Modelización computacional basada en sistemas celulares con membranas

Mario de J. Pérez Jiménez

Grupo de Investigación en Computación Natural Dpto. Ciencias de la Computación e Inteligencia Artificial ETS Ingeniería Informática, Universidad de Sevilla

marper@us.es
http://www.cs.us.es/~marper/

Simposio de Lógica, Lingüística y Computación

Osuna, 25 de septiembre de 2009

オロト オポト オヨト オヨト ヨー ろくで

Objetivos

Presentar un marco de modelado computacional basado en sistemas P:

Objetivos

- Presentar un marco de modelado computacional basado en sistemas P:
 - Modelos estocásticos en Biología de Sistemas.

Objetivos

- Presentar un marco de modelado computacional basado en sistemas P:
 - Modelos estocásticos en Biología de Sistemas.
 - Modelos probabilísticos para la dinámica de poblaciones (ecosistemas).

Modelización computacional de procesos biológicos

Modelización computacional de procesos biológicos

Modelos estocásticos en Biología de Sistemas basados en sistemas P

Trabajo pionero de Y. Suzuki, S. Ogishima y H. Tanaka (2003)¹

★ Ruta señalizadora de la proteína p53 y su interacción con la MdM2.

- Desarrollo de un marco de especificación para las interacciones proteínas-proteínas y redes de transcripción²
- Semántica (modelo estocástico):
 - * Algoritmo Multicompartimental de Gillespie
 - ★ Algoritmo determinista con tiempo de espera

¹Y. Suzuki, S. Ogishima, H. Tanaka. Modelling the p53 signaling network by using P systems. *Proceedings of the Brainstorming Week on Membrane Computing*, Report Nr. 26, 2003, pp. 449–454.

²F. Bernardini, M. Gheorghe, N. Krasnogor, R.C. Muyinandi, M.J. Pérez, F.J. Romero. On P systems as a modelling tool for biological systems. *Lecture Notes in Computer Science*, **3850** (2006), 114–133.

³F.J. Romero, M.J. Pérez. A model of the Quorum Sensing System in Vibrio Fischeri using P systems. Artificial Life, 14, 1 (2008), 95–109.

⁴S. Cheruku, A. Păun, F.J. Romero, M.J. Pérez, O.H. Ibarra. Simulating FAS-induced apoptosis by using P systems. *Progress in Natural Science*, **17**, 4 (2007), 424–431.

Aplicaciones

- Rutas señalizadoras
 - ★ Factor de crecimiento epidérmico⁵
 - \star Ruta apoptótica mediatizada por FAS 6
- Sistemas de regulación de genes

★ Lac Operon⁷

Comunicación inteligente de bacterias

★ Quorum sensing en Vibrio Fischeri⁸

⁵M.J. Pérez, F.J. Romero. A study of the robustness of the EGFR signalling cascade using continuous membrane systems. *Lecture Notes in Computer Science*, **3561** (2005), 268–278.

⁶S. Cheruku, A. Paun, F.J. Romero, M.J. Pérez, O.H. Ibarra. Simulating FAS-induced apoptosis by using P systems. *Progress in Natural Science*, **17**, 4 (2007), 424–431

¹F.J. Romero, M.J. Pérez. Modelling gene expression control using P systems: The Lac Operon, a case study. *BioSystems*, **91**, 3 (2008), 438–457.

⁸F.J. Romero, M.J. Pérez. A model of the Quorum Sensing System in Vibrio Fischeri using P systems. Artificial Life, 14, 1 (2008), 95–109.

Modelos probabilísticos en Ecosistemas basados en sistemas P

Propuesta del director del grupo de protección en Cataluña del quebrantahuesos:

Modelizar un ecosistema real de la zona pirenaico-catalana

 Ponen a nuestra disposición datos experimentales obtenidos durante 14 años (1984–2008) y asesoramiento técnico

・ロ・・白・・ヨ・・ヨ・ 三田

Se opta por utilizar:

- Marco de especificación: variante de sistemas con membranas activas, cargas eléctricas y cooperación
- Semántica: modelo probabilístico

Participa un grupo de investigación de la Universidad de Lleida y el director del grupo de protección del quebrantahuesos de la Generalitat de Catalunya

En 2008 se presenta el primer modelo computacional⁹

★ (ecólogos nacionales y D. Gilbert en Edinburgh)

- En 2009 se presenta el segundo modelo¹⁰
 - ★ (más especies, nuevos parámetros)

⁹M. Cardona, M.A. Colomer, M.J. Pérez D. Sanuy, A. Margalida. Modeling ecosystem using P systems: The bearded vulture, a case study. *Lecture Notes in Computer Science*, **5391** (2009), 137–156.

¹⁰ M. Cardona, M.A. Colomer, M.J. Pérez, D. Sanuy, A. Margalida. A P system based model of an ecosystem of some scavenger birds. *Proceedings of the Tenth Workshop on Membrane Computing*, 2009, pp. 153–168.

Modelos de la apoptosis mediatizada por FAS (I)

Apoptosis = Muerte celular programada.

Modelos de la apoptosis mediatizada por FAS (II)

En (*) se da un modelo basado en SED para una cascada de señales relacionada con la apoptosis mediatizada por FAS.

Los resultados obtenidos están de acuerdo con los resultados experimentales.

(*) F. Hua, M. Cornejo, M. Cardone, C. Stokes, D. Lauffenburger. Effects of Bcl-2 Levels on FAS Signaling-Induced Caspase-3 Activation: Molecular Genetic Tests of Computational Model Predictions. *The Journal of Immunology*, **175**, 2 (2005), 985–995.

・ロト・日本・モト・モト・モージックの10/28

Modelo celular de la apoptosis mediatizada por FAS (III)

El modelo consta de 53 proteínas y 99 reacciones químicas.

- ▶ Alfabeto: Representa todas las proteínas que intervienen en la cascada
- Estructura de membranas: Cuatro regiones: el entorno, la superficie celular, el citoplasma y la mitocondria, etiquetados por e, s, m y c.
- Multiconjuntos iniciales: Número de moléculas en cada región (Estimaciones empíricas)

$$\begin{split} w_1 &= \{FASL^{12500}\}\\ w_2 &= \{FAS^{6023}\}\\ w_3 &= \{FADD^{10040}, CASP8^{20074}, FLIP^{48786}, CASP3^{120460}, Bid^{15057},\\ Bax^{50189}, XIAP^{18069}, Apaf^{60230}, CASP9^{12046}\}\\ w_4 &= \{Smac^{60230}, Cyto.c^{60230}, Bcl2^{45172}\} \end{split}$$

・ロ・・白・・ヨ・・ヨ・ 三田

Reglas: Se modelizan 99 reacciones químicas que constituyen la cascada.

Un ejemplo de regla:

$$\textit{FASL} \;[\;\textit{FAS}\;]_s \rightarrow [\;\textit{FASC}\;]_s \;, c_{r_1}$$

El objeto *FASL* en el entorno y el objeto *FAS* en la membrana *s* se transforman en el complejo *FASC*, y tiene asociado una cosntante quinética que mide la afinidad entre ligando y receptor.

・ロト ・回ト ・ヨト ・ヨト … ヨ

Sigma = {FASL, FAS, FASC, FADD, FASC-FADD, FASC-FADD₂, FASC-FADD₃, FASC-FADD₂-CASP8, FASC-FADD₃-CASP8, FASC-FADD₂-FLIP, FASC-FADD₃-FLIP, FASC-FADD₂-CASP8₂, FASC-FADD₃-CASP8-FLIP, FASC-FADD₃-CASP8-FLIP₂, FASC-FADD₂-CASP8, FASC-FADD₃-CASP8-FLIP, FASC-FADD₃-CASP8₃, FASC-FADD₃-CASP8-FLIP, FASC-FADD₃-CASP8, FASC-FADD-FLIP₂, CASP8, FLIP, FASC-FADD₃-CASP8₃, FASC-FADD₃-CASP8₂-FLIP, FASC-FADD₃-CASP8-FLIP₂, FASC-FADD₃-FLIP₃, CASP8²⁴¹, CASP8^{*}₂, CASP3, CASP8^{*}₂-CASP3, CASP3^{*}, CASP8^{*}₂-Bid, tBid, Bid, Bax, tBid-Bax₂, Smac, Smac^{*}, Cyto.c, Vito.c^{*}, XIAP, Smac^{*}, XIAP, Apaf, Cyto.c^{*}-Apaf-ATP, CASP9, Cyto.c^{*}-Apaf-ATP-CASP9, Cyto.c^{*}-Apaf-ATP-CASP9, CASP9^{*}, CASP9^{*}, CASP9^{*}, CASP9, CASP9^{*}, XIAP, CASP9^{*}, XIAP, Bd2, Bd2-Bax₂.

・ロト ・聞 ト ・ヨト ・ヨト

label	rule	rate	
<i>r</i> ₁ :	$FASL[FAS]_s \rightarrow [FASC]_s$	k _{1f}	
r ₂ :	$[FASC]_s \rightarrow FASL[FASC]_s$	k _{1r}	
r ₃ :	$FASC[FADD]_{c} \rightarrow FASC : FADD[]_{c}$	k _{2f}	
r ₄ :	$FASC : FADD[]_c \rightarrow FASC[FADD]_c$	k _{2r}	
r ₅ :	FASC : FADD $]_{c} \rightarrow FASC : FADD_{2}]_{c}$	k _{2f}	
r ₆ :	FASC : $FADD_2[]_c \rightarrow FASC : FADD[FADD]_c$	k _{2r}	
r7 :	FASC : FADD ₂ [FADD] _c \rightarrow FASC : FADD ₃ [] _c	k _{2f}	
r ₈ :	$FASC : FADD_3[]_c \rightarrow FASC : FADD_2[FADD]_c$	k _{2r}	
rg :	FASC : FADD ₂ : CASP8[FADD] _c \rightarrow FASC : FADD ₃ : CASP8[] _c	k _{2f}	
r10 :	FASC : FADD ₃ : CASP8 $]_{c} \rightarrow$ FASC : FADD ₂ : CASP8 FADD $]_{c}$	k2r	
r11 :	FASC : FADD ₂ : FLIP[FADD] _c \rightarrow FASC : FADD ₃ : FLIP[] _c	k _{2f}	
r ₁₂ :	FASC : FADD ₃ : FLIP[$]_{c} \rightarrow$ FASC : FADD ₂ : FLIP[FADD] _c	k2r	
r ₁₃ :	FASC : $FADD_2$: $CASP8_2[FADD]_c \rightarrow FASC$: $FADD_3$: $CASP8_2[]_c$	k _{2f}	
r ₁₄ :	FASC : FADD ₃ : CASP8 ₂ [$]_{c} \rightarrow$ FASC : FADD ₂ : CASP8 ₂ [FADD] _c	k2r	
r15 :	FASC : FADD ₂ : CASP8 : FLIP[FADD] _c \rightarrow FASC : FADD ₃ : CASP8 : FLIP[] _c	k _{2f}	
r ₁₆ :	FASC : FADD ₃ : CASP8 : FLIP $]_c \rightarrow$ FASC : FADD ₂ : CASP8 : FLIP FADD $]_c$	k _{2r}	
r ₁₇ :	FASC : FADD ₂ : FLIP ₂ [FADD] _c \rightarrow FASC : FADD ₃ : FLIP ₂ [] _c	k _{2f}	
r ₁₈ :	FASC : FADD ₃ : FLIP ₂ [] _c \rightarrow FASC : FADD ₂ : FLIP ₂ [FADD] _c	k _{2r}	
r ₁₉ :	FASC : FADD : CASP8 FADD $]_c \rightarrow$ FASC : FADD ₂ : CASP8 $]_c$	k _{2f}	
r ₂₀ :	FASC : FADD ₂ : CASP8 $]_c \rightarrow$ FASC : FADD : CASP8 [FADD $]_c$	k _{2r}	
r ₂₁ :	$FASC : FADD : FLIP[FADD]_c \rightarrow FASC : FADD_2 : FLIP[]_c$	k _{2f}	
r ₂₂ :	$FASC : FADD_2 : FLIP[]_c \rightarrow FASC : FADD : FLIP[FADD]_c$	k _{2r}	
r ₂₃ :	$FASC : FADD_3[CASP8]_c \rightarrow FASC : FADD_3 : CASP8[]_c$	k _{2f}	
r ₂₄ :	$FASC : FADD_3 : CASP8[]_c \rightarrow FASC : FADD_3[CASP8]_c$	k _{2r}	
r ₂₅ :	$FASC : FADD_3[FLIP]_c \rightarrow FASC : FADD_3 : FLIP[]_c$	k _{3f}	
r ₂₆ :	$FASC : FADD_3 : FLIP[]_c \rightarrow FASC : FADD_3[FLIP]_c$	k _{3r}	
r ₂₇ :	$FASC : FADD_3 : CASP8[CASP8]_c \rightarrow FASC : FADD_3 : CASP8_2[]_c$	k _{3f}	
r ₂₈ :	$FASC : FADD_3 : CASP8_2[]_c \rightarrow FASC : FADD_3 : CASP8[CASP8]_c$	k _{3r}	
r ₂₉ :	$FASC : FADD_3 : CASP8[FLIP]_c \rightarrow FASC : FADD_3 : CASP8 : FLIP[]_c$	k _{3f}	
r ₃₀ :	$FASC : FADD_3 : CASP8 : FLIP[]_c \rightarrow FASC : FADD_3 : CASP8[FLIP]_c$	k _{3r}	
r ₃₁ :	$FASC : FADD_3 : FLIP[CASP8]_c \rightarrow FASC : FADD_3 : CASP8 : FLIP[]_c$	k _{3f}	
r ₃₂ :	$FASC : FADD_3 : CASP8 : FLIP[]_c \rightarrow FASC : FADD_3 : FLIP[CASP8]_c$	k _{3r}	
r ₃₃ :	$FASC : FADD_3 : FLIP[FLIP]_c \rightarrow FASC : FADD_3 : FLIP_2[]_c$	k _{3f}	
r ₃₄ :	$FASC : FADD_3 : FLIP_2[]_c \rightarrow FASC : FADD_3 : FLIP[FLIP]_c$	k _{3r}	
r ₃₅ :	$FASC : FADD_3 : CASP8_2[CASP8]_c \rightarrow FASC : FADD_3 : CASP8_3[]_c$	k _{3f}	
	• • • •	→ ■ → → 目 → → 目 → 2	29.0
		14	+ / 28

label rule rate $FASC : FADD_3 : CASP8_3[]_c \rightarrow FASC : FADD_3 : CASP8_2[CASP8]_c$ r36 : k3r FASC : FADD₃ : CASP8₂[FLIP]_c \rightarrow FASC : FADD₃ : CASP8₂ : FLIP[]_c r37 : k_{3f} FASC : FADD₃ : CASP₈₂ : FLIP[]_c \rightarrow FASC : FADD₃ : CASP₈₂[FLIP]_c r38 : k3r $FASC : FADD_3 : CASP8 : FLIP[CASP8]_c \rightarrow FASC : FADD_3 : CASP8_2 : FLIP[]_c$ r39 : k_{3f} $FASC : FADD_3 : CASP8_2 : FLIP[]_C \rightarrow FASC : FADD_3 : CASP8 : FLIP[CASP8]_C$ k3r r40 : FASC : FADD₃ : CASP8 : FLIP[FLIP]_c \rightarrow FASC : FADD₃ : CASP8 : FLIP₂[]_c r₄₁ : k_{3f} $FASC : FADD_3 : CASP8 : FLIP_2[]_c \rightarrow FASC : FADD_3 : CASP8 : FLIP[FLIP]_c$ r42 : k3r FASC : FADD₃ : FLIP₂[CASP8]_c \rightarrow FASC : FADD₃ : CASP8 : FLIP₂[]_c k3f r43 : FASC : FADD₃ : CASP8 : FLIP₂[$]_{c} \rightarrow$ FASC : FADD₃ : FLIP₂[CASP8]_c k3r r44 : r45 : $FASC : FADD_3 : FLIP_2[FLIP]_c \rightarrow FASC : FADD_3 : FLIP_3[]_c$ k_{3f} FASC : FADD₃ : FLIP₃[]_c \rightarrow FASC : FADD₃ : FLIP₂[FLIP]_c r46 : k3r FASC : FADD₂ [CASP8]_c \rightarrow FASC : FADD₂ : CASP8]_c r₄₇ : k_{3f} $FASC : FADD_2 : CASP8[]_c \rightarrow FASC : FADD_2[CASP8]_c$ r₄₈ : k3r FASC : FADD₂[FLIP]_c \rightarrow FASC : FADD₂ : FLIP[]_c r49 : k_{3f} $FASC : FADD_2 : FLIP[]_c \rightarrow FASC : FADD_2[FLIP]_c$ r50 : k3r FASC : FADD₂ : CASP8 [CASP8] \rightarrow FASC : FADD₂ : CASP8₂ []_c r₅₁ : k_{3f} r52 : FASC : FADD₂ : CASP8₂[$]_{c} \rightarrow$ FASC : FADD₂ : CASP8[CASP8]_c k3r FASC : FADD₂ : CASP8[FLIP]_c \rightarrow FASC : FADD₂ : CASP8 : FLIP[]_c 153 : kзf FASC : FADD₂ : CASP8 : FLIP $]_c \rightarrow$ FASC : FADD₂ : CASP8 FLIP $]_c$ r₅₄ : k3r FASC : FADD₂ : FLIP[CASP8]_c \rightarrow FASC : FADD₂ : CASP8 : FLIP[]_c r55 : k_{3f} FASC : FADD₂ : CASP8 : FLIP $[]_c \rightarrow$ FASC : FADD₂ : FLIP [CASP8]_c r56 : k3r $FASC : FADD_2 : FLIP[FLIP]_c \rightarrow FASC : FADD_2 : FLIP_2[]_c$ r57 : k2f FASC : $FADD_2$: $FLIP_2[]_c \rightarrow FASC$: $FADD_2$: $FLIP[FLIP]_c$ r58 : k3r r59 : FASC : FADD [CASP8] $_{c} \rightarrow$ FASC : FADD : CASP8] $_{c}$ k_{3f} $FASC : FADD : CASP8[]_c \rightarrow FASC : FADD[CASP8]_c$ r₆₀ : k3r FASC : FADD [FLIP] \rightarrow FASC : FADD : FLIP] \rightarrow r₆₁ : k_{3f} $FASC : FADD : FLIP[]_c \rightarrow FASC : FADD[FLIP]_c$ k3r r₆₂ : $FASC : FADD_2 : CASP8_2[]_c \rightarrow FASC : FADD_2[CASP8_2^{P41}]_c$ r63 : k4 $FASC : FADD_3 : CASP8_3[]_c \rightarrow FASC : FADD_3 : CASP8[CASP8_2^{P41}]_c$ r64 : k₄ $FASC : FADD_3 : CASP8_2 : FLIP[]_c \rightarrow FASC : FADD_3 : FLIP[CASP8_2^{P41}]_c$ k₄ r₆₅ : FASC : FADD₃ : CASP8₂[]_c \rightarrow FASC : FADD₃[CASP8₂^{P41}]_c r66 : k4 $[CASP8_2^{P41}]_c \rightarrow [CASP8_2^*]_c$ k_5 r67 : $[CASP8^{\frac{1}{2}}, CASP3]_{c} \rightarrow [CASP8^{\frac{1}{2}} : CASP3]_{c}$ r68 : k_{6f} $[CASP8_{2}^{*}: CASP3]_{c} \rightarrow [CASP8_{2}^{*}, CASP3]_{c}$ r69 : k₆r $[CASP8^{*}_{2}, CASP3^{*}]_{c} \rightarrow [CASP8^{*}_{2} : CASP3]_{c}$ r_{70} : k7 イロト イポト イヨト イヨト

label	rule	rate
r ₇₁ :	$[CASP8_2^*, Bid]_c \rightarrow [CASP8_2^* : Bid]_c$	k _{8f}
r ₇₂ :	$[CASP8^{+}_{2}: Bid]_{c} \rightarrow [CASP8^{+}_{2}, Bid]_{c}$	k _{8r}
r73 :	$[CASP8^{*}_{2}, tBid]_{c} \rightarrow [CASP8^{*}_{2} : Bid]_{c}$	k7
r ₇₄ :	$[tBid, Bax]_c \rightarrow [tBid : Bax]_c$	k _{9f}
r ₇₅ :	$[tBid : Bax]_c \rightarrow [tBid, Bax]_c$	kgr
r ₇₆ :	$[tBid : Bax, Bax]_c \rightarrow [tBid : Bax_2]_c$	k9f
r ₇₇ :	$[tBid: Bax_2]_c \rightarrow [tBid: Bax, Bax]_c$	k _{9r}
r ₇₈ :	$tBid : Bax_2[Smac]_m \rightarrow Smac^*[]_m$	k_{10}
r ₇₉ :	$tBid : Bax_2[Cyto.c]_m \rightarrow Cyto.c^*[]_m$	k_{10}
r ₈₀ :	$[Smac^*, XIAP]_c \rightarrow [Smac^* : XIAP]_c$	k _{11f}
r ₈₁ :	$[Smac^* : XIAP]_c \rightarrow [Smac^*, XIAP]_c$	k ₁₁ r
r ₈₂ :	$[Cyto.c^*, Apaf]_c \rightarrow [Cyto.c^* : Apaf : ATP]_c$	k _{12f}
r ₈₃ :	$[Cyto.c^* : Apaf : ATP]_c \rightarrow [Cyto.c^*, Apaf]_c$	k _{12r}
r ₈₄ :	$[Cyto.c^* : Apaf : ATP, CASP9]_c \rightarrow [Cyto.c^* : Apaf : ATP : CASP9]_c$	k _{13f}
r ₈₅ :	$[Cyto.c^* : Apaf : ATP : CASP9]_c \rightarrow [Cyto.c^* : Apaf : ATP, CASP9]_c$	k _{13r}
r ₈₆ :	$[Cyto.c^* : Apaf : ATP : CASP9, CASP9]_c \rightarrow [Cyto.c^* : Apaf : ATP : CASP9_2]_c$	k _{14f}
r ₈₇ :	$[Cyto.c^* : Apaf : ATP : CASP9_2]_c \rightarrow [Cyto.c^* : Apaf : ATP : CASP9, CASP9]_c$	k _{14r}
r ₈₈ :	$[Cyto.c^* : Apaf : ATP : CASP9_2]_c \rightarrow [Cyto.c^* : Apaf : ATP : CASP9, CASP9^*]_c$	k_{15}
r ₈₉ :	$[CASP9^*, CASP3]_c \rightarrow [CASP9^*: CASP3]_c$	k _{16f}
r ₉₀ :	$[CASP9^*:CASP3]_c \rightarrow [CASP9^*,CASP3]_c$	k _{16r}
r ₉₁ :	$[CASP9^*: CASP3]_c \rightarrow [CASP9^*, CASP3^*]_c$	k_{17}
r ₉₂ :	$[CASP9, XIAP]_{c} \rightarrow [CASP9: XIAP]_{c}$	k _{18f}
r 93 :	$[CASP9: XIAP]_c \rightarrow [CASP9, XIAP]_c$	k _{18r}
r ₉₄ :	$[CASP3^*, XIAP]_c \rightarrow [CASP3^* : XIAP]_c$	k19f
r 95 :	$[CASP3^* : XIAP]_c \rightarrow [CASP3^*, XIAP]_c$	k _{19r}
r ₉₆ :	$Bax[Bcl2]_m \rightarrow [Bcl2:Bax]_m$	k _{20f}
r ₉₇ :	$[Bcl2: Bax]_m \rightarrow Bax[Bcl2]_m$	k ₂₀ r

Y las siguientes reglas para casos especiales:

label	rule	rate	
r ₉₆ , : r ₉₇ , :	$\begin{array}{l} \textit{Bid[Bcl2]}_m \rightarrow [\textit{Bcl2 : Bid }]_m \\ [\textit{Bcl2 : Bid }]_m \rightarrow \textit{Bid[Bcl2 }]_m \end{array}$	k _{20f} k _{20r}	
r ₉₆ ,, : r ₉₇ ,, :	$tBid[Bcl2]_m \rightarrow [Bcl2:tBid]_m$ $[Bcl2:tBid]_m \rightarrow tBid[Bcl2]_m$	k _{20f} k _{20r}	

Las constantes quinéticas (reaction rates) obtenidas de (*) son:

k_{1f}	=	$9.09E - 05 \ nM^{-1}s^{-1}$	k _{1r}	=	$1.00E - 04 \ s^{-1}$
k _{2f}	=	$5.00E - 04 \ nM^{-1}s^{-1}$	k _{2r}	=	$0.2 \ s^{-1}$
k _{3f}	=	$3.50E - 03 \ nM^{-1}s^{-1}$	k3r	=	$0.018 \ s^{-1}$
k_4	=	$0.3 \ s^{-1}$	k_5	=	$0.1 \ s^{-1}$
k _{6f}	=	$1.00E - 05 \ nM^{-1}s^{-1}$	k _{6r}	=	$0.06 \ s^{-1}$
k7	=	$0.1 \ s^{-1}$	k _{8f}	=	$5.00E - 03 nM^{-1}s^{-1}$
k _{8r}	=	$0.005 \ s^{-1}$	k _{9f}	=	$2.00E - 04 \ nM^{-1}s^{-1}$
k _{9r}	=	$0.02 \ s^{-1}$	k ₁₀	=	$1.00E - 03 \ nM^{-1}s^{-1}$
k _{11f}	=	$7.00E - 03 \ nM^{-1}s^{-1}$	k ₁₁ r	=	$2.21E - 03 s^{-1}$
k _{12f}	=	$2.78E - 07 \ nM^{-1}s^{-1}$	k _{12r}	=	$5.70E - 03 s^{-1}$
k _{13f}	=	$2.84E - 04 \ nM^{-1}s^{-1}$	k _{13r}	=	$0.07493 \ s^{-1}$
k_{14f}	=	$4.41E - 04 \ nM^{-1}s^{-1}$	k _{14r}	=	$0.1 \ s^{-1}$
k ₁₅	=	$0.7 \ s^{-1}$	k _{16f}	=	$1.96E - 05 nM^{-1}s^{-1}$
k _{16r}	=	$0.05707 \ s^{-1}$	k ₁₇	=	4.8 s^{-1}
k _{18f}	=	$1.06E - 04 \ nM^{-1}s^{-1}$	k _{18r}	=	$1.00E - 03 \ s^{-1}$
k _{19f}	=	$2.47E - 03 \ nM^{-1}s^{-1}$	k ₁₉ r	=	$2.40E - 03 s^{-1}$
k _{20f}	=	$2.00E - 03 \ nM^{-1}s^{-1}$	k ₂₀ r	=	$0.02 \ s^{-1}$

(*) F. Hua, M. Cornejo, M. Cardone, C. Stokes, D. Lauffenburger. Effects of Bcl-2 Levels on FAS Signaling-Induced Caspase-3 Activation: Molecular Genetic Tests of Computational Model Predictions. *The Journal of Immunology*, **175**, 2 (2005), 985–995.

Resultados y discusión (I)

Activación de la caspasa 3

- Datos experimentales: a las 6 horas.
- En el modelo basado en SED: a las 4 horas.
- En el modelo celular: a las 7 horas.

Resultados y discusión (II)

El tipo de camino elegido depende de la concentración de la caspasa 8 activada:

- Si es alta, elige el camino (I)
- Si es baja, elige el camino (II)

<ロ> <同> <同> < 回> < 回>

Resultados y discusión (III)

La activación de la caspasa 3 no es sensible al incremento en la concentración de Bcl2 (bloqueador del camino tipo II) Se analiza la activación de la caspasa 3 considerando cuatro mecanismos diferentes para bloquear el camino tipo (II) ([1], [2] y [3])

Para ello se diseñan cuatro máquinas celulares:

 $r_1, \dots, r_{95}, r_{96}, r_{97}$ $r_1, \dots, r_{95}, r'_{96}, r'_{97}$ $r_1, \dots, r_{95}, r'_{96}, r'_{97}$ $r_1, \dots, r_{97}, r_{98}, r_{99}$

Modularidad de los sistemas P

E.H. Cheng, M.C. Wei, S. Weiler, R.A. Flavell, T.W. Mak, T. Lindsten, S.J. Korsmeyer. BCL-2, BCL-XL sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. *Molecular Cell*, 8 (2001), 705–711.
 Z.N. Oltavi, C.L. Milliman, S.J. Korsmeyer, S.J. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. *Cell*, 74, 4 (1993), 609–619.

[3] K. Wang, X.M. Yin, D.T. Chao, C.L. Milliman, S.J. Korsmeyer. BID: a novel BH3 domain-only death agonist.

Genes & Development, 10 (1996), 2859-2869.

Resultados y discusión (IV)

Se prueba que el cuarto mecanismo es el más eficiente.

Conclusiones

Análisis de la sensibilidad de la activación de la caspasa 3 a la sobreexpresión de la Bcl2 en función del camino seleccionado.

	Activación Caspasa 3 (con sobreexpresión de Bcl2)
Camino del tipo I (receptor de muerte)	Insensible
Camino del tipo II (mitocondria)	Sensible

Una máquina celular que modela un ecosistema de los quebrantahuesos

► Alfabeto: $\Gamma = \{X_{ij}, Y_{ij}, Z_{ij} : 1 \le i \le 7, 0 \le j \le k_{i,4}\} \cup \{B, C\}$

<ロ> (四) (四) (三) (三) (三) (三)

- Estructura de membranas: $\mu = [[]_2]_1$.
- Multiconjuntos iniciales \mathcal{M}_1 y \mathcal{M}_2 .

Reglas de evolución (I):

Reglas de evolución (II):

$$\begin{array}{l} \mathbf{r}_{13} \equiv Y_{ij}[]_2 \frac{1-k_{i,16}}{2} [B^{k_{i,11}\cdot k_{i,13}}]_2 : 1 \leq i \leq 7, \ j = k_{i,4}. \\ \\ \mathbf{r}_{14} \equiv Y_{ij}[]_2 \frac{k_{i,16}}{2} [Z_{ik_{i,2}}]_2 : 1 \leq i \leq 7, \ j = k_{i,4}. \\ \\ \mathbf{r}_{15} \equiv [Z_{ij}B^{k_{i,15}}]_2 \rightarrow X_{ij+1}[]_2^+ : 1 \leq i \leq 7, \ 0 \leq j \leq k_{i,4}. \\ \\ \\ \mathbf{r}_{16} \equiv [B]_2^+ \rightarrow []_2. \\ \\ \\ \mathbf{r}_{17} \equiv [C]_2^+ \rightarrow [C]_2. \\ \\ \\ \mathbf{r}_{18} \equiv [Z_{ij}]_2^+ \rightarrow [B^{k_{i,11}\cdot k_{i,13}}]_2 : 1 \leq i \leq 7, \ k_{i,1} \leq j \leq k_{i,4}. \\ \\ \\ \mathbf{r}_{19} \equiv [Z_{ij}]_2^+ \rightarrow [B^{k_{i,11}\cdot k_{i,12}}]_2 : 1 \leq i \leq 7, \ j < k_{i,1} \end{array}$$

GRACIAS ...

Una máquina celular que resuelve SAT

 $\begin{array}{l} \mathsf{Alfabeto:} \ \{x_{i,j}, \overline{x}_{i,j}: 1 \leq i \leq m, 1 \leq j \leq n\} \cup \{c_k: 1 \leq k \leq m+2\} \cup \{d_k: 1 \leq k \leq 3n+2m+3\} \cup \{r_{i,k}: 0 \leq i \leq m, 1 \leq k \leq 2n\} \cup \{e,t\} \cup \{\mathsf{Yes}, \mathsf{No}\}. \end{array}$

Estructura de membrana: [1 [2]2]1.

Reglas de evolución:

$$\begin{array}{ll} (a) & \left\{ \left[2d_{k} \right]_{2}^{0} \rightarrow \left[2d_{k} \right]_{2}^{1} \left[2d_{k} \right]_{2}^{-} : 1 \leq k \leq n \right\}. \\ (b) & \left\{ \left[2x_{i,1} \rightarrow x_{i,1} \right]_{1}^{+}, \left[2\overline{x}_{i,1} \rightarrow x_{1,1} \right]_{2}^{-} : 1 \leq i \leq m \right\}. \\ & \left\{ \left[2x_{i,1} \rightarrow \lambda \right]_{2}^{-}, \left[2\overline{x}_{i,1} \rightarrow \lambda \right]_{2}^{+} : 1 \leq i \leq m \right\}. \\ (c) & \left\{ \left[2x_{i,j} \rightarrow x_{i,j-1} \right]_{2}^{+}, \left[2x_{i,j} \rightarrow x_{i,j-1} \right]_{2}^{-} : 1 \leq i \leq m, 2 \leq j \leq n \right\}. \\ & \left\{ \left[2\overline{x}_{i,j} \rightarrow \overline{x}_{i,j-1} \right]_{2}^{+}, \left[2\overline{x}_{i,j} \rightarrow \overline{x}_{i,j-1} \right]_{2}^{-} : 1 \leq i \leq m, 2 \leq j \leq n \right\}. \\ & \left\{ \left[2d_{k} \right]_{2}^{+} \rightarrow \left[2\right]_{2}^{0} d_{k}, & \left[2d_{k} \right]_{2}^{-} \rightarrow \left[2\right]_{2}^{0} d_{k} : 1 \leq k \leq n \right]. \\ & \left\{ d_{k} \left[2\right]_{2}^{0} \rightarrow \left[2d_{k+1} \right]_{2}^{0} : 1 \leq k \leq n-1 \right\}. \\ (e) & \left\{ \left[2r_{i,k} \rightarrow r_{i,k+1} \right]_{2}^{0} : 1 \leq i \leq m, 1 \leq k \leq 2n-1 \right\}. \\ (f) & \left\{ \left[1d_{k} \rightarrow d_{k+1} \right]_{1}^{0} : n \leq k \leq 3n-3 \right\}: \left[1d_{3n-2} \rightarrow d_{3n-1} e \right]_{1}^{0}. \\ (g) & e\left[2\right]_{2}^{0} \rightarrow \left[2c_{1} \right]_{2}^{+} : \left[1d_{3n-1} \rightarrow d_{3n} \right]_{1}^{0}. \\ (h) & \left\{ \left[1d_{k} \rightarrow d_{k+1} \right]_{1}^{0} : 3n \leq k \leq 3n+2m+2 \right\}. \\ (i) & \left[2r_{1,2n} \right]_{2}^{+} \rightarrow \left[2r_{1,2n} \right]_{2}^{-} : 1 \leq i \leq m \right\}. \\ (k) & \alpha_{1,2n} \left[2r_{2}^{-} \rightarrow \left[2r_{2} \alpha_{2n} \right]_{2}^{+}. \\ (l) & \left\{ \left[2c_{k} \rightarrow c_{k+1} \right]_{2}^{-} : 1 \leq k \leq m \right\}. \\ (m) & \left[1c_{m+1} \rightarrow c_{m+2} t \right]_{1}^{0}. \\ (o) & \left[1t \right]_{1}^{0} \rightarrow \left[1 \right]_{1}^{+} No. \end{array} \right\}$$