ESPACIOS NORMADOS. OPERADORES LINEALES

1. (a) Sea X un espacio normado, cuya norma satisface la identidad del paralelogramo, esto es,

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$$

para todo $x,y\in X.$ Probar que la función de $X\times X$ en R dada por

$$(x|y) = \frac{1}{4}(\|x+y\|^2 - \|x-y\|^2)$$

define un producto escalar en X que verifica $||x||^2 = (x|x)$.

2. Sea X el espacio vectorial formado por todas las funciones reales continuas y con derivada continua definidas en el intervalo [0, 1]. Definimos la siguiente norma en este espacio

$$||f|| = \max\{|f(t)| + |f'(t)| : t \in [0, 1]\}.$$

- (a) Probar que $\|\cdot\|$ es una norma en X.
- (b) Probar que X con esta norma es un espacio de Banach.
- (c) Sea $x_0 \in [a,b]$. Probar que $||f||_{x_0} = |f(x_0)| + ||f||_{\infty}$ es una norma en $C^1([a,b])$ equivalente a la norma anterior.
- 3. Demostrar que los espacios ℓ_p son separables si $1 \le p < \infty$. Probar que, sin embargo, ℓ_∞ no es separable.
- 4. Sea Δ el disco unidad cerrado del plano complejo y $A(\Delta)$ la familia de funciones complejas continuas en Δ y analíticas en el interior de Δ . Probar que

$$||f|| = \max_{z \in \Lambda} |f(z)|$$

define una norma en este espacio. Probar que este espacio normado es separable.

- 5. Sean $1 \le p < q \le \infty$.
- (a) Demostrar que $\ell_p \subset \ell_q$, $\ell_p \neq \ell_q$ y $||x||_q \leq ||x||_p$ para todo $x \in \ell_p$. (b) Encontrar una sucesión $\{x_n\}$ en ℓ_p que converja en ℓ_q pero no converja en ℓ_p .
- 6. Sea $1 \leq p < \infty$.
- (a) Probar que ℓ_p está contenido en c_0 y que la inclusión $i:\ell_p\to c_0$ es continua.
- (b) Probar que la sucesión

$$\left(\frac{1}{\ln 2}, \frac{1}{\ln 3}, ..., \frac{1}{\ln n}, ...\right)$$

pertenece a c_0 pero no pertenece a ℓ_p para ningún p.

- 7. Probar que $\mathcal{L}(\mathcal{E};\mathcal{F})$ es completo si F es completo.
- 8. Sea C([0,1]) el espacio vectorial formado por todas las funciones reales continuas definidas en el intervalo [0, 1] con la norma del máximo.
- (a) Estudiar si las sucesiones de funciones definidas por $x_n(t) = t^n t^{n+1}$ e $y_n(t) = t^n t^{2n}$ convergen en C([0,1]).

(b) Considerar en C([0,1]) el conjunto

$$M = \{ f \in C([0,1]) : ||f|| \le 1; 0 = f(0) = f(1) \}.$$

Estudiar si M es un conjunto cerrado. ¿Es M compacto?

9. Consideremos la sucesión de funciones

$$x_n(t) = \frac{t^{n+1}}{n+1} - \frac{t^{n+2}}{n+2}.$$

Estudiar su convergencia en el espacio C([0,1]) con la norma del supremo y en el espacio $C^1([0,1])$ con la norma

$$||f|| = \max\{|f(t)| + |f'(t)| : t \in [0, 1]\}.$$

10. Sea $X=\{f\in C([0,1]): f(0)=0\}$ con la norma del máximo e Y el subespacio de X formado por las funciones tales que $\int_0^1 f(t)dt=0$. Probar que Y es subespacio cerrado de X y que, sin embargo, no existe $g\in X$ con $\|g\|=1$ tal que $\|g-f\|\geq 1$ para todo $f\in Y$.