
& \text { (one) } \bigwedge_{i j k}\left(i j k_{b} \rightarrow K_{a} i j k_{b}\right) \quad(\text { two }) \bigwedge_{i j k}\left(i j k_{a} \rightarrow K_{b} i j k_{a}\right) \\
& (\text { three }) \bigwedge_{q=0}^{6}\left(\left(q_{a} \rightarrow \neg K_{c} q_{a}\right) \wedge\left(q_{b} \rightarrow \neg K_{c} q_{b}\right)\right)
\end{aligned}
$$

Example: The Russian Cards Problem

From a pack of seven known cards 0,1,2,3,4,5,6 Anne and Bill each draw three cards and Cath gets the remaining card. How can Anne and Bill openly inform each other about their cards, without Cath learning who holds any of their cards?
Formalisation: $\quad 012_{a}$: "Ann has cards 0,1 and $2 "$

$$
\begin{aligned}
& (\text { one }) \bigwedge_{i j k}\left(i j k_{b} \rightarrow K_{a} i j k_{b}\right) \quad(\text { two }) \bigwedge_{i j k}\left(i j k_{a} \rightarrow K_{b} i j k_{a}\right) \\
& (\text { three }) \bigwedge_{q=0}^{6}\left(\left(q_{a} \rightarrow \neg K_{c} q_{a}\right) \wedge\left(q_{b} \rightarrow \neg K_{c} q_{b}\right)\right)
\end{aligned}
$$

Known anne $\equiv 012_{a} \vee 034_{a} \vee 056_{a} \vee 135_{a} \vee 246_{a}$ solution: bill $\equiv 345_{b} \vee 125_{b} \vee 024_{b}$

Example: The Russian Cards Problem

From a pack of seven known cards 0,1,2,3,4,5,6 Anne and Bill each draw three cards and Cath gets the remaining card. How can Anne and Bill openly inform each other about their cards, without Cath learning who holds any of their cards?
Formalisation: $\quad 012_{a}$: "Ann has cards 0,1 and $2 "$

$$
\begin{aligned}
& (\text { one }) \bigwedge_{i j k}\left(i j k_{b} \rightarrow K_{a} i j k_{b}\right) \quad(\text { two }) \bigwedge_{i j k}\left(i j k_{a} \rightarrow K_{b} i j k_{a}\right) \\
& (\text { three }) \bigwedge_{q=0}^{6}\left(\left(q_{a} \rightarrow \neg K_{c} q_{a}\right) \wedge\left(q_{b} \rightarrow \neg K_{c} q_{b}\right)\right)
\end{aligned}
$$

Known anne $\equiv 012_{a} \vee 034_{a} \vee 056_{a} \vee 135_{a} \vee 246_{a}$ solution: bill $\equiv 345_{b} \vee 125_{b} \vee 024_{b}$

PAL:
$\left\langle K_{a} a n n e\right\rangle\left\langle K_{b} b i l l\right\rangle(o n e \wedge t w o \wedge t h r e e)$

Example: The Russian Cards Problem

From a pack of seven known cards 0,1,2,3,4,5,6 Anne and Bill each draw three cards and Cath gets the remaining card. How can Anne and Bill openly inform each other about their cards, without Cath learning who holds any of their cards?
Formalisation: $\quad 012_{a}$: "Ann has cards 0,1 and $2 "$

$$
\begin{aligned}
& (\text { one }) \bigwedge_{i j k}\left(i j k_{b} \rightarrow K_{a} i j k_{b}\right) \quad(\text { two }) \bigwedge_{i j k}\left(i j k_{a} \rightarrow K_{b} i j k_{a}\right) \\
& (\text { three }) \bigwedge_{q=0}^{6}\left(\left(q_{a} \rightarrow \neg K_{c} q_{a}\right) \wedge\left(q_{b} \rightarrow \neg K_{c} q_{b}\right)\right)
\end{aligned}
$$

Known anne $\equiv 012_{a} \vee 034_{a} \vee 056_{a} \vee 135_{a} \vee 246_{a}$ solution: bill $\equiv 345_{b} \vee 125_{b} \vee 024_{b}$

PAL:
$\left\langle K_{a} a n n e\right\rangle\left\langle K_{b} b i l l\right\rangle(o n e \wedge t w o \wedge t h r e e)$
GAL:
$\langle a\rangle\langle b\rangle($ one \wedge two \wedge three)

Quantification: sequences of announcements

$$
\langle G\rangle\langle G\rangle \phi \rightarrow\langle G\rangle \phi ?
$$

Quantification: sequences of announcements

$$
\langle G\rangle\langle G\rangle \phi \rightarrow\langle G\rangle \phi ?
$$

Answer: Yes.

Quantification: sequences of announcements

$$
\langle G\rangle\langle G\rangle \phi \rightarrow\langle G\rangle \phi
$$

$M, s \models\langle G\rangle \phi \Leftrightarrow$ there is an announcement by G, after which ϕ

Quantification: sequences of announcements

$$
\langle G\rangle\langle G\rangle \phi \rightarrow\langle G\rangle \phi
$$

$M, s \models\langle G\rangle \phi \Leftrightarrow$ there is an announcement by G, after which ϕ \Leftrightarrow there is a sequence of announcements by G, after which ϕ

Example: Russian Cards (ctnd.)

$\left\langle K_{a} a n n e\right\rangle\left\langle K_{b} b i l l\right\rangle(o n e \wedge t w o \wedge t h r e e)$
$\langle a\rangle\langle b\rangle($ one $\wedge t w o \wedge t h r e e)$
$\langle a b\rangle($ one $\wedge t w o \wedge$ three $)$

Knowledge and Ability: general actions

- Consider the general case that agents have arbitrary joint actions (and not only group announcements) available, that will take the system to a new state
- Two variants of ability under incomplete information:
- Knowing de dicto that you can achive something: in all the states you consider possible, you can achive the goal (by performing some action)
- Knowing de re that you can achieve something: there is some action which will achieve the goal in all the states you consider possible

Knowledge and Ability: general actions

- Example: agent in front of a combination-lock safe; does not know the combination; correct combination is 123

Knowledge and Ability: general actions

- Example: agent in front of a combination-lock safe; does not know the combination; correct combination is 123

Knowledge and Ability: general actions

- Example: agent in front of a combination-lock safe; does not know the combination; correct combination is 123

Knowledge and Ability: general actions

- Example: agent in front of a combination-lock safe; does not know the combination; correct combination is 123

Knowledge and Ability: general actions

- It turns out that knowledge of ability de re is not expressible in standard logics combining knowledge and ability
- Alternating-time Temporal Epistemic Logic (ATEL) (van der Hoek \& Wooldridge)
- Several recent works, e.g. (Jamroga and van der Hoek, 2004), (Jamroga and Ågotnes, 2007), have focused on extending ATEL to be able to express knowledge de re
- In GAL, knowledge and action are intimately connected
- How do the previous observations apply to GAL?

Being able to without knowing it

$$
\begin{gathered}
宀_{s}^{p}-----\frac{a}{-}----\bullet_{t}^{p} \\
s \models\langle a\rangle p \wedge \neg K_{a}\langle a\rangle p
\end{gathered}
$$

Being able to, knowing that, but not knowing how

Being able to, knowing that, but not knowing how

$\stackrel{\rightharpoonup}{\bullet}{ }_{u}^{p, q}$

$$
\left.\phi=K_{b} q \wedge \wedge \mathcal{K}_{b} p \vee \hat{K}_{a}\left(K_{b} p \wedge \neg K_{b} q\right)\right)
$$

$$
\begin{aligned}
& s \models\left\langle K_{a} q\right\rangle \phi \Rightarrow \Rightarrow s \\
& t \models\left\langle K_{a} p\right\rangle \phi \Rightarrow \phi \\
& t=\langle a\rangle \phi
\end{aligned} \Rightarrow s \models K_{a}\langle a\rangle \phi
$$

Being able to, knowing that, but not knowing how

Being able to, knowing that, but not knowing how

$$
\phi=K_{b} q \wedge\left(\neg K_{b} p \vee \hat{K}_{a}\left(K_{b} p \wedge \neg K_{b} q\right)\right)
$$

$$
\begin{aligned}
s \models\left\langle K_{a} q\right\rangle \phi \Rightarrow s & \models\langle a\rangle \phi \\
t \models\left\langle K_{a} p\right\rangle \phi \Rightarrow t & \models\langle a\rangle \phi
\end{aligned} \Rightarrow s \models K_{a}\langle a\rangle \phi
$$

$$
\begin{array}{r}
\boldsymbol{\bullet}_{v}^{p, \neg q}----\frac{b}{-}-\cdots-\oplus_{s}^{p, q}-\cdots-\underline{a}-\cdots---\bullet_{t}^{p, q} \\
t \models \phi
\end{array}
$$

Being able to, knowing that, but not knowing how

Being able to, knowing that, but not knowing how

Being able to, knowing that, but not knowing how

Expressing knowledge de dicto/de re

$$
\begin{array}{ll}
\text { Knowledge of } & \text { Knowledge of } \\
\text { ability, de dicto } & \text { ability, de re }
\end{array}
$$

Expressing knowledge de dicto/de re

Ability
$\exists \psi s \models\left\langle K_{a} \psi\right\rangle \phi$

$s \models\langle a\rangle \phi$

Knowledge of ability, de dicto
$\exists \psi \forall s \sim_{a} t t \models\left\langle K_{a} \psi\right\rangle \phi$

??

$$
s \models\langle a\rangle K_{a} \phi
$$

$$
\exists \psi s \models\left\langle K_{a} \psi\right\rangle K_{a} \phi
$$

Expressing knowledge de dicto/de re

Ability
$\exists \psi s \models\left\langle K_{a} \psi\right\rangle \phi$

Knowledge of ability, de dicto
$\exists \psi \forall s \sim_{a} t t \models\left\langle K_{a} \psi\right\rangle \phi$

$s \models K_{a}\langle a\rangle \phi$

Knowledge of ability, de re

$$
s \models\langle a\rangle K_{a} \phi
$$

$$
\leftrightarrows
$$

$$
\exists \psi s \models\left\langle K_{a} \psi\right\rangle K_{a} \phi
$$

Expressing knowledge de dicto/de re

Ability

$$
\exists \psi s \models\left\langle K_{a} \psi\right\rangle \phi
$$

$s \models\langle a\rangle \phi$

Knowledge of ability, de dicto

Knowledge of ability, de re
$\forall s \sim_{a} t \exists \psi t \models\left\langle K_{a} \psi\right\rangle \phi \quad \exists \psi \forall s \sim_{a} t t \models\left\langle K_{a} \psi\right\rangle \phi$

$s \models K_{a}\langle a\rangle \phi$
Depends on
(1) the fact that actions are
announcements
(2) the S5 properties

Example: Russian Cards (ctnd.)

Ann and Bill knows how to exectute a successful protocol:

$$
\langle a\rangle K_{a}\left(t w o \wedge \text { three } \wedge\langle b\rangle K_{b}(o n e \wedge t w o \wedge \text { three })\right)
$$

Some logical properties

$[G \cup H] \phi \rightarrow[G][H] \phi$
$\langle G\rangle[G] \phi \rightarrow[G]\langle G\rangle \phi \quad$ (Church-Rosser)
$\langle G\rangle[H] \phi \rightarrow[H]\langle G\rangle \phi \quad$ (..generalised)

Axiomatisation

$S 5_{n}$ axioms and rules
$P A L$ axioms and rules
$[G] \phi \rightarrow\left[\bigwedge_{i \in G} K_{i} \psi_{i}\right] \phi \quad$ where $\psi_{i} \in \mathcal{L}_{e l}$
From ϕ, infer $[G] \phi$
From $\phi \rightarrow[\theta]\left[\bigwedge_{i \in G} K_{i} p_{i}\right] \psi$, infer $\phi \rightarrow[\theta][G] \psi$ where $p_{i} \notin \Theta_{\phi} \cup \Theta_{\theta} \cup \Theta_{\psi}$

Theorem:
Sound \& complete.

Model Checking

The model checking problem:

Given M, s and ϕ, does $M, s \models \phi$ hold?

Theorem:
The model checking problem is PSPACE-complete
(also extends to APAL)

Directions

- More general actions/events
- Coalition Announcement Logic
- a coalition logic
- there are announcements by G such that for all announcements by the other agents, ...
- Public Announcement Games
- To appear in Synthese/KRA
- Question-Answer Games (LOFT 2010)

For more details:

T. Ågotnes and H. van Ditmarsch, Coalitions and Announcements, Proc. AAMAS 2008
T. Ågotnes, P. Balbiani, H. van Ditmarsch and P. Seban, Group Announcement Logic, Journal of Applied Logic 8(1), 2010

