Splitting methods for constructing the resolvent of a sum of maximal monotone operators

P. L. Combettes

Laboratoire Jacques-Louis Lions
Faculté de Mathématiques
Université Pierre et Marie Curie - Paris 6
75005 Paris, France

Sevilla, April 12, 2010

Overview: Solving strongly monotone inclusions

Throughout, \mathcal{H} is a real Hilbert space.

- Given $r \in \mathcal{H}$ and maximal monotone operators $\left(B_{i}\right)_{1 \leq i \leq m}$ acting on \mathcal{H}, with B_{1} strongly monotone,

Find $\quad x \in \mathcal{H}$ such that $r \in \sum_{i=1}^{m} B_{i} x$.

Overview: Solving strongly monotone inclusions

Throughout, \mathcal{H} is a real Hilbert space.

- Given $r \in \mathcal{H}$ and maximal monotone operators $\left(B_{i}\right)_{1 \leq i \leq m}$ acting on \mathcal{H}, with B_{1} strongly monotone,

Find $\quad x \in \mathcal{H} \quad$ such that $\quad r \in \sum_{i=1}^{m} B_{i} x$.

- This problem arises in PDEs, inverse problems, signal denoising, best approximation, etc.

Overview: Solving strongly monotone inclusions

Throughout, \mathcal{H} is a real Hilbert space.

- Given $r \in \mathcal{H}$ and maximal monotone operators $\left(B_{i}\right)_{1 \leq i \leq m}$ acting on \mathcal{H}, with B_{1} strongly monotone,

Find $\quad x \in \mathcal{H} \quad$ such that $\quad r \in \sum_{i=1}^{m} B_{i} x$.

- This problem arises in PDEs, inverse problems, signal denoising, best approximation, etc.
- Equivalent formulation: Given $r \in \mathcal{H}$ and maximal monotone operators $\left(A_{i}\right)_{1 \leq i \leq m}$ on \mathcal{H}, weights $\left(\omega_{i}\right)_{1 \leq i \leq m}$ in $] 0,1$ [such that $\sum_{i=1}^{m} \omega_{i}=1$, solve $r \in \sum_{i=1}^{m} \omega_{i} A_{i} x$, i.e., compute

$$
x=(\operatorname{ld}+A)^{-1} r=J_{A} r, \quad \text { where } \quad A=\sum_{i=1}^{m} \omega_{i} A_{i}
$$

Overview: Solving strongly monotone inclusions

Throughout, \mathcal{H} is a real Hilbert space.

- Given $r \in \mathcal{H}$ and maximal monotone operators $\left(B_{i}\right)_{1 \leq i \leq m}$ acting on \mathcal{H}, with B_{1} strongly monotone,

Find $\quad x \in \mathcal{H} \quad$ such that $\quad r \in \sum_{i=1}^{m} B_{i} x$.

- This problem arises in PDEs, inverse problems, signal denoising, best approximation, etc.
- Equivalent formulation: Given $r \in \mathcal{H}$ and maximal monotone operators $\left(A_{i}\right)_{1 \leq i \leq m}$ on \mathcal{H}, weights $\left(\omega_{i}\right)_{1 \leq i \leq m}$ in $] 0,1$ [such that $\sum_{i=1}^{m} \omega_{i}=1$, solve $r \in \sum_{i=1}^{m} \omega_{i} A_{i} x$, i.e., compute

$$
x=(\operatorname{ld}+A)^{-1} r=J_{A} r, \quad \text { where } \quad A=\sum_{i=1}^{m} \omega_{i} A_{i}
$$

- We propose two algorithms to construct $J_{A} r$.

PART I: Douglas-Rachford splitting

A first algorithm to construct $J_{A} r$.

Douglas-Rachford splitting for two monotone operators

Douglas-Rachford (1956), Lieutaud (1969), Lions-Mercier (1979), Eckstein-Bertsekas (1992),...

Algorithm 1

$(\mathcal{H},|||\cdot|||)$ a real Hilbert space, \boldsymbol{A} and \boldsymbol{B} maximal monotone operators from \mathcal{H} to $2^{\mathcal{H}}$ such that $\left.\operatorname{zer}(\boldsymbol{A}+\boldsymbol{B}) \neq \emptyset, \gamma \in\right] 0,+\infty[$, $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ in $\left.] 0,2\right]$, and $\left(\boldsymbol{a}_{n}\right)_{n \in \mathbb{N}}$ and $\left(\boldsymbol{b}_{n}\right)_{n \in \mathbb{N}}$ in \mathcal{H}.
Routine:
Initialization

$$
z_{0} \in \mathcal{H}
$$

For $n=0,1, \ldots$

$$
\left[\begin{array}{l}
\boldsymbol{y}_{n}=J_{\gamma \boldsymbol{B}} \boldsymbol{z}_{n}+\boldsymbol{b}_{n} \\
\boldsymbol{z}_{n+1}=\boldsymbol{z}_{n}+\lambda_{n}\left(J_{\gamma \boldsymbol{A}}\left(2 \boldsymbol{y}_{n}-\boldsymbol{z}_{n}\right)+\boldsymbol{a}_{n}-\boldsymbol{y}_{n}\right) .
\end{array}\right.
$$

Douglas-Rachford splitting for two monotone operators

Theorem

- Suppose that $\sum_{n \in \mathbb{N}} \lambda_{n}\left(| |\left|\mathbf{a}_{n}\right|\left\|+\left|\left\|\boldsymbol{b}_{n}\right\|\right|\right)<+\infty\right.$, $\sum_{n \in \mathbb{N}} \lambda_{n}\left(2-\lambda_{n}\right)=+\infty$, and $(\forall n \in \mathbb{N}) \lambda_{n}<2$. Then:
- $\left(\boldsymbol{z}_{n}\right)_{n \in \mathbb{N}}$ converges weakly to a point $\boldsymbol{z} \in \mathcal{H}$ and $J_{\gamma \boldsymbol{B}} \boldsymbol{Z}$ is a zero of $\boldsymbol{A}+\boldsymbol{B}$ [PLC, 2004].

Douglas-Rachford splitting for two monotone operators

Theorem

- Suppose that $\sum_{n \in \mathbb{N}} \lambda_{n}\left(| |\left|\mathbf{a}_{n}\right|\left\|+\left|\left\|\boldsymbol{b}_{n}\right\|\right|\right)<+\infty\right.$, $\sum_{n \in \mathbb{N}} \lambda_{n}\left(2-\lambda_{n}\right)=+\infty$, and $(\forall n \in \mathbb{N}) \lambda_{n}<2$. Then:
- $\left(\boldsymbol{z}_{n}\right)_{n \in \mathbb{N}}$ converges weakly to a point $\boldsymbol{z} \in \mathcal{H}$ and $J_{\gamma \boldsymbol{B}} \boldsymbol{Z}$ is a zero of $\boldsymbol{A}+\boldsymbol{B}$ [PLC, 2004]. Nothing else in general!

Douglas-Rachford splitting for two monotone operators

Theorem

- Suppose that $\sum_{n \in \mathbb{N}} \lambda_{n}\left(| |\left|\boldsymbol{a}_{n}\right|\left\|+\left|\left\|\boldsymbol{b}_{n}\right\|\right|\right)<+\infty\right.$, $\sum_{n \in \mathbb{N}} \lambda_{n}\left(2-\lambda_{n}\right)=+\infty$, and $(\forall n \in \mathbb{N}) \lambda_{n}<2$. Then:
- $\left(\boldsymbol{z}_{n}\right)_{n \in \mathbb{N}}$ converges weakly to a point $\boldsymbol{z} \in \mathcal{H}$ and $J_{\gamma \boldsymbol{B}} \boldsymbol{Z}$ is a zero of $\boldsymbol{A}+\boldsymbol{B}$ [PLC, 2004]. Nothing else in general!
- Suppose that $\boldsymbol{A}=N_{\boldsymbol{D}}$, where \boldsymbol{D} is a closed affine subspace of \mathcal{H}. Then $J_{\gamma \boldsymbol{A}} \boldsymbol{z}_{n} \rightharpoonup \boldsymbol{y} \in \operatorname{zer}(\boldsymbol{A}+\boldsymbol{B})$.
- Suppose that $\boldsymbol{A}=N_{\boldsymbol{D}}$, where \boldsymbol{D} is a closed vector subspace of \mathcal{H}, and that $\boldsymbol{b}_{n} \rightharpoonup 0$. Then $J_{\gamma \boldsymbol{A}} \boldsymbol{y}_{n} \rightharpoonup \boldsymbol{y} \in \operatorname{zer}(\boldsymbol{A}+\boldsymbol{B})$.
- Suppose that $\sum_{n \in \mathbb{N}}\left|\left\|\boldsymbol{a}_{n}\right\|\left\|<+\infty, \sum_{n \in \mathbb{N}}\right\|\right| \boldsymbol{b}_{n}\| \|<+\infty$, $\inf _{n \in \mathbb{N}} \lambda_{n}>0$, and \boldsymbol{B} is uniformly monotone on the bounded subsets of \mathcal{H}. Then $\boldsymbol{y}_{n} \rightarrow \boldsymbol{y} \in \operatorname{zer}(\boldsymbol{A}+\boldsymbol{B})$.

Douglas-Rachford splitting for two monotone operators

Theorem

- Suppose that $\sum_{n \in \mathbb{N}} \lambda_{n}\left(| |\left|\boldsymbol{a}_{n}\right|\left\|+\left|\left\|\boldsymbol{b}_{n}\right\|\right|\right)<+\infty\right.$, $\sum_{n \in \mathbb{N}} \lambda_{n}\left(2-\lambda_{n}\right)=+\infty$, and $(\forall n \in \mathbb{N}) \lambda_{n}<2$. Then:
- $\left(\boldsymbol{z}_{n}\right)_{n \in \mathbb{N}}$ converges weakly to a point $\boldsymbol{z} \in \mathcal{H}$ and $J_{\gamma \boldsymbol{B}} \boldsymbol{Z}$ is a zero of $\boldsymbol{A}+\boldsymbol{B}$ [PLC, 2004]. Nothing else in general!
- Suppose that $\boldsymbol{A}=N_{\boldsymbol{D}}$, where \boldsymbol{D} is a closed affine subspace of \mathcal{H}. Then $J_{\gamma \boldsymbol{A}} \boldsymbol{z}_{n} \rightharpoonup \boldsymbol{y} \in \operatorname{zer}(\boldsymbol{A}+\boldsymbol{B})$.
- Suppose that $\boldsymbol{A}=N_{\boldsymbol{D}}$, where \boldsymbol{D} is a closed vector subspace of \mathcal{H}, and that $\boldsymbol{b}_{n} \rightharpoonup 0$. Then $J_{\gamma \boldsymbol{A}} \boldsymbol{y}_{n} \rightharpoonup \boldsymbol{y} \in \operatorname{zer}(\boldsymbol{A}+\boldsymbol{B})$.
- Suppose that $\sum_{n \in \mathbb{N}}\left|\left\|\boldsymbol{a}_{n}\right\|\left\|<+\infty, \sum_{n \in \mathbb{N}}\right\|\right| \boldsymbol{b}_{n}\| \|<+\infty$, $\inf _{n \in \mathbb{N}} \lambda_{n}>0$, and \boldsymbol{B} is uniformly monotone on the bounded subsets of \mathcal{H}. Then $\boldsymbol{y}_{n} \rightarrow \boldsymbol{y} \in \operatorname{zer}(\boldsymbol{A}+\boldsymbol{B})$. In particular this covers Peaceman-Rachford splitting.

Douglas-Rachford splitting for two monotone operators

Setting $A=N_{\boldsymbol{D}}$, where \boldsymbol{D} is a closed affine subspace of \mathcal{H}, we obtain:

Algorithm 2

$$
\begin{aligned}
& \boldsymbol{y}_{n}=J_{\gamma} \boldsymbol{B}_{n}+\boldsymbol{b}_{n} \\
& \boldsymbol{x}_{n}=P_{\boldsymbol{D}} \boldsymbol{y}_{n} \\
& \boldsymbol{p}_{n}=P_{\boldsymbol{D}} \boldsymbol{z}_{n} \\
& \boldsymbol{z}_{n+1}=\boldsymbol{z}_{n}+\lambda_{n}\left(2 \boldsymbol{x}_{n}-\boldsymbol{p}_{n}-\boldsymbol{y}_{n}\right) .
\end{aligned}
$$

Corollary

- Suppose that $\sum_{n \in \mathbb{N}} \lambda_{n}\| \| \boldsymbol{b}_{n} \| \mid<+\infty, \sum_{n \in \mathbb{N}} \lambda_{n}\left(2-\lambda_{n}\right)=+\infty$, and $(\forall n \in \mathbb{N}) \lambda_{n}<2$. Then $\boldsymbol{p}_{n} \rightharpoonup \boldsymbol{p} \in \operatorname{zer}\left(N_{\boldsymbol{D}}+\boldsymbol{B}\right)$.
- Suppose that $\sum_{n \in \mathbb{N}}\left|\left\|\boldsymbol{b}_{n}\right\|\right|<+\infty, \inf _{n \in \mathbb{N}} \lambda_{n}>0$, and \boldsymbol{B} is uniformly monotone on the bounded subsets of \mathcal{H}. Then $\boldsymbol{x}_{n} \rightarrow \boldsymbol{x} \in \operatorname{zer}\left(N_{\boldsymbol{D}}+\boldsymbol{B}\right)$.

Splitting for monotone operators

- $\left(B_{i}\right)_{1 \leq i \leq m}$ are maximal monotone operators from \mathcal{H} to $2^{\mathcal{H}}$, and

$$
\left.B=\sum_{i=1}^{m} \omega_{i} B_{i}, \quad \text { where } \quad\left\{\omega_{i}\right\}_{1 \leq i \leq m} \subset\right] 0,1\left[\quad \text { and } \quad \sum_{i=1}^{m} \omega_{i}=1\right.
$$

- \mathcal{H} is the m-fold Cartesian product of \mathcal{H} with scalar product $(\boldsymbol{x}, \boldsymbol{y}) \mapsto \sum_{i=1}^{m} \omega_{i}\left\langle x_{i} \mid y_{i}\right\rangle$.
- $\boldsymbol{A}=N_{\boldsymbol{D}}$, where $\boldsymbol{D}=\{(x, \ldots, x) \in \mathcal{H} \mid x \in \mathcal{H}\}$.

- $\boldsymbol{j}: \mathcal{H} \rightarrow \boldsymbol{D}: x \mapsto(x, \ldots, x)$.
- Thus, $\boldsymbol{j}(\operatorname{zer} B)=\operatorname{zer}\left(N_{\boldsymbol{D}}+\boldsymbol{B}\right)$.

Splitting for m monotone operators

Algorithm 3

Initialization
For $i=1, \ldots, m$
$z_{i, 0} \in \mathcal{H}$
For $n=0,1, \ldots$
For $i=1, \ldots, m$
$\left\lfloor y_{i, n}=J_{\gamma B_{i}} z_{i, n}+b_{i, n}\right.$
$x_{n}=\sum_{i=1}^{m} \omega_{i} y_{i, n}$
$p_{n}=\sum_{i=1}^{m} \omega_{i} z_{i, n}$
$\lambda_{n} \in$]0, 2]
For $i=1, \ldots, m$
$z_{i, n+1}=z_{i, n}+\lambda_{n}\left(2 x_{n}-p_{n}-y_{i, n}\right)$.

Splitting for m monotone operators

Proposition

- Suppose that $\max _{1 \leq i \leq m} \sum_{n \in \mathbb{N}} \lambda_{n}\left\|b_{i, n}\right\|<+\infty$, $\sum_{n \in \mathbb{N}} \lambda_{n}\left(2-\lambda_{n}\right)=+\infty$, and $(\forall n \in \mathbb{N}) \lambda_{n}<2$. Then:
- $p_{n} \rightharpoonup p \in z e r B$.
- Suppose that $(\forall i \in\{1,, \ldots, m\}) b_{i, n} \rightharpoonup 0$. Then $x_{n} \rightharpoonup x \in z e r B$.
- Suppose that $\max _{1 \leq i \leq m} \sum_{n \in \mathbb{N}}\left\|b_{i, n}\right\|<+\infty, \inf _{n \in \mathbb{N}} \lambda_{n}>0$, and the $B_{i} s$ are strongly monotone. Then $x_{n} \rightarrow x \in \operatorname{zer} B$. $\Delta \Delta$

Splitting for m monotone operators

Proposition

- Suppose that $\max _{1 \leq i \leq m} \sum_{n \in \mathbb{N}} \lambda_{n}\left\|b_{i, n}\right\|<+\infty$,

$$
\sum_{n \in \mathbb{N}} \lambda_{n}\left(2-\lambda_{n}\right)=+\infty, \text { and }(\forall n \in \mathbb{N}) \lambda_{n}<2 \text {. Then: }
$$

- $p_{n} \rightharpoonup p \in$ zer B.
- Suppose that $(\forall i \in\{1,, \ldots, m\}) b_{i, n} \rightharpoonup 0$. Then $x_{n} \rightharpoonup x \in \operatorname{zer} B . \Delta \Delta$
- Suppose that $\max _{1 \leq i \leq m} \sum_{n \in \mathbb{N}}\left\|b_{i, n}\right\|<+\infty, \inf _{n \in \mathbb{N}} \lambda_{n}>0$, and the $B_{i} s$ are strongly monotone. Then $x_{n} \rightarrow x \in z e r B$. $\Delta \Delta$

Remark

A special case of $\Delta \Delta$ was obtained by Spingarn (1983) via the method of partial inverses.

Splitting for m monotone operators

Spingarn's splitting algorithm

Initialization
$s_{0} \in \mathcal{H}$
$\left(v_{i, 0}\right)_{1 \leq i \leq m} \in \mathcal{H}^{m}$ satisfy $\sum_{i=1}^{m} \omega_{i} v_{i, 0}=0$
For $n=0,1, \ldots$
For $i=1, \ldots, m$
find $\left(y_{i, n}, u_{i, n}\right) \in \operatorname{gr} B_{i}$ such that $y_{i, n}+u_{i, n}=s_{n}+v_{i, n}$
$s_{n+1}=\sum_{i=1}^{m} \omega_{i} y_{i, n}$
$q_{n}=\sum_{i=1}^{m} \omega_{i} u_{i, n}$
For $i=1, \ldots, m$
$\left\lfloor v_{i, n+1}=u_{i, n}-q_{n}\right.$.

Splitting for the resolvent of the sum

Back to our problem...

- $\left(A_{i}\right)_{1 \leq i \leq m}$ are maximal monotone
- Set

$$
\left.A=\sum_{i=1}^{m} \omega_{i} \boldsymbol{A}_{i}, \quad \text { where } \quad\left\{\omega_{i}\right\}_{1 \leq i \leq m} \subset\right] 0,1\left[\quad \text { and } \quad \sum_{i=1}^{m} \omega_{i}=1 .\right.
$$

- Let $r \in \operatorname{ran}(\operatorname{ld}+A)$
- The goal is to construct $J_{A} r$.

Splitting for the resolvent of the sum

Algorithm 4

Let $\gamma \in] 0,+\infty\left[,\left(\lambda_{n}\right)_{n \in \mathbb{N}}\right.$ in $\left.] 0,2\right]$, and, for every $i \in\{1, \ldots, m\}$, $\left(a_{i, n}\right)_{n \in \mathbb{N}}$ in \mathcal{H}.

Initialization

```
            For \(i=1, \ldots, m\)
            \(z_{i, 0} \in \mathcal{H}\)
For \(n=0,1, \ldots\)
    For \(i=1, \ldots, m\)
    \(y_{i, n}=J_{\frac{\gamma}{\gamma+1}} A_{i}\left(\left(z_{i, n}+\gamma r\right) /(\gamma+1)\right)+a_{i, n}\)
    \(x_{n}=\sum_{i=1}^{m} \omega_{i} y_{i, n}\)
    \(p_{n}=\sum_{i=1}^{m} \omega_{i} z_{i, n}\)
    For \(i=1, \ldots, m\)
    \(z_{i, n+1}=z_{i, n}+\lambda_{n}\left(2 x_{n}-p_{n}-y_{i, n}\right)\).
```


Splitting for the resolvent of the sum

Proposition

Suppose that $\inf _{n \in \mathbb{N}} \lambda_{n}>0$ and that $\max _{1 \leq i \leq m} \sum_{n \in \mathbb{N}}\left\|a_{i, n}\right\|<+\infty$. Then $x_{n} \rightarrow J_{A} r$.

Proof: Set

$$
(\forall i \in\{1, \ldots, m\}) \quad B_{i}: \mathcal{H} \rightarrow 2^{\mathcal{H}}: y \mapsto-r+y+A_{i} y
$$

in $\triangle \Delta$.

The proximity operator of the sum

- Let $\left(f_{i}\right)_{1 \leq i \leq m}$ be functions in $\Gamma_{0}(\mathcal{H})$ such that $\bigcap_{i=1}^{m}$ dom $f_{i} \neq \emptyset$.

The proximity operator of the sum

- Let $\left(f_{i}\right)_{1 \leq i \leq m}$ be functions in $\Gamma_{0}(\mathcal{H})$ such that $\bigcap_{i=1}^{m}$ dom $f_{i} \neq \emptyset$.
- Set $f=\sum_{i=1}^{m} \omega_{i} f_{i}$, where $\left.\left\{\omega_{i}\right\}_{1 \leq i \leq m} \subset\right] 0,1\left[\right.$ and $\sum_{i=1}^{m} \omega_{i}=1$.

The proximity operator of the sum

- Let $\left(f_{i}\right)_{1 \leq i \leq m}$ be functions in $\Gamma_{0}(\mathcal{H})$ such that $\bigcap_{i=1}^{m}$ dom $f_{i} \neq \emptyset$.
- Set $f=\sum_{i=1}^{m} \omega_{i} f_{i}$, where $\left.\left\{\omega_{i}\right\}_{1 \leq i \leq m} \subset\right] 0,1\left[\right.$ and $\sum_{i=1}^{m} \omega_{i}=1$.
- For every $r \in \mathcal{H}$,

$$
\operatorname{prox}_{f} r=\operatorname{argmin}_{x \in \mathcal{H}} f(x)+\frac{1}{2}\|r-x\|^{2}
$$

is uniquely defined.

The proximity operator of the sum

- Let $\left(f_{i}\right)_{1 \leq i \leq m}$ be functions in $\Gamma_{0}(\mathcal{H})$ such that $\bigcap_{i=1}^{m}$ dom $f_{i} \neq \emptyset$.
- Set $f=\sum_{i=1}^{m} \omega_{i} f_{i}$, where $\left.\left\{\omega_{i}\right\}_{1 \leq i \leq m} \subset\right] 0,1\left[\right.$ and $\sum_{i=1}^{m} \omega_{i}=1$.
- For every $r \in \mathcal{H}$,

$$
\operatorname{prox}_{f} r=\operatorname{argmin}_{x \in \mathcal{H}} f(x)+\frac{1}{2}\|r-x\|^{2}
$$

is uniquely defined.

- Setting $A_{i}=\partial f_{i}$ in Algorithm 4 and assuming some CQ so that $\partial f=\sum_{i=1}^{m} \omega_{i} A_{i}$, we can construct prox ${ }_{f} r$.

Some applications of splitting in signal processing

- PLC and V. R. Wajs, "Signal recovery by proximal forward-backward splitting," Multiscale Model. Simul., vol. 4, pp. 1168-1200, 2005.
- C. Chaux, PLC, J.-C. Pesquet, and V. R. Wajs, "A variational formulation for frame-based inverse problems," Inverse Problems, vol. 23, pp. 1495-1518, 2007.
- PLC and J.-C. Pesquet, "Proximal thresholding algorithm for minimization over orthonormal bases," SIAM J. Optim., vol. 18, pp. 1351-1376, 2007.
- PLC and J.-C. Pesquet, "A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery," IEEE J. Selected Topics Signal Process., vol. 1, pp 564-574, 2007.
- PLC and J.-C. Pesquet, "A proximal decomposition method for solving convex variational inverse problems," vol. 24, 2008.

PART II: A Dykstra-like approach

A second algorithm to construct $J_{A} r$.

Von Neumann's alternating projections algorithm

Theorem (von Neumann, 1933)

Let $r \in \mathcal{H}$, let U and V be closed vector subspaces of \mathcal{H}, and set

$$
y_{0}=r \quad \text { and } \quad(\forall n \in \mathbb{N}) \quad\left[\begin{array}{l}
x_{n}=P_{\vee} y_{n} \\
y_{n+1}=P_{\cup} x_{n} .
\end{array}\right.
$$

Then $x_{n} \rightarrow$ Punvr.

- Von Neumann's theorem is a best approximation result.
- If U and V are intersecting closed convex subsets of \mathcal{H}, we merely have $x_{n} \rightharpoonup x$, where $x \in U \cap V$ is undetermined (Bregman, 1965).

Dykstra's alternating proiections algorithnn

Theorem (Boyle/Dykstra, 1986)

Let $z \in \mathcal{H}$, let C and D be closed convex subsets of \mathcal{H} such that $C \cap D \neq \emptyset$, and set

$$
\left\lfloor\begin{array}{lll}
y_{0}=r & \text { and } & (\forall n \in \mathbb{N})
\end{array} \left\lvert\, \begin{array}{ll}
x_{n}=P_{D}\left(y_{n}\right. &) \\
y_{n+1}=P_{C}\left(x_{n}\right. &)
\end{array}\right.\right.
$$

Then $x_{n} \rightharpoonup x \in C \cap D[B r e g m a n(1965)]$

Dykstra's alternating projections algorithm

Theorem (Boyle/Dykstra, 1986)

Let $z \in \mathcal{H}$, let C and D be closed convex subsets of \mathcal{H} such that $C \cap D \neq \emptyset$, and set

$$
\left[\begin{array} { l }
{ y _ { 0 } = r } \\
{ p _ { 0 } = 0 } \\
{ q _ { 0 } = 0 }
\end{array} \quad \text { and } \quad (\forall n \in \mathbb { N }) \quad \left[\begin{array}{l}
x_{n}=P_{D}\left(y_{n}+q_{n}\right) \\
q_{n+1}=y_{n}+q_{n}-x_{n} \\
y_{n+1}=P_{C}\left(x_{n}+p_{n}\right) \\
p_{n+1}=x_{n}+p_{n}-y_{n+1} .
\end{array}\right.\right.
$$

Then $x_{n} \rightarrow P_{C \cap D} r$.

Dykstra's alternating projections algorithm

Theorem (Boyle/Dykstra, 1986)

Let $z \in \mathcal{H}$, let C and D be closed convex subsets of \mathcal{H} such that $C \cap D \neq \emptyset$, and set

$$
\left[\begin{array} { l }
{ y _ { 0 } = r } \\
{ p _ { 0 } = 0 } \\
{ q _ { 0 } = 0 }
\end{array} \quad \text { and } \quad (\forall n \in \mathbb { N }) \quad \left[\begin{array}{l}
x_{n}=P_{D}\left(y_{n}+q_{n}\right) \\
q_{n+1}=y_{n}+q_{n}-x_{n} \\
y_{n+1}=P_{C}\left(x_{n}+p_{n}\right) \\
p_{n+1}=x_{n}+p_{n}-y_{n+1} .
\end{array}\right.\right.
$$

Then $x_{n} \rightarrow P_{C \cap D} r$.

- Von Neumann's theorem is a special case.
- Nontrival incremental proofs: Dykstra 1983, Han 1988, Boyle/Dykstra 1986, Gaffke/Mathar 1989, De Pierro/lusem 1991, Bauschke/Borwein 1994, etc.

The resolvent of the sum of two monotone operators

Theorem (Bauschke/PLC, 2008)

Let $(\mathcal{H},|||\cdot|||)$ be a real Hilbert space, and let \boldsymbol{A} and \boldsymbol{B} be maximal monotone operators from \mathcal{H} to $2^{\mathcal{H}}$.

Furthermore, let $\boldsymbol{r} \in \operatorname{ran}(\mathbf{I d}+\boldsymbol{A}+\boldsymbol{B})$ and let $\left(\boldsymbol{x}_{n}\right)_{n \in \mathbb{N}}$ be the sequence generated by the following routine.

$$
\left\lfloor\begin{array}{l}
\boldsymbol{y}_{0}=\boldsymbol{r} \\
\boldsymbol{p}_{0}=0 \\
\boldsymbol{q}_{0}=0
\end{array} \quad\right. \text { and }
$$

$$
\begin{aligned}
& \boldsymbol{x}_{n}=J_{\mathbf{B}}\left(\boldsymbol{y}_{n}+\boldsymbol{q}_{n}\right) \\
& \boldsymbol{q}_{n+1}=\boldsymbol{y}_{n}+\boldsymbol{q}_{n}-\boldsymbol{x}_{n} \\
& \boldsymbol{y}_{n+1}=J_{\mathbf{A}}\left(\boldsymbol{x}_{n}+\boldsymbol{p}_{n}\right) \\
& \boldsymbol{p}_{n+1}=\boldsymbol{x}_{n}+\boldsymbol{p}_{n}-\boldsymbol{y}_{n+1} .
\end{aligned}
$$

Then $\boldsymbol{x}_{n} \rightarrow J_{\boldsymbol{A}+\boldsymbol{B}} \boldsymbol{r}$.

The resolvent of the sum of two monotone operators

Theorem (Bauschke/PLC, 2008)

Let $(\mathcal{H},|||\cdot|||)$ be a real Hilbert space, and let \boldsymbol{A} and \boldsymbol{B} be maximal monotone operators from \mathcal{H} to $2^{\mathcal{H}}$. Let $\left(\boldsymbol{a}_{n}\right)_{n \in \mathbb{N}}$ and $\left(\boldsymbol{b}_{n}\right)_{n \in \mathbb{N}}$ be sequences in \mathcal{H} such that

$$
\sum_{n \in \mathbb{N}}\left\|\boldsymbol{a}_{n}\right\| \|<+\infty \quad \text { and } \quad \sum_{n \in \mathbb{N}}\left\|\boldsymbol{b}_{n}\right\| \|<+\infty
$$

Furthermore, let $\boldsymbol{r} \in \operatorname{ran}(\mathbf{I d}+\boldsymbol{A}+\boldsymbol{B})$ and let $\left(\boldsymbol{x}_{n}\right)_{n \in \mathbb{N}}$ be the sequence generated by the following routine.

$$
\left\lfloor\begin{array}{ll}
\boldsymbol{y}_{0}=\boldsymbol{r} \\
\boldsymbol{p}_{0}=0 \\
\boldsymbol{q}_{0}=0
\end{array} \quad\right. \text { and }
$$

$$
\begin{aligned}
& \boldsymbol{x}_{n}=J_{\mathbf{B}}\left(\boldsymbol{y}_{n}+\boldsymbol{q}_{n}\right)+\boldsymbol{b}_{n} \\
& \boldsymbol{q}_{n+1}=\boldsymbol{y}_{n}+\boldsymbol{q}_{n}-\boldsymbol{x}_{n} \\
& \boldsymbol{y}_{n+1}=J_{\mathbf{A}}\left(\boldsymbol{x}_{n}+\boldsymbol{p}_{n}\right)+\boldsymbol{a}_{n} \\
& \boldsymbol{p}_{n+1}=\boldsymbol{x}_{n}+\boldsymbol{p}_{n}-\boldsymbol{y}_{n+1} .
\end{aligned}
$$

Then $\boldsymbol{x}_{n} \rightarrow J_{\boldsymbol{A}+\boldsymbol{B}} \boldsymbol{r}$.

Proof outline

- Note that $\boldsymbol{q}_{n+1}+\boldsymbol{p}_{n}+\boldsymbol{x}_{n}=\boldsymbol{y}_{n}+\boldsymbol{q}_{n}+\boldsymbol{p}_{n}$ and $\boldsymbol{q}_{n}+\boldsymbol{p}_{n}=\boldsymbol{r}-\boldsymbol{y}_{n}$.
- Hence $\boldsymbol{r}=\boldsymbol{y}_{n}+\boldsymbol{q}_{n}+\boldsymbol{p}_{n}=\boldsymbol{q}_{n+1}+\boldsymbol{p}_{n}+\boldsymbol{x}_{n}$.
- Rewrite algorithm as

$$
\left\lvert\, \begin{aligned}
& \boldsymbol{y}_{0}=\boldsymbol{r} \\
& \boldsymbol{q}_{0}=0 \\
& \boldsymbol{p}_{0}=0
\end{aligned} \quad\right. \text { and } \quad(\forall n \in \mathbb{N}) \quad\left[\begin{array}{l}
\boldsymbol{x}_{n}=J_{\boldsymbol{B}}\left(\boldsymbol{r}-\boldsymbol{p}_{n}\right)+\boldsymbol{b}_{n} \\
\boldsymbol{q}_{n+1}=\boldsymbol{r}-\boldsymbol{p}_{n}-\boldsymbol{x}_{n} \\
\boldsymbol{y}_{n+1}=J_{\mathbf{A}}\left(\boldsymbol{r}-\boldsymbol{q}_{n+1}\right)+\boldsymbol{a}_{n} \\
\boldsymbol{p}_{n+1}=\boldsymbol{r}-\boldsymbol{q}_{n+1}-\boldsymbol{y}_{n+1} .
\end{array}\right.
$$

- Set $\boldsymbol{u}_{0}=-\boldsymbol{r}$ and $(\forall n \in \mathbb{N}) \boldsymbol{u}_{n}=\boldsymbol{p}_{n}-\boldsymbol{r}$ and $\boldsymbol{v}_{n}=-\boldsymbol{q}_{n+1}$.
- Then $\boldsymbol{v}_{n}-\boldsymbol{u}_{n}=\boldsymbol{x}_{n}, \boldsymbol{v}_{n}-\boldsymbol{u}_{n+1}=\boldsymbol{y}_{n+1}$, and

$$
\left\{\begin{array}{l}
\boldsymbol{v}_{n}=\boldsymbol{p}_{n}-\boldsymbol{r}+\boldsymbol{x}_{n}=\boldsymbol{u}_{n}+J_{\boldsymbol{B}}\left(-\boldsymbol{u}_{n}\right)+\boldsymbol{b}_{n} \\
\boldsymbol{u}_{n+1}=\boldsymbol{p}_{n+1}-\boldsymbol{r}=-\boldsymbol{q}_{n+1}-\boldsymbol{y}_{n+1}=\boldsymbol{v}_{n}-J_{\boldsymbol{A}}\left(\boldsymbol{v}_{n}+\boldsymbol{r}\right)-\boldsymbol{a}_{n}
\end{array}\right.
$$

- Set $\boldsymbol{C}: \boldsymbol{v} \mapsto \boldsymbol{A}^{-1}(\boldsymbol{v}+\boldsymbol{r})$ and $\boldsymbol{D}=\boldsymbol{B}^{\sim}=-\boldsymbol{B}^{-1}(-\cdot)$.
- Then $\boldsymbol{C}^{-1}=-\boldsymbol{r}+\boldsymbol{A}, \boldsymbol{D}^{\sim}=\boldsymbol{B}, J_{\boldsymbol{C}}=\mathbf{I d}-J_{\boldsymbol{A}}(\cdot+\boldsymbol{r})$, and $J_{D}=\mathbf{I d}+J_{B} \circ(-\mathbf{I d})$.
- Thus, $\boldsymbol{u}_{0}=-\boldsymbol{r}$ and $(\forall n \in \mathbb{N}) \left\lvert\, \begin{array}{ll}\boldsymbol{v}_{n}=J_{D} \boldsymbol{u}_{n}+\boldsymbol{b}_{n}\end{array}\right.$
- Using [Bauschke/PLC/Reich, 2005], get

$$
\boldsymbol{r} \in \operatorname{ran}(\operatorname{ld}+\boldsymbol{A}+\boldsymbol{B}) \Leftrightarrow \operatorname{Fix}\left(J_{C} J_{\boldsymbol{D}}\right) \neq \emptyset
$$

- Deduce from Martinet's Lemma that there exists $\boldsymbol{u} \in \operatorname{Fix}\left(J_{C} J_{D}\right)$ such that

$$
\boldsymbol{x}_{n}=\boldsymbol{v}_{n}-\boldsymbol{u}_{n}=\boldsymbol{b}_{n}+J_{\boldsymbol{D}} \boldsymbol{u}_{n}-\boldsymbol{u}_{n} \rightarrow J_{\boldsymbol{D}} \boldsymbol{u}-\boldsymbol{u}
$$

- Using [Bauschke/PLC/Reich, 2005], get

$$
J_{\boldsymbol{D}} \boldsymbol{u}-\boldsymbol{u}=J_{C^{-1}+\boldsymbol{D}^{\sim}} 0=J_{\boldsymbol{A + B}} \boldsymbol{r} .
$$

- Underlying duality: $\mathbf{0} \in \boldsymbol{C} \boldsymbol{x}+{ }^{1} \boldsymbol{D} \boldsymbol{x} \Leftrightarrow \mathbf{0} \in \boldsymbol{C}^{-1} \boldsymbol{u}+\left({ }^{1} \boldsymbol{D}\right)^{\sim} \boldsymbol{u}$.

Lemma (Martinet, 1972)

Let T_{1} and T_{2} be firmly nonexpansive operators from \mathcal{H} to \mathcal{H} such that Fix $\left(T_{1} T_{2}\right) \neq \emptyset$, and let $\left(e_{1, n}\right)$ and $\left(e_{2, n}\right)$ be sequences in \mathcal{H} such that $\sum_{n \in \mathbb{N}} \mid\left\|\boldsymbol{e}_{1, n}\right\| \|<+\infty$ and $\sum_{n \in \mathbb{N}} \mid\left\|\boldsymbol{e}_{2, n}\right\| \|<+\infty$. Let $\left(\boldsymbol{u}_{n}\right)_{n \in \mathbb{N}}$ be the sequence resulting from the iteration

$$
\boldsymbol{u}_{0} \in \mathcal{H} \quad \text { and } \quad(\forall n \in \mathbb{N}) \quad \boldsymbol{u}_{n+1}=T_{1}\left(T_{2} \boldsymbol{u}_{n}+\boldsymbol{e}_{2, n}\right)+\boldsymbol{e}_{1, n} .
$$

Then there exists $\boldsymbol{u} \in$ Fix $\left(T_{1} T_{2}\right)$ such that $\boldsymbol{u}_{\boldsymbol{n}} \rightharpoonup \boldsymbol{u}$. Moreover, $T_{2} \boldsymbol{u}_{n}-\boldsymbol{u}_{n} \rightarrow T_{2} \boldsymbol{u}-\boldsymbol{u}$.

Remarks

- In the case of normal cones, say $\boldsymbol{A}=N_{C}$ and $\boldsymbol{B}=N_{D}$, then $J_{A}=P_{C}$ and $J_{B}=P_{D}$.

Remarks

- In the case of normal cones, say $\boldsymbol{A}=N_{\boldsymbol{C}}$ and $\boldsymbol{B}=N_{\boldsymbol{D}}$, then $J_{A}=P_{C}$ and $J_{B}=P_{D}$.
- The new algorithm therefore extends the original Dykstra algorithm.

Remarks

- In the case of normal cones, say $\boldsymbol{A}=N_{C}$ and $\boldsymbol{B}=N_{D}$, then $J_{A}=P_{C}$ and $J_{B}=P_{D}$.
- The new algorithm therefore extends the original Dykstra algorithm.
- ... but the theorem does not capture the Boyle/Dykstra theorem since $J_{N_{c}+N_{D}} \neq P_{C \cap D}$!

Remarks

- In the case of normal cones, say $\boldsymbol{A}=N_{C}$ and $\boldsymbol{B}=N_{D}$, then $J_{A}=P_{C}$ and $J_{B}=P_{D}$.
- The new algorithm therefore extends the original Dykstra algorithm.
- ... but the theorem does not capture the Boyle/Dykstra theorem since $J_{N_{C}+N_{D}} \neq P_{C \cap D}$!
- In addition, how to handle $m>2$ maximal monotone operators ?

The resolvent of the sum of m monotone operators

Theorem

Let $\left(A_{i}\right)_{1 \leq i \leq m}$ be maximal monotone from \mathcal{H} to $2^{\mathcal{H}}$. Set

$$
\left.\boldsymbol{A}=\sum_{i=1}^{m} \omega_{i} \boldsymbol{A}_{i}, \text { where }\left\{\omega_{i}\right\}_{1 \leq i \leq m} \subset\right] 0,1\left[\text { and } \sum_{i=1}^{m} \omega_{i}=1\right.
$$

For every $i \in\{1, \ldots, m\}$, let $\left(a_{i, n}\right)_{n \in \mathbb{N}}$ be a sequence in \mathcal{H} such that $\sum_{n \in \mathbb{N}}\left\|a_{i, n}\right\|<+\infty$. Furthermore, let $r \in \operatorname{ran}(l d+A)$ and set

$$
\begin{aligned}
& x_{0}=r \\
& \text { For } i=1, \ldots, m \quad \text { and } \quad(\forall n \in \mathbb{N}) \\
& \left\lfloor z_{i, 0}=x_{0}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { For } i=1, \ldots, m \\
& \begin{array}{l}
y_{i, n}=J_{A_{i}} z_{i, n}+a_{i, n} \\
x_{n+1}=\sum_{i=1}^{m} \omega_{i} y_{i, n} \\
\text { For } i=1, \ldots, m \\
\left\lfloor\begin{array}{c}
i, n+1
\end{array}=x_{n+1}+z_{i, n}-y_{i, n} .\right.
\end{array}
\end{aligned}
$$

Then $x_{n} \rightarrow J_{A} r$.

Proof outline

- $\mathcal{H}=\mathcal{H}^{m}$ with $(\boldsymbol{x}, \boldsymbol{y}) \mapsto \sum_{i=1}^{m} \omega_{i}\left\langle x_{i} \mid y_{i}\right\rangle$.
- $\boldsymbol{A}: \boldsymbol{x} \mapsto{\underset{i=1}{m}}_{X_{i} x_{i}}$.
- $\boldsymbol{B}=N_{\boldsymbol{D}}$, where $\boldsymbol{D}=\{(x, \ldots, x) \in \mathcal{H} \mid x \in \mathcal{H}\}$.
- $\boldsymbol{j}: x \mapsto(x, \ldots, x)$.
- $J_{\boldsymbol{A}}: \boldsymbol{x} \mapsto\left(J_{A_{i}} x_{i}\right)_{1 \leq i \leq m}$ and $J_{\boldsymbol{B}}=P_{\boldsymbol{D}}: \boldsymbol{x} \mapsto \boldsymbol{j}\left(\sum_{i=1}^{m} \omega_{i} x_{i}\right)$.
- $\boldsymbol{j}\left(J_{A} r\right)=J_{\boldsymbol{A}+\boldsymbol{B}} \boldsymbol{j}(r)$.
- To construct $J_{\boldsymbol{A}+\boldsymbol{B}} \boldsymbol{j}(r)$ use Theorem 8 with $\boldsymbol{b}_{n} \equiv 0$.
- Since $J_{\boldsymbol{B}}=P_{\boldsymbol{D}}$, algorithm reduces to

$$
\left[\begin{array} { l }
{ \boldsymbol { y } _ { 0 } = \boldsymbol { j } (r) } \\
{ \boldsymbol { p } _ { 0 } = 0 }
\end{array} \quad \text { and } \quad (\forall n \in \mathbb { N }) \quad \left\{\begin{array}{l}
\boldsymbol{x}_{n}=P_{\boldsymbol{D}} \boldsymbol{y}_{n} \\
\boldsymbol{y}_{n+1}=J_{\mathbf{A}}\left(\boldsymbol{x}_{n}+\boldsymbol{p}_{n}\right)+\boldsymbol{a}_{n} \\
\boldsymbol{p}_{n+1}=\boldsymbol{x}_{n}+\boldsymbol{p}_{n}-\boldsymbol{y}_{n+1} .
\end{array}\right.\right.
$$

- After reordering and introducing $\boldsymbol{z}_{n}=\boldsymbol{x}_{n}+\boldsymbol{p}_{n}$:

$$
\left\lvert\, \begin{aligned}
& \boldsymbol{x}_{0}=P_{\boldsymbol{D}} \boldsymbol{j}(r) \\
& \boldsymbol{z}_{0}=\boldsymbol{x}_{0}
\end{aligned} \quad\right. \text { and } \quad(\forall n \in \mathbb{N}) \quad\left\{\begin{array}{l}
\boldsymbol{y}_{n}=J_{\boldsymbol{A}} \boldsymbol{z}_{n}+\boldsymbol{a}_{n} \\
\boldsymbol{x}_{n+1}=P_{\boldsymbol{D}} \boldsymbol{y}_{n} \\
\boldsymbol{z}_{n+1}=\boldsymbol{x}_{n+1}+\boldsymbol{z}_{n}-\boldsymbol{y}_{n} .
\end{array}\right.
$$

- Now set $\boldsymbol{a}_{n}=\left(a_{i, n}\right)_{1 \leq i \leq m}, \boldsymbol{y}_{n}=\left(y_{i, n}\right)_{1 \leq i \leq m}$, and $\boldsymbol{z}_{n}=\left(z_{i, n}\right)_{1 \leq i \leq m}$ to get $(\forall n \in \mathbb{N}) \boldsymbol{x}_{n}=\boldsymbol{j}\left(x_{n}\right)$.
- Conclude that

$$
x_{n}=\boldsymbol{j}^{-1}\left(\boldsymbol{x}_{n}\right) \rightarrow \boldsymbol{j}^{-1}\left(J_{\boldsymbol{A}+\boldsymbol{B}} \boldsymbol{j}(r)\right)=J_{A} r .
$$

The proximity operator of the sum

- Let $\left(f_{i}\right)_{1 \leq i \leq m}$ be functions in $\Gamma_{0}(\mathcal{H})$ such that $\bigcap_{i=1}^{m} \operatorname{dom} f_{i} \neq \emptyset$.
- Set $f=\sum_{i=1}^{m} \omega_{i} f_{i}$, where $\left.\left\{\omega_{i}\right\}_{1 \leq i \leq m} \subset\right] 0,1\left[\right.$ and $\sum_{i=1}^{m} \omega_{i}=1$.
- For every $r \in \mathcal{H}$,

$$
\operatorname{prox}_{f} r=\operatorname{argmin}_{x \in \mathcal{H}} f(x)+\frac{1}{2}\|r-x\|^{2}
$$

is uniquely defined.

- Setting $A_{i}=\partial f_{i}$ in the theorem and assuming some CQ so that $\partial f=\sum_{i=1}^{m} \omega_{i} A_{i}$, we can construct prox ${ }_{f} r$.

The prox of the sum of two convex functions

Proposition [Bauschke/PLC/Reich, 2005]

Let $(\mathcal{H},|||\cdot|||)$ be a real Hilbert space, and let φ and ψ be functions in $\Gamma_{0}(\mathcal{H})$ such that

$$
\inf \varphi+\operatorname{env}(\psi)>-\infty
$$

Set

$$
\boldsymbol{u}_{0} \in \mathcal{H} \text { and }(\forall n \in \mathbb{N}) \boldsymbol{v}_{n}=\operatorname{prox}_{\psi} \boldsymbol{u}_{n} \text { and } \boldsymbol{u}_{n+1}=\operatorname{prox}_{\varphi} \boldsymbol{v}_{n} .
$$

Then $\boldsymbol{u}_{n} \rightharpoonup \boldsymbol{u}$, where $\boldsymbol{u} \in \operatorname{argmin} \varphi+\operatorname{env}(\psi)$, and $\operatorname{prox}_{\psi} \boldsymbol{u}_{n}-\boldsymbol{u}_{n} \rightarrow \boldsymbol{w}$, where $\boldsymbol{w}=\operatorname{prox}_{\varphi^{*}+\psi^{*}} 0$ is the unique solution to the dual problem

$$
\inf \varphi^{*}+\psi^{* V}+\frac{1}{2}\| \| \cdot\| \|^{2}
$$

The prox of the sum of two convex functions

Theorem (Bauschke/PLC, 2008)

Let $(\mathcal{H},|||\cdot|||)$ be a real Hilbert space, and let \boldsymbol{f} and \boldsymbol{g} be functions in $\Gamma_{0}(\mathcal{H})$ such that $\operatorname{domf} \cap \operatorname{domg} \neq \emptyset$. Furthermore, let $\boldsymbol{r} \in \mathcal{H}$ and let $\left(\boldsymbol{x}_{n}\right)_{n \in \mathbb{N}}$ be the sequence generated by the following routine.

$$
\left\lvert\, \begin{aligned}
& \boldsymbol{y}_{0}=\boldsymbol{r} \\
& \boldsymbol{p}_{0}=0 \\
& \boldsymbol{q}_{0}=0
\end{aligned} \quad\right. \text { and } \quad\left[\begin{array}{l}
\boldsymbol{x}_{n}=\operatorname{prox}_{\boldsymbol{g}}\left(\boldsymbol{y}_{n}+\boldsymbol{q}_{n}\right) \\
\boldsymbol{q}_{n+1}=\boldsymbol{y}_{n}+\boldsymbol{q}_{n}-\boldsymbol{x}_{n} \\
\boldsymbol{y}_{n+1}=\operatorname{prox}_{\boldsymbol{f}}\left(\boldsymbol{x}_{n}+\boldsymbol{p}_{n}\right) \\
\boldsymbol{p}_{n+1}=\boldsymbol{x}_{n}+\boldsymbol{p}_{n}-\boldsymbol{y}_{n+1} .
\end{array}\right.
$$

Then $\boldsymbol{x}_{n} \rightarrow$ prox $_{\boldsymbol{f}_{+\boldsymbol{g}}} \boldsymbol{r}$.

Proof highlights

- Set $\boldsymbol{\varphi}: \boldsymbol{v} \mapsto \boldsymbol{f}^{*}(\boldsymbol{v}+\boldsymbol{r})-\frac{1}{2}\|\boldsymbol{r}\|^{2}$ and $\boldsymbol{\psi}=\boldsymbol{g}^{* V}$.
- Then $\operatorname{prox}_{\varphi} \boldsymbol{v}=\boldsymbol{v}-\operatorname{prox}_{\boldsymbol{f}}(\boldsymbol{v}+\boldsymbol{r})$ and $\operatorname{prox}_{\psi} \boldsymbol{v}=\boldsymbol{v}+\operatorname{prox}_{\boldsymbol{g}}(-\boldsymbol{v})$.
- Use Fenchel, some changes of variables, algebraic manipulations, and the proposition on the dual asymptotic behavior of the alternating prox algorithm.

Proof highlights

- Set $\boldsymbol{\varphi}: \boldsymbol{v} \mapsto \boldsymbol{f}^{*}(\boldsymbol{v}+\boldsymbol{r})-\frac{1}{2}\|\boldsymbol{r}\|^{2}$ and $\psi=\boldsymbol{g}^{* V}$.
- Then $\operatorname{prox}_{\varphi} \boldsymbol{v}=\boldsymbol{v}-\operatorname{prox}_{\boldsymbol{f}}(\boldsymbol{v}+\boldsymbol{r})$ and $\operatorname{prox}_{\psi} \boldsymbol{v}=\boldsymbol{v}+\operatorname{prox}_{\boldsymbol{g}}(-\boldsymbol{v})$.
- Use Fenchel, some changes of variables, algebraic manipulations, and the proposition on the dual asymptotic behavior of the alternating prox algorithm.

Remark

When $\boldsymbol{f}=\iota_{\boldsymbol{C}}$ and $\boldsymbol{g}=\iota_{\boldsymbol{D}}$ we do recover the Boyle/Dykstra theorem.

The prox of the sum of m convex functions

Proposition

Let $\left(f_{i}\right)_{1 \leq i \leq m}$ be functions in $\Gamma_{0}(\mathcal{H})$ such that $\bigcap_{i=1}^{m} \operatorname{dom} f_{i} \neq \emptyset$. Set

$$
\left.f=\sum_{i=1}^{m} \omega_{i} f_{i}, \text { where }\left\{\omega_{i}\right\}_{1 \leq i \leq m} \subset\right] 0,1\left[\text { and } \sum_{i=1}^{m} \omega_{i}=1 .\right.
$$

Furthermore, let $r \in \mathcal{H}$ and set

$$
\begin{aligned}
& x_{0}=r \\
& \text { For } i=1, \ldots, m \quad \text { and } \quad(\forall n \in \mathbb{N}) \\
& {\left[\begin{array}{l}
i, 0
\end{array}=x_{0}\right.}
\end{aligned} \quad \text {. }
$$

$$
\begin{aligned}
& \text { For } i=1, \ldots, m \\
& \left\lfloor y_{i, n}=\operatorname{prox}_{f_{i}} z_{i, n}\right. \\
& x_{n+1}=\sum_{i=1}^{m} \omega_{i} y_{i, n} \\
& \text { For } i=1, \ldots, m \\
& \left\lfloor z_{i, n+1}=x_{n+1}+z_{i, n}-y_{i, n} .\right.
\end{aligned}
$$

Then $x_{n} \rightarrow$ prox $_{f} r$.

The prox of the sum of m convex functions

Proposition

Let $\left(f_{i}\right)_{1 \leq i \leq m}$ be functions in $\Gamma_{0}(\mathcal{H})$ such that $\bigcap_{i=1}^{m} \operatorname{dom} f_{i} \neq \emptyset$. Set

$$
\left.f=\sum_{i=1}^{m} \omega_{i} f_{i}, \text { where }\left\{\omega_{i}\right\}_{1 \leq i \leq m} \subset\right] 0,1\left[\text { and } \sum_{i=1}^{m} \omega_{i}=1\right.
$$

Furthermore, let $r \in \mathcal{H}$ and set

$$
\begin{aligned}
& x_{0}=r \\
& \text { For } i=1, \ldots, m \quad \text { and } \quad(\forall n \in \mathbb{N}) \\
& {\left[z_{i, 0}=x_{0}\right.}
\end{aligned}
$$

$$
\begin{aligned}
& \text { For } i=1, \ldots, m \\
& \left\lfloor\begin{array}{l}
y_{i, n}=\operatorname{prox}_{f_{i}} z_{i, n}
\end{array}\right. \\
& x_{n+1}=\sum_{i=1}^{m} \omega_{i} y_{i, n} \\
& \text { For } i=1, \ldots, m \\
& \left\lfloor z_{i, n+1}=x_{n+1}+z_{i, n}-y_{i, n} .\right.
\end{aligned}
$$

Then $x_{n} \rightarrow$ prox $_{f} r$.

Remark

The above result provides a strongly convergent, qualification-free minimization algorithm for strongly convex problems.

Projecting onto the intersection of convex sets

Corollary (Gaffke/Mathar, 1989)

Let $\left(C_{i}\right)_{1 \leq i \leq m}$ be closed convex subsets of \mathcal{H} such that $C=\bigcap_{i=1}^{m} C_{i} \neq \emptyset$. Take $\left.\left\{\omega_{i}\right\}_{1 \leq i \leq m} \subset\right] 0,1\left[\right.$ such that $\sum_{i=1}^{m} \omega_{i}=1$. Furthermore, let $r \in \mathcal{H}$ and set

$$
\begin{aligned}
& x_{0}=r \\
& \text { For } i=1, \ldots, m \quad \text { and } \quad(\forall n \in \mathbb{N}) \\
& \left\lfloor z_{i, 0}=x_{0}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { For } i=1, \ldots, m \\
& \left\lfloor y_{i, n}=P_{C_{i}} z_{i, n}\right. \\
& x_{n+1}=\sum_{i=1}^{m} \omega_{i} y_{i, n} \\
& \text { For } i=1, \ldots, m \\
& \left\lfloor z_{i, n+1}=x_{n+1}+z_{i, n}-y_{i, n} .\right.
\end{aligned}
$$

Then $x_{n} \rightarrow P_{C} r$.

Remark (Lapidus, 1980)

Suppose that the sets $\left(C_{i}\right)_{1 \leq i \leq m}$ are closed vector subspaces. Then the update rule reduces to $x_{n+1}=\sum_{i=1}^{m} \omega_{i} P_{C_{i}} x_{n}$. Hence, $\left(\sum_{i=1}^{m} \omega_{i} P_{C_{i}}\right)^{n} \rightarrow P_{C}$.

References

- H. H. Bauschke and PLC, "A Dykstra-like algorithm for two monotone operators," Pacific J. Optim., vol. 4, pp. 383-391, 2008.
- PLC, "Iterative construction of the resolvent of a sum of maximal monotone operators," J. Convex Anal., to appear.

Cited work:

- PLC, Solving monotone inclusions via compositions of nonexpansive averaged operators, Optimization, vol. 53, pp. 475-504, 2004.
- H. H. Bauschke, PLC, and S. Reich, The asymptotic behavior of the composition of two resolvents, Nonlinear Anal., vol. 60, pp. 283-301, 2005.

