Modified tableaux for some kinds of multi-modal logics

Emilio Gómez-Caminero, Ángel Nepomuceno Grupo de Lógica, Lenguaje e Información Universidad de Sevilla

Lisbon, 2012

Emilio Gómez-Caminero, Ángel Nepomuceno Modified tableaux for some kinds of multi-modal logics

• It is well known that we can use a labelled tableaux method like a decision procedure in modal logic.

→ Ξ →

- It is well known that we can use a labelled tableaux method like a decision procedure in modal logic.
- We need a system of labels of the form 1, 1.1, 1.2, 1.2.1, and so on.

- It is well known that we can use a labelled tableaux method like a decision procedure in modal logic.
- We need a system of labels of the form 1, 1.1, 1.2, 1.2.1, and so on.
- The recursive definition is:
 - a. 1 is a label. b. If σ is a label, then $\sigma.n$ is a label (for $n \ge 1$)

- It is well known that we can use a labelled tableaux method like a decision procedure in modal logic.
- We need a system of labels of the form 1, 1.1, 1.2, 1.2.1, and so on.
- The recursive definition is:
 - a. 1 is a label.
 - b. If σ is a label, then $\sigma . n$ is a label (for $n \ge 1$)
- Intuitively, each label represents a possible world, such that $\sigma.n$ is reachable from σ .

• The rules for the propositional operators are the usual, whit a label which remains invariable. E.g.:

$$\frac{\sigma :: \alpha \land \beta}{\sigma :: \alpha}$$

→ 3 → 4 3

• The rules for the propositional operators are the usual, whit a label which remains invariable. E.g.:

$$\frac{\sigma :: \alpha \land \beta}{\sigma :: \alpha} \\ \sigma :: \beta$$

The rule for the operator
 \u03c6 is the only one which creates a
 new label:

$$\mathbf{R}\diamondsuit:\frac{\sigma::\diamondsuit\alpha}{\sigma.n::\alpha}$$

(Where *n* is the first positive integer such that σ .*n* is new in the branch.)

The preceding rule, in addition whit the rules for the operator
 □ may give rise to an infinite branch.

- The preceding rule, in addition whit the rules for the operator
 □ may give rise to an infinite branch.
- But we can avoid it using the following restriction:

Except if $\tau :: \alpha$ appears in the branch and σ is reachable since τ . In that case, the rule is considered as applied and the formula is marked.

• The rule for the operator \Box depends on one of the the properties of the accessibility relation:

- The rule for the operator \Box depends on one of the the properties of the accessibility relation:
- If the accessibility relation is reflexive, the rule is:

$$\mathbf{R}\Box \text{ refl.}: \frac{\sigma :: \Box \alpha}{\sigma :: \alpha}$$

- The rule for the operator \Box depends on one of the the properties of the accessibility relation:
- If the accessibility relation is reflexive, the rule is:

$$\mathbf{R}\Box \text{ refl.}: \frac{\sigma :: \Box \alpha}{\sigma :: \alpha}$$

• If the accessibility relation is serial, the rule is:

$$\mathbf{R}\square \mathbf{ser.} : \frac{\sigma :: \square \alpha}{\sigma :: \Diamond \alpha}$$

• The specific character of the operator \Box is captured by the so called *inheritance rules*:

- The specific character of the operator \Box is captured by the so called *inheritance rules*:
- Basic case (the accessibility relation has no more properties than reflexivity or seriality):

$$\mathbf{IRT}: \frac{\sigma::\Box\alpha}{\sigma.n::\alpha}$$

(For any label σ .*n* which appears in the branch.)

We can introduce additional properties replacing the preceding rule whit the followings:

• Euclidianity (S4, KD4):

IRS4 :
$$\frac{\sigma :: \Box \alpha}{\sigma . n :: \Box \alpha}$$

We can introduce additional properties replacing the preceding rule whit the followings:

• Euclidianity (S4, KD4):

IRS4 :
$$\frac{\sigma :: \Box \alpha}{\sigma . n :: \Box \alpha}$$

• Symmetry (S5, KD45):

$$\mathsf{IRS5}: = \frac{\sigma :: \Box \alpha}{\sigma.n :: \Box \alpha}$$

- With the adequate combination of these rules we can create tableau methods for all basic systems of alethic modal logic.
- We can prove that these methods are correct and complete.
- In many cases, we can extend this kind of labelled tableau to systems of multi-modal logic.

• The easier extension of modal logic is the case in which we have a certain number of modal operators of the same kind.

- The easier extension of modal logic is the case in which we have a certain number of modal operators of the same kind.
- This is the case of multi-agent modal logics. The best known are epistemic and doxastic logic.

- The easier extension of modal logic is the case in which we have a certain number of modal operators of the same kind.
- This is the case of multi-agent modal logics. The best known are epistemic and doxastic logic.
- Given a set \mathcal{A} of agents, we have an operator \Box_{a_i} and its dual \Diamond_{a_i} for each agent $a_i \in \mathcal{A}$.

- The easier extension of modal logic is the case in which we have a certain number of modal operators of the same kind.
- This is the case of multi-agent modal logics. The best known are epistemic and doxastic logic.
- Given a set \mathcal{A} of agents, we have an operator \Box_{a_i} and its dual \Diamond_{a_i} for each agent $a_i \in \mathcal{A}$.
- Usually we write K_{a_i} when we are talking about epistemic logic and B_{a_i} when we are dealing with doxastic logic.

To adapt the tableau method to multi-agent modal logic we only have to adapt the form of the labels:

labels
Given a set $\mathcal A$ of agents:
a 1 is a label.
b If σ is a label, then $\sigma.a_in$ is a label too (for $n \ge 1$ and $a_i \in A$).

The rules are the same that in the general case, but adapted to the new labels:

•
$$\Diamond$$
-Rule (R \Diamond):
 $\frac{\sigma :: \Diamond_{a_i} \alpha}{\sigma. a_i n :: \alpha}$
• \Box -Rule (R \Box):

Knowledge	Belief
$\frac{\sigma::\Box_{\mathbf{a}_{i}}\alpha}{\sigma::\alpha}$	$\frac{\sigma::\Box_{\mathbf{a}_i}\alpha}{\sigma::\diamondsuit_{\mathbf{a}_i}\alpha}$

$$T_m/KD_m: \frac{\sigma :: \Box_{a_i}\alpha}{\sigma \cdot a_i n :: \alpha}$$

$$S4_m/KD4_m: \frac{\sigma :: \Box_{a_i}\alpha}{\sigma \cdot a_i n :: \Box \alpha}$$

$$S5_m/KD5_m: \frac{\sigma :: \Box_{a_i}\alpha}{\sigma \cdot a_i n :: \Box \alpha}$$

Emilio Gómez-Caminero, Ángel Nepomuceno Modified tableaux for some kinds of multi-modal logics

・聞き ・ ヨキ・ ・ ヨキ

æ

Combining modalities

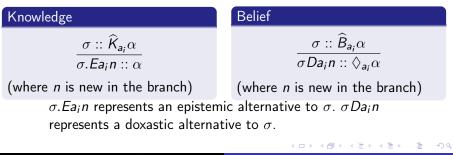
• We may combine different kinds of modalities; for example, epistemic and doxastic modalities, epistemic and deontic modalities, and son on.

Combining modalities

- We may combine different kinds of modalities; for example, epistemic and doxastic modalities, epistemic and deontic modalities, and son on.
- In order to do it, we have to consider different kinds of accessibility relations and represent them using the labels.

Combining modalities

- We may combine different kinds of modalities; for example, epistemic and doxastic modalities, epistemic and deontic modalities, and son on.
- In order to do it, we have to consider different kinds of accessibility relations and represent them using the labels.
- For example, if we want to combine epistemic and doxastic operators, rules are:



Combining modalities. Inheritance rules.

• We have to consider the relations between different kinds of modality.

- We have to consider the relations between different kinds of modality.
- Depending on these relations, we have to change the inheritance rules. For example, if we accept that $K_{a_i}\varphi \rightarrow B_{a_i}\varphi$, we have to modify the inheritance rule for K (we give the example for S4):

$$\frac{\sigma :: K_{a_i}\alpha}{\sigma.Xa_in :: \alpha}$$

(Where X may be E or D)

• We can extend our multi-agent epistemic/doxastic logic (¿and deontic,...?) with group knowledge (group belief) operators.

- We can extend our multi-agent epistemic/doxastic logic (¿and deontic,...?) with group knowledge (group belief) operators.
- Eφ means everybody knows (believes) that φ. It can be defined as □_{a1}φ ∧ □_{a2}φ ∧ ··· (for any a_i ∈ A).

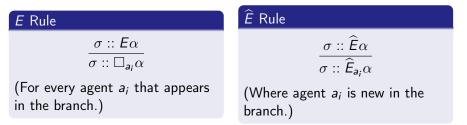
- We can extend our multi-agent epistemic/doxastic logic (¿and deontic,...?) with group knowledge (group belief) operators.
- Eφ means everybody knows (believes) that φ. It can be defined as □_{a1}φ ∧ □_{a2}φ ∧ ··· (for any a_i ∈ A).
- Its dual, *Ê*φ, means *it is possible for somebody that* φ. It can be defined as ◊_{a1}φ ∨ ◊_{a2}φ ∨ · · · (for any a_i ∈ A).

- We can extend our multi-agent epistemic/doxastic logic (¿and deontic,...?) with group knowledge (group belief) operators.
- Eφ means everybody knows (believes) that φ. It can be defined as □_{a1}φ ∧ □_{a2}φ ∧ ··· (for any a_i ∈ A).
- Its dual, *Ê*φ, means *it is possible for somebody that* φ. It can be defined as ◊_{a1}φ ∨ ◊_{a2}φ ∨ · · · (for any a_i ∈ A).
- $C\varphi$ means it is common knowledge (belief) that φ . It can be intuitively understood as the infinite conjunction $E\varphi \wedge EE\varphi \wedge EEE\varphi \wedge \cdots$

・ 同 ト ・ ヨ ト ・ ヨ ト …

- We can extend our multi-agent epistemic/doxastic logic (¿and deontic,...?) with group knowledge (group belief) operators.
- Eφ means everybody knows (believes) that φ. It can be defined as □_{a1}φ ∧ □_{a2}φ ∧ ··· (for any a_i ∈ A).
- Its dual, *Ê*φ, means *it is possible for somebody that* φ. It can be defined as ◊_{a1}φ ∨ ◊_{a2}φ ∨ · · · (for any a_i ∈ A).
- Cφ means it is common knowledge (belief) that φ. It can be intuitively understood as the infinite conjunction Eφ ∧ EEφ ∧ EEEφ ∧ ···
- Its dual, C
 φ (it is compatible with common knowledge (belief) that φ) can be intuitively understood as the infinite disjunction E
 φ ∨ E
 *Ê*E
 φ ∨ ···

E and \hat{E} may be treated as quantifiers:



C is treated in the same way that the operator \Box :

Knowledge	Belief
$\frac{\sigma:: C\alpha}{\sigma:: \alpha}$	$\frac{\sigma :: \mathcal{C}\alpha}{\sigma :: \widehat{\mathcal{C}}\alpha}$

伺 ト イヨト イヨ

IRC:
IRT:
$$\frac{\sigma :: C\alpha}{\sigma.a_i n :: C\alpha}$$

(For any label $\sigma.a_i n$ that appears in the branch)
IRS5: $\frac{\sigma :: C\alpha}{\sigma.a_i n :: C\alpha}$
(For any label $\sigma, \sigma.a_i n$ that appears in the branch)

The case of S4 is like T, but we have to consider the cases where we have applied the restriction of the rule $R\Diamond$.

• Before talking about the operator \widehat{C} , we have to speak about DB-tableaux.

- Before talking about the operator \widehat{C} , we have to speak about DB-tableaux.
- We call DB-tableaux to a modified tableau method proposed independently by Díaz Estévez and Boolos to deal with formulas of the form ∀x∃yφ(x).

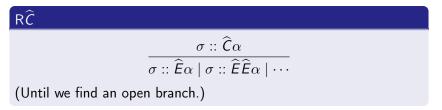
- Before talking about the operator \widehat{C} , we have to speak about DB-tableaux.
- We call DB-tableaux to a modified tableau method proposed independently by Díaz Estévez and Boolos to deal with formulas of the form ∀x∃yφ(x).
- In this method, the rule

$$\frac{\exists x\varphi}{\varphi\left(k_{n+1}/x\right)}$$

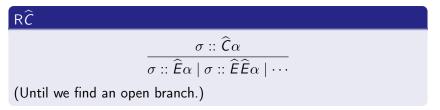
(where k_n is the last parameter that appears in the branch) is replaced with:

$$\frac{\exists x\varphi}{\varphi(k_1/x) \mid \cdots \mid \varphi(k_n/x) \mid \varphi(k_{n+1}/x)}$$

• We will use an infinitary version of the previous rule to deal with the operator \widehat{C} .



• We will use an infinitary version of the previous rule to deal with the operator \widehat{C} .



• If the formula has a model, we will find it in a finite number of steps; if the formula has not a model, the tableau becomes infinite.

- \bullet We can interpret \Box and \diamondsuit as temporal operators:
 - $\Box \varphi$ means "always (now and in the future) φ ".
 - $\Diamond \varphi$ means "sometime (now or in the future) φ ".

- We can interpret \Box and \Diamond as temporal operators:
 - $\Box \varphi$ means "always (now and in the future) φ ".
 - $\Diamond \varphi$ means "sometime (now or in the future) φ ".
- It is usual to introduce two more operators: \bigcirc y U (we are not going to deal with branching-time operators):
 - $\bigcirc \varphi$ means " at the next moment, φ ".
 - $\varphi U \psi$ means " φ until ψ ".

We have to introduce the following changes:

Labels: Each label $t \in \mathbb{N}$ represents a moment of the time (we are dealing with discrete time).

We have to introduce the following changes:

Labels: Each label $t \in \mathbb{N}$ represents a moment of the time (we are dealing with discrete time).

Operator \Box : Rules for \Box are similar to the previous cases:

Operator \bigcirc : The rules for \bigcirc and its negation are:

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

• For dealing with the operators \Diamond and U (and it negation) we need *recursive rules*.

- For dealing with the operators \Diamond and U (and it negation) we need *recursive rules*.
- Recursive rules are of the form

$$\frac{A}{SC \parallel RC}$$

- For dealing with the operators \Diamond and U (and it negation) we need *recursive rules*.
- Recursive rules are of the form

$$\frac{A}{SC \parallel RC}$$

• SC is the stop condition. RC is the recursive clause.

- For dealing with the operators \Diamond and U (and it negation) we need *recursive rules*.
- Recursive rules are of the form

$$\frac{A}{SC \parallel RC}$$

- SC is the stop condition. RC is the recursive clause.
- If SC gives rise to an open branch, we have finished the application of the rule.

- For dealing with the operators \Diamond and U (and it negation) we need *recursive rules*.
- Recursive rules are of the form

$$\frac{A}{SC \parallel RC}$$

- SC is the stop condition. RC is the recursive clause.
- If SC gives rise to an open branch, we have finished the application of the rule.
- If SC gives rise to a closed branch, we have to apply RC, which makes us to apply the rule again at the next moment of the time.

- For dealing with the operators \Diamond and U (and it negation) we need *recursive rules*.
- Recursive rules are of the form

$$\frac{A}{SC \parallel RC}$$

- SC is the *stop condition*. RC is the *recursive clause*.
- If SC gives rise to an open branch, we have finished the application of the rule.
- If SC gives rise to a closed branch, we have to apply RC, which makes us to apply the rule again at the next moment of the time.
- One more time, if the formula has a finite model, we find it in a finite number of steps; if the formula has not a model, the tableau becomes infinite.

• R◊: $\frac{t::\Diamond\alpha}{t::\alpha\parallel t::\bigcirc\Diamond\alpha}$ • RU: $\frac{\beta U\alpha}{t :: \beta \left\| \begin{array}{c} t :: \alpha \\ t :: \cap \alpha U\beta \end{array} \right\|}$ • $\mathbf{R} \neg U$: $t :: \neg (\alpha U \beta)$ $\begin{array}{c} t ::: \neg \alpha \\ t ::: \neg \beta \end{array} \middle\| \begin{array}{c} \hline t ::: \alpha \\ t ::: \neg \\ t ::: \neg \end{array} \\ t :: \bigcirc \neg (\alpha U \beta) \end{array}$

< /₽ > < E > <

• We can present labelled tableau methods for modal logic. The so called *inheritance rules* expresses the properties of the accessibility relation. We can prove that these methods are correct and complete.

- We can present labelled tableau methods for modal logic. The so called *inheritance rules* expresses the properties of the accessibility relation. We can prove that these methods are correct and complete.
- We can extend these methods to multi-modal logics using more complicated labels and rules.

- We can present labelled tableau methods for modal logic. The so called *inheritance rules* expresses the properties of the accessibility relation. We can prove that these methods are correct and complete.
- We can extend these methods to multi-modal logics using more complicated labels and rules.
- For some infinitary operators we have to use DB-Tableaux.

- We can present labelled tableau methods for modal logic. The so called *inheritance rules* expresses the properties of the accessibility relation. We can prove that these methods are correct and complete.
- We can extend these methods to multi-modal logics using more complicated labels and rules.
- For some infinitary operators we have to use DB-Tableaux.
- For temporal operators we use recursive rules.

- We can present labelled tableau methods for modal logic. The so called *inheritance rules* expresses the properties of the accessibility relation. We can prove that these methods are correct and complete.
- We can extend these methods to multi-modal logics using more complicated labels and rules.
- For some infinitary operators we have to use DB-Tableaux.
- For temporal operators we use recursive rules.
- In the last two cases, the tableau may become infinite.

Thank you Muito obrigado

Emilio Gómez-Caminero, Ángel Nepomuceno Modified tableaux for some kinds of multi-modal logics