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X # {0} reflexive real Banach space, X* its dual

(-, : X X X* — R the duality pairing
L2 . .
J = 85 |-||*, the duality mapping

Forz € X, J(z)={2*€X*: (z,2*) = [|z]|* = ||=*|?}.

THEOREM (Rockafellar, 1970). Let A: X =% X* be
a monotone operator. In order that A be maximal,

it is necessary and sufficient that R(A + J) be all of
X*.
A X=X
0q4 @ X XX — RU{+o00}

7 * _ 7 *\ inf —y, * %
paln ) ) (y,y*)EIGmph(A) A

(Fitzpatrick, 1988)

If A is maximal monotone,

oa(x,2*) > (x,2%) V (z,2¥) € X x X7,

oA(x,2*) = (z,2%) = (z,2*) € Graph (A).



h: X xX* — RU{+4o0} is a convex representation
of A if it is convex and l.s.c. and satisfies

h(xz,z*) > (x,z%) V (z,2%) € X x X7,

h(x,z*) = (z,z%) < (z,2™) € Graph (A).

© A 1s the smallest convex representation of A.

If f: X—RU{+4o0} is convex and l.s.c. then

h:X xX* — RU{+oc0}
h(z,z*) = f(x) + f* (=%)

is a convex representation of Jf.



If h: X x X* — R is a convex representation of A
then

() <h <)+ 5G7“aph(A)'

o4 =cl conv ({-,-) + Sgrapn())
(Burachik-Svaiter, 2002)

() Sh<og < () + 5Gmph(A)'
o 4 is the largest convex representation of A.

THEOREM (ML-Svaiter, 2005). Let A : X == X*.
Then

A is monotone = opq > ().

Proof of —>.
Let M be a maximal monotone extension of A.

oA>on > op > ()



Proof of <—.

Let (z,z*), (y,y*) € Graph (A).

1 1 1 1
G+, 6 +y) < oSty 6@ +y)

(0 (2,7 + 04 (4, 5)

1 k %k
5“%%%+@w>)

VAN

(x —y,z* —y*) >0

Example: Graph (A) = {(0,0)} wa =0

If A is maximal monotone,

pale,a®) = (za*)— inf (z—ya*—y")
(y,y*)eA
=  sup {{z,v") + (y, ™) — (y,y")}
(y,y*)eA

(¢5) +04)" (2%, @)
= oy (2%, x) V (z,2¥) € X x X~

o4 (x, ) = oy (=¥, ) V (z,27) € X x X



Examples (X Hilbert space, B its unit ball):

f: X=X  f(z)= —||ac||2
of (z) = {x}
soafw)——nxm I°

fz)+ f*(a%) =3 ||~”U||2 5 HfE 1°
opf(z,T) = z]|?, O‘@f (x, a:*) = +4oo if x # z*

T : X — X linear, continuous, T* = —T
(T (z),y) +(z,T(y)) =0 V (z,y) € X?
PT = 5Graph(T) = () + 5G7“aph(T) —orT

0 # C C X, closed convex set oc: X — RU{+o0}

J{zreX:(y—z,2") <0VyeC} ifzel

% (z) = 0 ifx ¢ C
Pas (T, %) = ¢ () + 65 ()
095 (T, %) = ¢ (z) + 5(; (z*)



fiX=X [ (@)= el
Of (z) = {ﬁ_ﬂ} to70
B if 2 =0
wor(z,z*) = ||zl + dp (z*) = f(x) + f* (z¥)
oof (z, %) = f(z) + f*(z¥)

f: X — RU{+oo} sublinear, l.s.c. = pgr =0y¢

(Burachik-Fitzpatrick, 2005)

B satisfies the Brézis-Haraux condition if
inf (x —y,z" —y*) > —o0
(y,y*)€Graph(B)
V (z,z*) € D(B)x R(B).

@ pg is finite-valued = B satisfies the B-H condition



THEOREM. (Rockafellar, 1966). Suppose that

f,g: X — RU{+4o0} are l.s.c. proper convex func-
tions.

If the domain of one of these functions contains an
interior point of the domain of the other, then

inf {f(@)+g(2)} = max {~f"(z7) —g" (=)}

THEOREM (Simons, 1998).
Let A: X = X™* be monotone.

Then A is maximal monotone if and only if

Graph (A) + Graph (—J) = X x X*.



THEOREM (Torralba, 1996).
For every maximal monotone operator A : X = X™*,
if a,8>0and (x,z*) € X X X™* are such that

inf (@ —y, 2" —y*) 2 —ap
(y,y*)eGraph(A)
then there exists (z,2*) € Graph (A) such that

|z —z|| < @ and ||z* —z¥|| < 8.

Proof.

« ) )
— A Is maximal monotone.

(a:, %x*> € Graph (%A) + Graph (—J)
There exists (z, 2*) € Graph (A) such that

(az — z, %x* — %z*> € Graph (—J).

o 2

2 2
o~ a2 = % 2
||Z* o m*HZ < 62

2
il

:%<z—az,x*—z*><a



COROLLARY. Let A : X = X™ be maximal monotone.

If © 4 is finite-valued
then D(A) and R(A) are dense in X and X™, re-
spectively.

THEOREM. For every monotone operator
A : X = X*, the following statements are equivalent:

(1) A is maximal monotone.

(2) Graph (A) + Graph(—B) = X x X*
for every maximal monotone operator B : X = X*
such that ¢p is finite-valued.

(3) There exist an operator
B : X = X* such that

Graph (A) + Graph(—B) = X x X*
and (p,p*) € Graph (B) such that

p—y,p"—y*y > 0
V (y,y") € Graph(B)\{(p,p")}.



Proof of (1) = (2).
Let (330,378) e X x X*.
Define A’ : X = X* by
Graph (A’) := Graph (A) — (zg, 2g)
and h: X X X* — RU {400} by

h(xz,z*) =g (—x,2%).

oq(z, ")+ h(z,2%) > (z,2%) + (—x,2") =0

There exists (y,y*) € X x X* such that

oa (v, y")+h" (—y",—y) <0

oar (Y, y") + h* (—=y", —y)

= ou W,y )+op(—y,y")
> (y,y") + {(—y,y") =0

oa (v, y") =(y,y") and op(—y,y") = (—y,y™)

(y,y™) € Graph (A/) and (—y,vy") € Graph (B)

(x0, xp)

S

(0, z0) + (4, ¥") + (—y, =)
(o, zg) + Graph (A/) + Graph (—B)
Graph (A) + Graph (—B)



COROLLARY. For every maximal monotone operator
B:X = X7,

ppg is finite-valued

if and only if

D(B) = X, R(B) = X™* and B satisfies the Brézis-

Haraux condition.

Proof of "only if”.
Take A with D (A) = {0} and R(A) = X*.
Take A with D(A) = X and R(A) = {0}.

COROLLARY. Let T : X = X™* be maximal monotone.

If @ is finite-valued

then for every closed convex set K C X

the generalized variational inequality problem GV I (T, K)
has a solution, that is,

there exist x € K and z* € T (x) such that

(y—z,2% >0 Vyek



Proof.

Take A = Ny and

define B: X = X* by B(z) = -T (—x).

A and B are maximal monotone.

op(x,z*) = o (—x, —x™) V (x,2%) € X x X*.

(0,0) € Graph (Ng) + Graph (—B)

There exists (z,y*) € Graph (Ng) such that
(—z, —y*) € Graph (—B).
k

Take x* = —y™.
(x, —x*) = (z,y*) € Graph (Ng), that is,

(-2 >0 Vyek
x* = —y* € —B(—x) =T ()

PROPOSITION.

Let f : X — RU{+o0} be a l.s.c. proper convex
function. Then

po is finite-valued < f and f* are finite-valued



A l.s.c. proper convex function f: X — RU{+o0}
Is supercoercive if

lim / (z) = +00.
|z||—o00 |||
f is supercoercive — f* is finite-valued

COROLLARY.

Let A: X = X™ be a monotone operator and
f: X — R be al.s.c. proper convex function
such that f* is finite-valued.

Then A is maximal monotone if and only if

Graph (A) + Graph (—0f) = X x X™.

A : X = X* is strictly monotone if

forx,y € X with z £y, 2* € A(z) and y* € A(y),
(x —y,z* —y*) > 0.



LEMMA.

If A: X = X™* is monotone and

B : X = X™ is strictly monotone

then A 4+ B is strictly monotone and

hence (A + B) ™! is single-valued on its domain.

COROLLARY.

Let A: X = X™ be a monotone operator and

B : X = X™ be a maximal monotone operator with
finite-valued Fitzpatrick function ¢ pg.

If A is maximal monotone

then R(A+ B) = X*.

Conversely, if B is single-valued and strictly monotone
and R(A+ B) = X*

then A is maximal monotone.



THE NONREFLEXIVE CASE

X Banach space, T : X = X*

T: X** = X*
Graph (T) =
{(@™, %) : (@™ —y, 2" —y*) = 0,V(y,y") € G(T)}

A monotone operator T" : X == X* is of type (D)
if for every («**,2*) € Graph (f) there exists a
bounded net (zq,x},) in G(T') such that xo — x**
in the o(X™*, X*) topology of X** and x}, — z* in
the norm topology of X*.

0: X X X* - X X X* (x,2%) — (x,—x*).

Let f,g: X — RU{+4o0} be proper convex functions.
We call z* € X™* a Fenchel functional for f and g if

f7(z") + g% (=2") < 0.



THEOREM.

Let S,T : X = X™ be maximal monotone operators
of type (D).

Then the following statements are equivalent:

(a) R(S+T) = X*.

(b) for all u*, v* € X*, there exists (z**,x*) € X** x X*
such that, for all convex representations h of u* + S
and k of v* + T, (z*,2**) is a Fenchel functional for
h and k o p;

(c) for all u*, v* € X*, there exist convex representa-
tions h of u* 4+ S and k of v* 4+ T such that A and
k o o have a Fenchel functional.

A sufficient condition for S+7 to be surjective is that,

for all w* € X™, there exist convex representations h
of S and k of T such that

| J Aldomh—pg(domk)] is a closed subspace of X x X*.
A>0



POSITIVE SETS

S. Simons Journal of Convex Analysis (2007)

F # {0} real Banach space, F'* its dual
The monotone case: F=XxX*

b: F x F — R continuous, symmetric, bilinear form

that separates the points of F
The monotone case:

b((z,z*),(y,y")) = (=, y*) + (y, ")

1
q: FF — R defined by ¢ (x) = Eb (z,x)
The monotone case: q(z,x*) = (x,x¥)

A C F'is g-positive if a1,ap € A = q(a1 —ap) >0
The monotone case:
A is g-positive <= A is the graph of a monotone operator



(bq,A =®,y: F —>RU{—|—OO}
S (x) =q(z)—infrcaq(x —a) =supycq{b(z,a) —q(a)}
The monotone case:
® 4 is the Fitzpatrick function of the operator
whose graph is A.

® 4 is proper, convex and l.s.c..

M C F'is maximally q-positive if M is g—positive and
not properly contained in any other g—positive set
The monotone case:
M is maximally g-positive
<
M is the graph of a maximal monotone operator

If M is maximally g-positive then

S () q(x) VxebF,
® s (x) q(x) = x € M.

1V

h: FF — RU{+o0} is a convex representation of M
if it is convex and l.s.c. and satisfies

h(z) > q(x) Vaclk,
h(zx) = q(x) <= x € M.



PROPOSITION.
&,/ is the smallest convex representation of M.

Proof:
Let h be a convex representationof M, x € F',ye M

and A € [0,1).

(1= 2A)?q(z) + A (1 =) b(z,y) + Nq(y)
=q((1 —XA)x+ Ay)
<h({(l=XNzxz+ \y)

<(1-=Xh(z)+ Ah(y)
= (1= h(x)+ A (y)

(1=X2q (@) + A1 = N)b(z,y) = A (1 - N q(y)
< (1 =XA)h(z)

(1 =N q(x)+Ab(z,y) — A (y) < h(x)
b(z,y) —q(y) < h(x)

s (z) < h(x)



PROPOSITION.

Let A C F. Then A is g-positive if and only if there
exists a (l.s.c.) convex function h : ' — RU{+o00}
such that

h(z) > q(x) Vaxck,
h(x) = q(x) — x € A.
1 F— F*

The monotone case: i (y,y*) = (-, y*) + (y, )
If X is reflexive then 7 is a surjective isometry.

1
G={weFiq) =]l
The monotone case: G = Graph (—J)

THEOREM. Suppose that 7 is a surjective isometry
and A is a nonempty g—positive subset of I'. Then

A is maximally g-positive <—= A + G = F.



THEOREM. Suppose that 7 is a surjective isometry.
Then for every g-positive set A C F', the following
statements are equivalent:

(1) A is maximally g-positive.

(2) A+ C = F for every maximally —g-positive set
C' C F such that ®_,  is finite-valued.

(3) There exist a set C C F such that A+ C = F
and p € C such that

q(y—p)<0 VyeC\{p}.



