Convex representations of monotone operators, surjectivity theorems and positive sets

J.E. Martínez-Legaz

Universitat Autònoma de Barcelona, Spain
Workshop on Functional Analysis and Optimization

April 12, 2010
Universidad de Sevilla
$X \neq\{0\}$ reflexive real Banach space, X^{*} its dual
$\langle\cdot, \cdot\rangle: X \times X^{*} \longrightarrow \mathbb{R}$ the duality pairing
$J=\partial \frac{1}{2}\|\cdot\|^{2}$, the duality mapping
For $x \in X, \quad J(x)=\left\{x^{*} \in X^{*}:\left\langle x, x^{*}\right\rangle=\|x\|^{2}=\left\|x^{*}\right\|^{2}\right\}$.
THEOREM (Rockafellar, 1970). Let $A: X \rightrightarrows X^{*}$ be a monotone operator. In order that A be maximal, it is necessary and sufficient that $R(A+J)$ be all of X^{*}.

$$
\begin{aligned}
A & : X \rightrightarrows X^{*} \\
\varphi_{A} & : X \times X^{*} \longrightarrow \mathbb{R} \cup\{+\infty\} \\
\varphi_{A}\left(x, x^{*}\right) & =\left\langle x, x^{*}\right\rangle-\inf _{\left(y, y^{*}\right) \in \operatorname{Graph}(A)}\left\langle x-y, x^{*}-y^{*}\right\rangle
\end{aligned}
$$

(Fitzpatrick, 1988)
If A is maximal monotone,

$$
\begin{aligned}
\varphi_{A}\left(x, x^{*}\right) & \geq\left\langle x, x^{*}\right\rangle \quad \forall\left(x, x^{*}\right) \in X \times X^{*}, \\
\varphi_{A}\left(x, x^{*}\right) & =\left\langle x, x^{*}\right\rangle \quad \Longleftrightarrow \quad\left(x, x^{*}\right) \in \operatorname{Graph}(A) .
\end{aligned}
$$

$h: X \times X^{*} \longrightarrow \mathbb{R} \cup\{+\infty\}$ is a convex representation of A if it is convex and I.s.c. and satisfies
$h\left(x, x^{*}\right) \geq\left\langle x, x^{*}\right\rangle$
$\forall\left(x, x^{*}\right) \in X \times X^{*}$,
$h\left(x, x^{*}\right)=\left\langle x, x^{*}\right\rangle$
\Longleftrightarrow
$\left(x, x^{*}\right) \in \operatorname{Graph}(A)$.
φ_{A} is the smallest convex representation of A.

If $f: X \longrightarrow \mathbb{R} \cup\{+\infty\}$ is convex and I.s.c. then

$$
\begin{aligned}
& h: X \times X^{*} \longrightarrow \mathbb{R} \cup\{+\infty\} \\
& h\left(x, x^{*}\right)=f(x)+f^{*}\left(x^{*}\right)
\end{aligned}
$$

is a convex representation of ∂f.

If $h: X \times X^{*} \longrightarrow \mathbb{R}$ is a convex representation of A then

$$
\begin{gathered}
\langle\cdot, \cdot\rangle \leq h \leq\langle\cdot, \cdot\rangle+\delta_{\operatorname{Graph}(A)} . \\
\sigma_{A}=c l \operatorname{conv}\left(\langle\cdot, \cdot\rangle+\delta_{\operatorname{Graph}(A)}\right)
\end{gathered}
$$

(Burachik-Svaiter, 2002)

$$
\langle\cdot, \cdot\rangle \leq h \leq \sigma_{A} \leq\langle\cdot, \cdot\rangle+\delta_{\operatorname{Graph}(A)} .
$$

σ_{A} is the largest convex representation of A.

THEOREM (ML-Svaiter, 2005). Let $A: X \rightrightarrows X^{*}$. Then
A is monotone

$$
\Longleftrightarrow \quad \sigma_{A} \geq\langle\cdot, \cdot\rangle
$$

Proof of \Longrightarrow.
Let M be a maximal monotone extension of A. $\sigma_{A} \geq \sigma_{M} \geq \varphi_{M} \geq\langle\cdot, \cdot \cdot\rangle$

Proof of \Longleftarrow.
Let $\left(x, x^{*}\right),\left(y, y^{*}\right) \in \operatorname{Graph}(A)$.
$\left\langle\frac{1}{2}(x+y), \frac{1}{2}\left(x^{*}+y^{*}\right)\right\rangle \leq \sigma_{A}\left(\frac{1}{2}(x+y), \frac{1}{2}\left(x^{*}+y^{*}\right)\right)$

$$
\begin{aligned}
& \leq \frac{1}{2}\left(\sigma_{A}\left(x, x^{*}\right)+\sigma_{A}\left(y, y^{*}\right)\right) \\
& =\frac{1}{2}\left(\left\langle x, x^{*}\right\rangle+\left\langle y, y^{*}\right\rangle\right)
\end{aligned}
$$

$$
\left\langle x-y, x^{*}-y^{*}\right\rangle \geq 0
$$

Example: $\operatorname{Graph}(A)=\{(0,0)\} \quad \varphi_{A} \equiv 0$

If A is maximal monotone,

$$
\begin{aligned}
\varphi_{A}\left(x, x^{*}\right) & =\left\langle x, x^{*}\right\rangle-\inf _{\left(y, y^{*}\right) \in A}\left\langle x-y, x^{*}-y^{*}\right\rangle \\
& =\sup _{\left(y, y^{*}\right) \in A}\left\{\left\langle x, y^{*}\right\rangle+\left\langle y, x^{*}\right\rangle-\left\langle y, y^{*}\right\rangle\right\} \\
& =\left(\langle\cdot, \cdot\rangle+\delta_{A}\right)^{*}\left(x^{*}, x\right) \\
& =\sigma_{A}^{*}\left(x^{*}, x\right) \quad \forall\left(x, x^{*}\right) \in X \times X^{*} \\
\sigma_{A}\left(x, x^{*}\right) & =\varphi_{A}^{*}\left(x^{*}, x\right) \quad \forall\left(x, x^{*}\right) \in X \times X^{*}
\end{aligned}
$$

Examples (X Hilbert space, B its unit ball):

$$
\begin{aligned}
& f: X \rightarrow X \quad f(x)=\frac{1}{2}\|x\|^{2} \\
& \partial f(x)=\{x\} \\
& \quad \varphi_{\partial f}\left(x, x^{*}\right)=\frac{1}{4}\left\|x+x^{*}\right\|^{2} \\
& \quad f(x)+f^{*}\left(x^{*}\right)=\frac{1}{2}\|x\|^{2}+\frac{1}{2}\left\|x^{*}\right\|^{2} \\
& \sigma_{\partial f}(x, x)=\|x\|^{2}, \sigma_{\partial f}\left(x, x^{*}\right)=+\infty \text { if } x \neq x^{*}
\end{aligned}
$$

$T: X \rightarrow X$ linear, continuous, $T^{*}=-T$
$\langle T(x), y\rangle+\langle x, T(y)\rangle=0 \quad \forall(x, y) \in X^{2}$ $\varphi_{T}=\delta_{\operatorname{Graph}(T)}=\langle\cdot, \cdot\rangle+\delta_{\operatorname{Graph}(T)}=\sigma_{T}$
$\emptyset \neq C \subseteq X$, closed convex set $\quad \delta_{C}: X \rightarrow \mathbb{R} \cup\{+\infty\}$

$$
\begin{aligned}
\partial \delta_{C}(x) & = \begin{cases}\left\{x^{*} \in X:\left\langle y-x, x^{*}\right\rangle \leq 0 \forall y \in C\right\} & \text { if } x \in C \\
\emptyset & \text { if } x \notin C\end{cases} \\
\varphi_{\partial \delta_{C}}\left(x, x^{*}\right)=\delta_{C}(x)+\delta_{C}^{*}\left(x^{*}\right) & \\
\sigma_{\partial \delta_{C}}\left(x, x^{*}\right)=\delta_{C}(x)+\delta_{C}^{*}\left(x^{*}\right) &
\end{aligned}
$$

$$
\begin{gathered}
f: X \rightarrow X \quad f(x)=\|x\| \\
\partial f(x)= \begin{cases}\left\{\frac{x}{\|x\|}\right\} & \text { if } x \neq 0 \\
B & \text { if } x=0\end{cases} \\
\varphi_{\partial f}\left(x, x^{*}\right)=\|x\|+\delta_{B}\left(x^{*}\right)=f(x)+f^{*}\left(x^{*}\right) \\
\sigma_{\partial f}\left(x, x^{*}\right)=f(x)+f^{*}\left(x^{*}\right) \\
f: X \rightarrow \mathbb{R} \cup\{+\infty\} \text { sublinear, l.s.c. } \Longrightarrow \varphi_{\partial f}=\sigma_{\partial f} \\
\text { (Burachik-Fitzpatrick, 2005) }
\end{gathered}
$$

B satisfies the Brézis-Haraux condition if

$$
\begin{aligned}
\inf _{\left(y, y^{*}\right) \in \operatorname{Graph}(B)}\left\langle x-y, x^{*}-y^{*}\right\rangle & >-\infty \\
\forall\left(x, x^{*}\right) & \in D(B) \times R(B) .
\end{aligned}
$$

φ_{B} is finite-valued $\Longrightarrow B$ satisfies the $\mathrm{B}-\mathrm{H}$ condition

THEOREM. (Rockafellar, 1966). Suppose that $f, g: X \longrightarrow \mathbb{R} \cup\{+\infty\}$ are I.s.c. proper convex functions.

If the domain of one of these functions contains an interior point of the domain of the other, then
$\inf _{x \in X}\{f(x)+g(x)\}=\max _{x^{*} \in X^{*}}\left\{-f^{*}\left(x^{*}\right)-g^{*}\left(-x^{*}\right)\right\}$.

THEOREM (Simons, 1998).
Let $A: X \rightrightarrows X^{*}$ be monotone.
Then A is maximal monotone if and only if

$$
\operatorname{Graph}(A)+\operatorname{Graph}(-J)=X \times X^{*} .
$$

THEOREM (Torralba, 1996).
For every maximal monotone operator $A: X \rightrightarrows X^{*}$, if $\alpha, \beta>0$ and $\left(x, x^{*}\right) \in X \times X^{*}$ are such that

$$
\inf _{\left(y, y^{*}\right) \in \operatorname{Graph}(A)}\left\langle x-y, x^{*}-y^{*}\right\rangle \geq-\alpha \beta
$$

then there exists $\left(z, z^{*}\right) \in G r a p h(A)$ such that

$$
\|z-x\| \leq \alpha \text { and }\left\|z^{*}-x^{*}\right\| \leq \beta
$$

Proof.

$\frac{\alpha}{\beta} A$ is maximal monotone.
$\left(x, \frac{\alpha}{\beta} x^{*}\right) \in \operatorname{Graph}\left(\frac{\alpha}{\beta} A\right)+G r a p h(-J)$
There exists $\left(z, z^{*}\right) \in G r a p h(A)$ such that

$$
\begin{aligned}
& \left(x-z, \frac{\alpha}{\beta} x^{*}-\frac{\alpha}{\beta} z^{*}\right) \in \operatorname{Graph}(-J) . \\
& \|z-x\|^{2}=\frac{\alpha^{2}}{\beta^{2}}\left\|z^{*}-x^{*}\right\|^{2}=\frac{\alpha}{\beta}\left\langle z-x, x^{*}-z^{*}\right\rangle \leq \alpha^{2} \\
& \left\|z^{*}-x^{*}\right\|^{2} \leq \beta^{2}
\end{aligned}
$$

COROLLARY. Let $A: X \rightrightarrows X^{*}$ be maximal monotone.
If φ_{A} is finite-valued
then $D(A)$ and $R(A)$ are dense in X and X^{*}, respectively.

THEOREM. For every monotone operator $A: X \rightrightarrows X^{*}$, the following statements are equivalent:
(1) A is maximal monotone.
(2) $\operatorname{Graph}(A)+\operatorname{Graph}(-B)=X \times X^{*}$ for every maximal monotone operator $B: X \rightrightarrows X^{*}$ such that φ_{B} is finite-valued.
(3) There exist an operator $B: X \rightrightarrows X^{*}$ such that

$$
\operatorname{Graph}(A)+\operatorname{Graph}(-B)=X \times X^{*}
$$

and $\left(p, p^{*}\right) \in \operatorname{Graph}(B)$ such that

$$
\begin{aligned}
\left\langle p-y, p^{*}-y^{*}\right\rangle & >0 \\
\forall\left(y, y^{*}\right) & \in \operatorname{Graph}(B) \backslash\left\{\left(p, p^{*}\right)\right\} .
\end{aligned}
$$

Proof of (1) \Longrightarrow (2).
Let $\left(x_{0}, x_{0}^{*}\right) \in X \times X^{*}$.
Define $A^{\prime}: X \rightrightarrows X^{*}$ by

$$
\operatorname{Graph}\left(A^{\prime}\right):=\operatorname{Graph}(A)-\left(x_{0}, x_{0}^{*}\right)
$$

and $h: X \times X^{*} \longrightarrow \mathbb{R} \cup\{+\infty\}$ by

$$
\begin{gathered}
h\left(x, x^{*}\right):=\varphi_{B}\left(-x, x^{*}\right) \\
\sigma_{A^{\prime}}\left(x, x^{*}\right)+h\left(x, x^{*}\right) \geq\left\langle x, x^{*}\right\rangle+\left\langle-x, x^{*}\right\rangle=0
\end{gathered}
$$

There exists $\left(y, y^{*}\right) \in X \times X^{*}$ such that

$$
\begin{gathered}
\varphi_{A^{\prime}}\left(y, y^{*}\right)+h^{*}\left(-y^{*},-y\right) \leq 0 \\
\varphi_{A^{\prime}}\left(y, y^{*}\right)+h^{*}\left(-y^{*},-y\right)=\varphi_{A^{\prime}}\left(y, y^{*}\right)+\sigma_{B}\left(-y, y^{*}\right) \\
\geq\left\langle y, y^{*}\right\rangle+\left\langle-y, y^{*}\right\rangle=0 \\
\varphi_{A^{\prime}}\left(y, y^{*}\right)=\left\langle y, y^{*}\right\rangle \text { and } \sigma_{B}\left(-y, y^{*}\right)=\left\langle-y, y^{*}\right\rangle \\
\left(y, y^{*}\right) \in \operatorname{Graph}\left(A^{\prime}\right) \text { and }\left(-y, y^{*}\right) \in \operatorname{Graph}(B) \\
\left(x_{0}, x_{0}^{*}\right)=\left(x_{0}, x_{0}^{*}\right)+\left(y, y^{*}\right)+\left(-y,-y^{*}\right) \\
\in\left(x_{0}, x_{0}^{*}\right)+\operatorname{Graph}\left(A^{\prime}\right)+\operatorname{Graph}(-B) \\
=\operatorname{Graph}(A)+\operatorname{Graph}(-B)
\end{gathered}
$$

COROLLARY. For every maximal monotone operator $B: X \rightrightarrows X^{*}$,
φ_{B} is finite-valued
if and only if
$D(B)=X, R(B)=X^{*}$ and B satisfies the BrézisHaraux condition.

Proof of "only if".
Take A with $D(A)=\{0\}$ and $R(A)=X^{*}$.
Take A with $D(A)=X$ and $R(A)=\{0\}$.
COROLLARY. Let $T: X \rightrightarrows X^{*}$ be maximal monotone.
If φ_{T} is finite-valued
then for every closed convex set $K \subseteq X$ the generalized variational inequality problem $G V I(T, K)$ has a solution, that is, there exist $x \in K$ and $x^{*} \in T(x)$ such that

$$
\left\langle y-x, x^{*}\right\rangle \geq 0 \quad \forall y \in K .
$$

Proof.

Take $A=N_{K}$ and define $B: X \rightrightarrows X^{*}$ by $B(x)=-T(-x)$.
A and B are maximal monotone.
$\varphi_{B}\left(x, x^{*}\right)=\varphi_{T}\left(-x,-x^{*}\right) \quad \forall\left(x, x^{*}\right) \in X \times X^{*}$.
$(0,0) \in \operatorname{Graph}\left(N_{K}\right)+\operatorname{Graph}(-B)$
There exists $\left(x, y^{*}\right) \in \operatorname{Graph}\left(N_{K}\right)$ such that $\left(-x,-y^{*}\right) \in \operatorname{Graph}(-B)$.
Take $x^{*}=-y^{*}$.
$\left(x,-x^{*}\right)=\left(x, y^{*}\right) \in \operatorname{Graph}\left(N_{K}\right)$, that is,

$$
\left\langle y-x, x^{*}\right\rangle \geq 0 \quad \forall y \in K
$$

$x^{*}=-y^{*} \in-B(-x)=T(x)$

PROPOSITION.

Let $f: X \longrightarrow \mathbb{R} \cup\{+\infty\}$ be a l.s.c. proper convex function. Then
$\varphi_{\partial f}$ is finite-valued $\Longleftrightarrow f$ and f^{*} are finite-valued

A l.s.c. proper convex function $f: X \longrightarrow \mathbb{R} \cup\{+\infty\}$ is supercoercive if

$$
\lim _{\|x\| \longrightarrow \infty} \frac{f(x)}{\|x\|}=+\infty
$$

f is supercoercive $\quad \Longrightarrow \quad f^{*}$ is finite-valued

COROLLARY.

Let $A: X \rightrightarrows X^{*}$ be a monotone operator and $f: X \longrightarrow \mathbb{R}$ be a I.s.c. proper convex function such that f^{*} is finite-valued.

Then A is maximal monotone if and only if

$$
\operatorname{Graph}(A)+\operatorname{Graph}(-\partial f)=X \times X^{*} .
$$

$A: X \rightrightarrows X^{*}$ is strictly monotone if
for $x, y \in X$ with $x \neq y, x^{*} \in A(x)$ and $y^{*} \in A(y)$, $\left\langle x-y, x^{*}-y^{*}\right\rangle>0$.

LEMMA.
If $A: X \rightrightarrows X^{*}$ is monotone and
$B: X \rightrightarrows X^{*}$ is strictly monotone
then $A+B$ is strictly monotone and
hence $(A+B)^{-1}$ is single-valued on its domain.

COROLLARY.

Let $A: X \rightrightarrows X^{*}$ be a monotone operator and
$B: X \rightrightarrows X^{*}$ be a maximal monotone operator with finite-valued Fitzpatrick function φ_{B}.

If A is maximal monotone then $R(A+B)=X^{*}$.

Conversely, if B is single-valued and strictly monotone and $R(A+B)=X^{*}$ then A is maximal monotone.

THE NONREFLEXIVE CASE

X Banach space, $T: X \rightrightarrows X^{*}$
$\widetilde{T}: X^{* *} \rightrightarrows X^{*}$
$\operatorname{Graph}(\widetilde{T}):=$

$$
\left\{\left(x^{* *}, x^{*}\right):\left\langle x^{* *}-y, x^{*}-y^{*}\right\rangle \geq 0, \forall\left(y, y^{*}\right) \in \mathcal{G}(T)\right\}
$$

A monotone operator $T: X \rightrightarrows X^{*}$ is of type (D) if for every $\left(x^{* *}, x^{*}\right) \in \operatorname{Graph}(\widetilde{T})$ there exists a bounded net $\left(x_{\alpha}, x_{\alpha}^{*}\right)$ in $\mathcal{G}(T)$ such that $x_{\alpha} \rightarrow x^{* *}$ in the $\sigma\left(X^{* *}, X^{*}\right)$ topology of $X^{* *}$ and $x_{\alpha}^{*} \rightarrow x^{*}$ in the norm topology of X^{*}.
$\varrho: X \times X^{*} \rightarrow X \times X^{*},\left(x, x^{*}\right) \mapsto\left(x,-x^{*}\right)$.

Let $f, g: X \rightarrow \mathbb{R} \cup\{+\infty\}$ be proper convex functions. We call $z^{*} \in X^{*}$ a Fenchel functional for f and g if

$$
f^{*}\left(z^{*}\right)+g^{*}\left(-z^{*}\right) \leq 0 .
$$

THEOREM.

Let $S, T: X \rightrightarrows X^{*}$ be maximal monotone operators of type (D).
Then the following statements are equivalent:
(a) $R(\widetilde{S}+\widetilde{T})=X^{*}$.
(b) for all $u^{*}, v^{*} \in X^{*}$, there exists $\left(x^{* *}, x^{*}\right) \in X^{* *} \times X^{*}$ such that, for all convex representations h of $u^{*}+S$ and k of $v^{*}+T,\left(x^{*}, x^{* *}\right)$ is a Fenchel functional for h and $k \circ \varrho$;
(c) for all $u^{*}, v^{*} \in X^{*}$, there exist convex representations h of $u^{*}+S$ and k of $v^{*}+T$ such that h and $k \circ \varrho$ have a Fenchel functional.

A sufficient condition for $\widetilde{S}+\widetilde{T}$ to be surjective is that, for all $w^{*} \in X^{*}$, there exist convex representations h of S and k of T such that
$\bigcup \lambda[\operatorname{dom} h-\varrho(\operatorname{dom} k)]$ is a closed subspace of $X \times X^{*}$. $\lambda>0$

POSITIVE SETS

S. Simons Journal of Convex Analysis (2007)
$F \neq\{0\}$ real Banach space, F^{*} its dual The monotone case: $\quad F=X \times X^{*}$
$b: F \times F \longrightarrow \mathbb{R}$ continuous, symmetric, bilinear form that separates the points of F
The monotone case:
$b\left(\left(x, x^{*}\right),\left(y, y^{*}\right)\right)=\left\langle x, y^{*}\right\rangle+\left\langle y, x^{*}\right\rangle$
$q: F \longrightarrow \mathbb{R}$ defined by $q(x)=\frac{1}{2} b(x, x)$
The monotone case: $\quad q\left(x, x^{*}\right)=\left\langle x, x^{*}\right\rangle$
$A \subseteq F$ is q-positive if $a_{1}, a_{2} \in A \Longrightarrow q\left(a_{1}-a_{2}\right) \geq 0$
The monotone case:
A is q-positive $\Longleftrightarrow A$ is the graph of a monotone operator

$$
\Phi_{q, A}=\Phi_{A}: F \longrightarrow \mathbb{R} \cup\{+\infty\}
$$

$$
\Phi_{A}(x)=q(x)-\inf _{x \in A} q(x-a)=\sup _{x \in A}\{b(x, a)-q(a)\}
$$

The monotone case:
Φ_{A} is the Fitzpatrick function of the operator whose graph is A.
Φ_{A} is proper, convex and I.s.c..
$M \subseteq F$ is maximally q-positive if M is q-positive and not properly contained in any other q-positive set
The monotone case:
M is maximally q-positive
\Longleftrightarrow
M is the graph of a maximal monotone operator
If M is maximally q-positive then

$$
\begin{array}{lll}
\Phi_{M}(x) \geq q(x) & \forall x \in F, \\
\Phi_{M}(x)=q(x) & \Longleftrightarrow & x \in M .
\end{array}
$$

$h: F \longrightarrow \mathbb{R} \cup\{+\infty\}$ is a convex representation of M if it is convex and l.s.c. and satisfies

$$
\begin{array}{lll}
h(x) \geq q(x) & \forall x \in F, \\
h(x) & \geq q(x) & \Longleftrightarrow
\end{array} x \in M .
$$

PROPOSITION.
Φ_{M} is the smallest convex representation of M.

Proof:
Let h be a convex representation of $M, x \in F, y \in M$ and $\lambda \in[0,1)$.

$$
\begin{array}{rl}
(1-\lambda)^{2} & q(x)+\lambda(1-\lambda) b(x, y)+\lambda^{2} q(y) \\
& =q((1-\lambda) x+\lambda y) \\
& \leq h((1-\lambda) x+\lambda y) \\
& \leq(1-\lambda) h(x)+\lambda h(y) \\
& =(1-\lambda) h(x)+\lambda q(y)
\end{array}
$$

$$
\begin{gathered}
(1-\lambda)^{2} q(x)+\lambda(1-\lambda) b(x, y)-\lambda(1-\lambda) q(y) \\
\leq(1-\lambda) h(x)
\end{gathered}
$$

$$
(1-\lambda) q(x)+\lambda b(x, y)-\lambda q(y) \leq h(x)
$$

$$
b(x, y)-q(y) \leq h(x)
$$

$$
\Phi_{M}(x) \leq h(x)
$$

PROPOSITION.

Let $A \subseteq F$. Then A is q-positive if and only if there exists a (l.s.c.) convex function $h: F \rightarrow \mathbb{R} \cup\{+\infty\}$ such that

$$
\begin{array}{ll}
h(x) \geq q(x) & \forall x \in F, \\
h(x)=q(x) & \Longleftarrow
\end{array} x \in A .
$$

$i: F \longrightarrow F^{*}$
$i(y)=b(\cdot, y)$
The monotone case: $i\left(y, y^{*}\right)=\left\langle\cdot, y^{*}\right\rangle+\langle y, \cdot\rangle$
If X is reflexive then i is a surjective isometry.
$G=\left\{x \in F: q(x)=-\frac{1}{2}\|x\|^{2}\right\}$
The monotone case: $\quad G=\operatorname{Graph}(-J)$

THEOREM. Suppose that i is a surjective isometry and A is a nonempty q-positive subset of F. Then
A is maximally q-positive $\Longleftrightarrow A+G=F$.

THEOREM. Suppose that i is a surjective isometry. Then for every q-positive set $A \subseteq F$, the following statements are equivalent:
(1) A is maximally q-positive.
(2) $A+C=F$ for every maximally $-q$-positive set $C \subseteq F$ such that $\Phi_{-q, C}$ is finite-valued.
(3) There exist a set $C \subseteq F$ such that $A+C=F$ and $p \in C$ such that

$$
q(y-p)<0 \quad \forall y \in C \backslash\{p\} .
$$

