
Convex representations of

monotone operators,

surjectivity theorems and

positive sets

J.E. Mart��nez-Legaz
Universitat Aut�onoma de Barcelona, Spain

Workshop on Functional Analysis and
Optimization

April 12, 2010
Universidad de Sevilla



X 6= f0g re
exive real Banach space, X� its dual

h�; �i : X �X� �! R the duality pairing

J = @
1

2
k�k2 ; the duality mapping

For x 2 X; J (x) =
n
x� 2 X� : hx; x�i = kxk2 = kx�k2

o
:

THEOREM (Rockafellar, 1970). Let A : X � X� be
a monotone operator. In order that A be maximal,

it is necessary and su�cient that R (A+ J) be all of

X�:

A : X � X�

'A : X �X� �! R[f+1g
'A (x; x

�) = hx; x�i � inf
(y;y�)2Graph(A)

hx� y; x� � y�i

(Fitzpatrick, 1988)

If A is maximal monotone,

'A (x; x
�) � hx; x�i 8 (x; x�) 2 X �X�;

'A (x; x
�) = hx; x�i () (x; x�) 2 Graph (A) :



h : X�X� �! R[f+1g is a convex representation
of A if it is convex and l.s.c. and satis�es

h (x; x�) � hx; x�i 8 (x; x�) 2 X �X�;
h (x; x�) = hx; x�i () (x; x�) 2 Graph (A) :

'A is the smallest convex representation of A:

If f : X�!R[f+1g is convex and l.s.c. then

h : X �X� �! R[f+1g
h (x; x�) = f (x) + f� (x�)

is a convex representation of @f:



If h : X �X� �! R is a convex representation of A
then

h�; �i � h � h�; �i+ �Graph(A):

�A = cl conv
�
h�; �i+ �Graph(A)

�
(Burachik-Svaiter, 2002)

h�; �i � h � �A � h�; �i+ �Graph(A):

�A is the largest convex representation of A:

THEOREM (ML-Svaiter, 2005). Let A : X � X�:
Then

A is monotone () �A � h�; �i :

Proof of =).
Let M be a maximal monotone extension of A:

�A � �M � 'M � h�; �i



Proof of (=.
Let (x; x�) ; (y; y�) 2 Graph (A).�
1

2
(x+ y) ;

1

2
(x� + y�)

�
� �A

�
1

2
(x+ y) ;

1

2
(x� + y�)

�
� 1

2
(�A (x; x

�) + �A (y; y
�))

=
1

2
(hx; x�i+ hy; y�i)

hx� y; x� � y�i � 0

Example: Graph (A) = f(0; 0)g 'A � 0

If A is maximal monotone,

'A (x; x
�) = hx; x�i � inf

(y;y�)2A
hx� y; x� � y�i

= sup
(y;y�)2A

fhx; y�i+ hy; x�i � hy; y�ig

= (h�; �i+ �A)� (x�; x)
= ��A (x

�; x) 8 (x; x�) 2 X �X�

�A (x; x
�) = '�A (x

�; x) 8 (x; x�) 2 X �X�



Examples (X Hilbert space, B its unit ball):

f : X ! X f (x) =
1

2
kxk2

@f (x) = fxg
'@f (x; x

�) =
1

4
kx+ x�k2

f (x) + f� (x�) =
1

2
kxk2 + 1

2
kx�k2

�@f (x; x) = kxk2 ; �@f (x; x�) = +1 if x 6= x�

T : X ! X linear, continuous; T � = �T
hT (x) ; yi+ hx; T (y)i = 0 8 (x; y) 2 X2

'T = �Graph(T ) = h�; �i+ �Graph(T ) = �T

; 6= C � X; closed convex set �C : X ! R[f+1g

@�C (x) =

(
fx� 2 X : hy � x; x�i � 0 8 y 2 Cg if x 2 C
; if x =2 C

'@�C (x; x
�) = �C (x) + �

�
C (x

�)
�@�C (x; x

�) = �C (x) + �
�
C (x

�)



f : X!X f (x) = kxk

@f (x) =

8<:
�
x
kxk

�
if x 6= 0

B if x = 0
'@f (x; x

�) = kxk+ �B (x�) = f (x) + f� (x�)
�@f (x; x

�) = f (x) + f� (x�)

f : X ! R[f+1g sublinear, l.s.c. =) '@f = �@f

(Burachik-Fitzpatrick, 2005)

B satis�es the Br�ezis-Haraux condition if

inf
(y;y�)2Graph(B)

hx� y; x� � y�i > �1

8 (x; x�) 2 D (B)�R (B) :

'B is �nite-valued =) B satis�es the B-H condition



THEOREM. (Rockafellar, 1966). Suppose that

f; g : X �! R[f+1g are l.s.c. proper convex func-
tions.

If the domain of one of these functions contains an

interior point of the domain of the other, then

inf
x2X

ff (x) + g (x)g = max
x�2X�

f�f� (x�)� g� (�x�)g :

THEOREM (Simons, 1998).

Let A : X � X� be monotone.

Then A is maximal monotone if and only if

Graph (A) +Graph (�J) = X �X�:



THEOREM (Torralba, 1996).

For every maximal monotone operator A : X � X�;
if �; � > 0 and (x; x�) 2 X �X� are such that

inf
(y;y�)2Graph(A)

hx� y; x� � y�i � ���

then there exists (z; z�) 2 Graph (A) such that

kz � xk � � and kz� � x�k � �:

Proof.
�

�
A is maximal monotone. 
x;
�

�
x�
!
2 Graph

 
�

�
A

!
+Graph (�J)

There exists (z; z�) 2 Graph (A) such that 
x� z; �

�
x� � �

�
z�
!
2 Graph (�J) :

kz � xk2 = �2

�2
kz� � x�k2 = �

� hz � x; x
� � z�i � �2

kz� � x�k2 � �2



COROLLARY. LetA : X � X� be maximal monotone.

If 'A is �nite-valued

then D (A) and R (A) are dense in X and X�; re-
spectively.

THEOREM. For every monotone operator

A : X � X�, the following statements are equivalent:

(1) A is maximal monotone.

(2) Graph (A) +Graph (�B) = X �X�
for every maximal monotone operator B : X � X�

such that 'B is �nite-valued.

(3) There exist an operator

B : X � X� such that

Graph (A) +Graph (�B) = X �X�

and (p; p�) 2 Graph (B) such that

hp� y; p� � y�i > 0

8 (y; y�) 2 Graph (B) n f(p; p�)g :



Proof of (1) =) (2).

Let
�
x0; x

�
0

�
2 X �X�.

De�ne A0 : X � X� by

Graph
�
A0
�
:= Graph (A)� (x0; x�0)

and h : X �X� �! R[f+1g by

h (x; x�) := 'B (�x; x�) :

�A0 (x; x
�) + h (x; x�) � hx; x�i+ h�x; x�i = 0

There exists (y; y�) 2 X �X� such that

'A0 (y; y
�) + h� (�y�;�y) � 0

'A0 (y; y
�) + h� (�y�;�y) = 'A0 (y; y

�) + �B (�y; y�)
� hy; y�i+ h�y; y�i = 0

'A0 (y; y
�) = hy; y�i and �B (�y; y�) = h�y; y�i

(y; y�) 2 Graph
�
A0
�
and (�y; y�) 2 Graph (B)

(x0; x
�
0) = (x0; x

�
0) + (y; y

�) + (�y;�y�)
2 (x0; x

�
0) +Graph

�
A0
�
+Graph (�B)

= Graph (A) +Graph (�B)



COROLLARY. For every maximal monotone operator

B : X � X�;

'B is �nite-valued

if and only if

D (B) = X, R (B) = X� and B satis�es the Br�ezis-

Haraux condition.

Proof of "only if".

Take A with D (A) = f0g and R (A) = X�:
Take A with D (A) = X and R (A) = f0g :

COROLLARY. Let T : X � X� be maximal monotone.

If 'T is �nite-valued

then for every closed convex set K � X
the generalized variational inequality problemGV I (T;K)

has a solution, that is,

there exist x 2 K and x� 2 T (x) such that

hy � x; x�i � 0 8 y 2 K:



Proof.

Take A = NK and

de�ne B : X � X� by B (x) = �T (�x) :
A and B are maximal monotone.

'B (x; x
�) = 'T (�x;�x�) 8 (x; x�) 2 X �X�:

(0; 0) 2 Graph (NK) +Graph (�B)

There exists (x; y�) 2 Graph (NK) such that
(�x;�y�) 2 Graph (�B) :
Take x� = �y�:
(x;�x�) = (x; y�) 2 Graph (NK) ; that is,

hy � x; x�i � 0 8 y 2 K:

x� = �y� 2 �B (�x) = T (x)

PROPOSITION.

Let f : X �! R[f+1g be a l.s.c. proper convex
function. Then

'@f is �nite-valued () f and f� are �nite-valued



A l.s.c. proper convex function f : X �! R[f+1g
is supercoercive if

lim
kxk�!1

f (x)

kxk
= +1:

f is supercoercive =) f� is �nite-valued

COROLLARY.

Let A : X � X� be a monotone operator and
f : X �! R be a l.s.c. proper convex function
such that f� is �nite-valued.

Then A is maximal monotone if and only if

Graph (A) +Graph (�@f) = X �X�:

A : X � X� is strictly monotone if

for x; y 2 X with x 6= y; x� 2 A (x) and y� 2 A (y) ;
hx� y; x� � y�i > 0:



LEMMA.

If A : X � X� is monotone and
B : X � X� is strictly monotone
then A+B is strictly monotone and

hence (A+B)�1 is single-valued on its domain.

COROLLARY.

Let A : X � X� be a monotone operator and
B : X � X� be a maximal monotone operator with
�nite-valued Fitzpatrick function 'B.

If A is maximal monotone

then R (A+B) = X�:

Conversely, if B is single-valued and strictly monotone

and R (A+B) = X�

then A is maximal monotone.



THE NONREFLEXIVE CASE

X Banach space, T : X � X�

eT : X�� � X�

Graph
� eT� :=

f(x��; x�) : hx�� � y; x� � y�i � 0; 8(y; y�) 2 G(T )g

A monotone operator T : X � X� is of type (D)
if for every (x��; x�) 2 Graph

� eT� there exists a
bounded net (x�; x��) in G(T ) such that x� ! x��

in the �(X��; X�) topology of X�� and x�� ! x� in
the norm topology of X�.

% : X �X� ! X �X�; (x; x�) 7! (x;�x�):

Let f; g : X ! R[f+1g be proper convex functions.
We call z� 2 X� a Fenchel functional for f and g if

f�(z�) + g�(�z�) � 0:



THEOREM.

Let S; T : X � X� be maximal monotone operators
of type (D).

Then the following statements are equivalent:

(a) R( eS + eT ) = X�:
(b) for all u�; v� 2 X�, there exists (x��; x�) 2 X�� �X�
such that, for all convex representations h of u� + S
and k of v� + T , (x�; x��) is a Fenchel functional for
h and k � %;
(c) for all u�; v� 2 X�, there exist convex representa-
tions h of u� + S and k of v� + T such that h and

k � % have a Fenchel functional.

A su�cient condition for eS+ eT to be surjective is that,
for all w� 2 X�, there exist convex representations h
of S and k of T such that[
�>0

�[domh�%(domk)] is a closed subspace of X�X�:



POSITIVE SETS

S. Simons Journal of Convex Analysis (2007)

F 6= f0g real Banach space, F � its dual
The monotone case: F = X �X�

b : F �F �! R continuous, symmetric, bilinear form
that separates the points of F
The monotone case:
b ((x; x�) ; (y; y�)) = hx; y�i+ hy; x�i

q : F �! R de�ned by q (x) =
1

2
b (x; x)

The monotone case: q (x; x�) = hx; x�i

A � F is q-positive if a1; a2 2 A =) q (a1 � a2) � 0
The monotone case:
A is q-positive() A is the graph of a monotone operator



�q;A = �A : F �! R[f+1g
�A (x) = q (x)�infx2A q (x� a) = supx2A fb (x; a)� q (a)g
The monotone case:
�A is the Fitzpatrick function of the operator
whose graph is A:

�A is proper, convex and l.s.c..

M � F is maximally q-positive ifM is q{positive and
not properly contained in any other q{positive set
The monotone case:

M is maximally q-positive
()

M is the graph of a maximal monotone operator

If M is maximally q-positive then

�M (x) � q (x) 8 x 2 F;
�M (x) = q (x) () x 2M:

h : F �! R[f+1g is a convex representation of M
if it is convex and l.s.c. and satis�es

h (x) � q (x) 8 x 2 F;
h (x) = q (x) () x 2M:



PROPOSITION.

�M is the smallest convex representation of M:

Proof:

Let h be a convex representation ofM; x 2 F , y 2M
and � 2 [0; 1) :

(1� �)2 q (x) + � (1� �) b (x; y) + �2q (y)
= q ((1� �)x+ �y)
� h ((1� �)x+ �y)

� (1� �)h (x) + �h (y)
= (1� �)h (x) + �q (y)

(1� �)2 q (x) + � (1� �) b (x; y)� � (1� �) q (y)
� (1� �)h (x)

(1� �) q (x) + �b (x; y)� �q (y) � h (x)

b (x; y)� q (y) � h (x)

�M (x) � h (x)



PROPOSITION.

Let A � F: Then A is q-positive if and only if there

exists a (l.s.c.) convex function h : F ! R[f+1g
such that

h (x) � q (x) 8 x 2 F;
h (x) = q (x) (= x 2 A:

i : F �! F �

i (y) = b (�; y)
The monotone case: i (y; y�) = h�; y�i+ hy; �i
If X is re
exive then i is a surjective isometry.

G =
�
x 2 F : q (x) = �1

2
kxk2

�
The monotone case: G = Graph (�J)

THEOREM. Suppose that i is a surjective isometry

and A is a nonempty q{positive subset of F . Then

A is maximally q-positive() A+G = F:



THEOREM. Suppose that i is a surjective isometry.

Then for every q-positive set A � F , the following

statements are equivalent:

(1) A is maximally q-positive.

(2) A + C = F for every maximally �q-positive set
C � F such that ��q;C is �nite-valued.

(3) There exist a set C � F such that A + C = F

and p 2 C such that

q (y � p) < 0 8 y 2 C n fpg :


