

Introduction

Residuated logic programs

Coherence

General Logic Programs

Conclusions and future work

Fuzzy Answer Set semantics for Residuated Logic programs

Nicolás Madrid & Manuel Ojeda-Aciego Universidad de Málaga

September 23, 2009

Aims of this paper

Fuzzy Answer Set Manuel Ojeda-Aciego

Introduction

- Residuated logic programs
- Coherence
- General Logic Programs
- Conclusions and future work

We are studying the introduction of two kinds of negations into residuated logic programs:

- Default negation: This negation enables non-monotonic reasoning and is introduced into residuated logic programs by a generalization of the Gelfond-Lifschitz reduct.
- <u>Strong negation</u>: Monotonicity of positive programs is not affected by including this kind of negation. In this sense, we define the coherence restriction to generalize the concept of consistency.

Structure of this paper

Fuzzy Answer Set Manuel

Manuel Ojeda-Aciego

Introduction

Residuated logic programs

Coherence

General Logic Programs

Conclusions and future work This talk is structured as follows:

- We start recalling the basic definitions needed to describe our semantics.
- We focus mainly on strong negation:
 - Recalling the notion of coherent interpretation.
 - Providing properties of the notion of coherence.
 - $\bullet\,$ Comparing the notion of coherence with $\alpha\text{-consistency}.$
- Finally we present the definition of Fuzzy Answer Set in General Residuated Logic Programs

Preliminaries

Fuzzy Answer Set

Manuel Ojeda-Aciego

Introduction

Residuated logic programs

Coherence

General Logic Programs

Conclusions and future work

Definition

A residuated lattice is a tuple $(L, \leq, *, \leftarrow)$ such that:

- (L, ≤) is a complete bounded lattice, with top and bottom elements 1 and 0.
- **2** (L, *, 1) is a commutative monoid with unit element 1.
- **③** (*, ←) forms an adjoint pair, i.e. $z \le (x \leftarrow y)$ iff $y * z \le x$ $\forall x, y, z \in L$.

Definition

A negation operator, over $(L, \leq, *, \leftarrow)$, is any decreasing mapping $n: L \rightarrow L$ satisfying n(0) = 1 and n(1) = 0.

Notation and terminology

Fuzzy Answer Set Manuel Ojeda-Aciego

Introduction

Residuated logic programs

Coherence

General Logic Programs

Conclusions and future work We denote by \neg the default negation and by \sim the strong negation. The difference between them is uniquely semantic, and relates to the method used to infer the truth-value of one negated propositional symbol

Definition

- Π denotes the set of propositional symbols.
- If $p \in \Pi$ then both p and $\sim p$ are called <u>literals</u>.

General logic programs _{Syntax}

Fuzzy Answer Set

Manuel Ojeda-Aciego

Introduction

Residuated logic programs

Coherence

General Logic Programs

Conclusions and future work Definition

Given a residuated lattice with negations $(L, *, \leftarrow, \sim, \neg)$, a general residuated logic program \mathbb{P} is a set of weighted rules of the form

$$\langle \ell \leftarrow \ell_1 * \cdots * \ell_m * \neg \ell_{m+1} * \cdots * \neg \ell_n; \quad \vartheta \rangle$$

where ϑ is an element of L and $\ell, \ell_1, \ldots, \ell_n$ are literals.

A general residuated logic program ${\mathbb P}$ is said to be:

- positive if it does not contain negation operators.
- *normal* if it does not contain strong negation.
- extended if it does not contain default negation.

General logic programs Semantics

Fuzzy Answer Set

Manuel Ojeda-Aciego

Introduction

Residuated logic programs

Coherence

General Logic Programs

Conclusions and future work Rules will be frequently denoted as $\langle \ell \leftarrow \mathcal{B}; \vartheta \rangle$. As usual, the formula \mathcal{B} is called the *body* of the rule whereas ℓ is called its *head*.

Definition

A fuzzy *L*-interpretation is a mapping $I: Lit \rightarrow L$.

I satisfies a rule $\langle \ell \leftarrow \mathcal{B}; \quad \vartheta \rangle$ if and only if $I(\mathcal{B}) * \vartheta \leq I(\ell)$ or, equivalently, $\vartheta \leq I(\ell \leftarrow \mathcal{B})$.

I is a model of \mathbb{P} if it satisfies all rules in \mathbb{P} .

Extended Logic Programs

Fuzzy Answer Set Manuel Ojeda-Aciego

Introduction

Residuated logic programs

Coherence

General Logic Programs

Conclusions and future work The immediate consequence operator defined on positive residuated logic programs is generalized to the extended ones.

Definition

Let \mathbb{P} be an extended residuated logic program and let I be an interpretation. The immediate consequence operator of I wrt \mathbb{P} is the interpretation defined as follows:

$$T_{\mathbb{P}}(I)(\ell) = Iub\{I(\mathcal{B}) * \vartheta : \langle \ell \leftarrow \mathcal{B}; \vartheta \rangle \in \mathbb{P}\}$$

The minimal model

Fuzzy Answer Set

Manuel Ojeda-Aciego

Introduction

- Residuated logic programs
- Coherence
- General Logic Programs
- Conclusions and future work

- \bullet The immediate consequence operator ${\mathcal T}_{\mathbb P}$ is monotonic.
- By the Knaster-Tarski fix-point theorem, T_ℙ has a least fix-point; *lfp*(ℙ).
- $lfp(\mathbb{P})$ is a model of \mathbb{P}
- The semantics of an extended residuated logic program ℙ is given by the *lfp*(ℙ).

However, one has to take into account the interaction between opposite literals.

For this purpose we define the concept of coherence.

Coherence

Fuzzy Answer Set Manuel Ojeda-Aciego

Introduction

Residuated logic programs

Coherence

General Logic Programs

Conclusions and future work

Definition

A fuzzy *L*-interpretation *I* over *Lit* is coherent if the inequality $I(\sim p) \leq \sim I(p)$ holds for every propositional symbol *p*.

- The notion of coherence coincides with consistency in the classical framework.
- It only depends on the negation operator.
- It allows to handle missing information (i.e I such that $I(\ell) = 0$ for all $\ell \in Lit$ is always coherent).

Coherent Programs

Fuzzy Answer Set

Manuel Ojeda-Aciego

Introduction

Residuated logic programs

Coherence

General Logic Programs

Conclusions and future work

Definition

Let $\mathbb P$ be an extended residuated logic program, we say that $\mathbb P$ is coherent if its least model is coherent.

Proposition

Let I and J be two interpretations satisfying $I \leq J$. If J is coherent, then I is coherent as well.

Corollary

An extended residuated logic program is coherent if and only if it has at least one coherent model.

Introduction

Residuated logic programs

Coherence

General Logic Programs

Conclusions and future work An interpretation assigns to any negative literal a truth degree independently from the negation operator. This way, if we have two different negation operators we can talk about the coherence wrt any of these operators.

Proposition

Let \sim_1 and \sim_2 be two negation operators such that $\sim_1 \leq \sim_2$, then any interpretation I that is coherent wrt \sim_1 is coherent wrt \sim_2 as well.

Example

Fuzzy Answer Set

Manuel Ojeda-Aciego

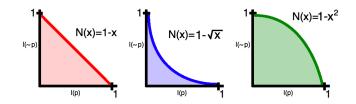
Introduction

Residuated logic programs

Coherence

General Logic Programs

Conclusions and future work The previous proposition provides us a way to filter admissible (coherent) interpretations by changing the strong negation operator.



Comparison with the notion of $\alpha\text{-consistency}$

Fuzzy Answer Set Manuel

Ojeda-Aciego

Introduction

Residuated logic programs

Coherence

General Logic Programs

Conclusions and future work

Definition

Let * be a t-norm and let \sim be a negation operator. We say that an interpretation $I : Lit \rightarrow L$ on the set of literals is α -consistent if for all propositional symbol p we have that $I(p) * I(\sim p) \leq \alpha$.

Remark

By the adjoint condition, we have that

 $I(p) * I(\sim p) \leq \alpha$ iff $I(\sim p) \leq \alpha \leftarrow I(p)$

Introduction

Residuated logic programs

Coherence

General Logic Programs

Conclusions and future work Let \mathbb{P} and I be a general residuated logic program and a *L*-interpretation respectively, we will construct a new normal program \mathbb{P}_I by substituting each rule in \mathbb{P} of the form:

$$\langle \ell \leftarrow \ell_1 * \cdots * \ell_m * \neg \ell_{m+1} * \cdots * \neg \ell_n; \quad \vartheta \rangle$$

by the rule

$$\langle \ell \leftarrow \ell_1 * \cdots * \ell_m; \neg I(\ell_{m+1}) * \cdots * \neg I(\ell_n) * \vartheta \rangle$$

Definition

The program \mathbb{P}_I is called the reduct of \mathbb{P} wrt the interpretation *I*.

Fuzzy Answer Sets

Fuzzy Answer Set

Manuel Ojeda-Aciego

Introduction

Residuated logic programs

Coherence

General Logic Programs

Conclusions and future work

Definition

- Let P be a coherent extended residuated logic program; the unique fuzzy answer set of P is its least coherent model P.
- Let ℙ be a general residuated logic program, a coherent
 L-interpretation I is said to be a fuzzy answer set of ℙ iff I is the minimal of ℙ_I.

Theorem

Any fuzzy answer set of \mathbb{P} is a minimal model of \mathbb{P} .

Conclusions

- Fuzzy Answer Set Manuel
- Ojeda-Aciego
- Introduction
- Residuated logic programs
- Coherence
- General Logic Programs
- Conclusions and future work

- We have recalled the definition of the syntax and semantics of extended (general) residuated logic programs
- We have concentrated on the handling of strong negation and, therefore, on extended residuated logic programs.
- We have provided the notion of coherence and we have showed several properties of coherent interpretations.
- We have presented the definition of Fuzzy Answer Set for General Residuated Logic Programs.

Future work

Fuzzy Answer Set

Manuel Ojeda-Aciego

- Introduction
- Residuated logic programs
- Coherence
- General Logic Programs
- Conclusions and future work

- Relate our approach of fuzzy answer set semantics with other existing approaches and study their possible interactions.
- Obtain further the properties of coherence and establish a more extensive comparison between the notion of coherence and the notion of α-consistency.

Introduction

Residuated logic programs

Coherence

General Logic Programs

Conclusions and future work

Fuzzy Answer Set semantics for Residuated Logic programs

Nicolás Madrid & Manuel Ojeda-Aciego Universidad de Málaga

September 23, 2009