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Int

Overview: Solving strongly monotone inclusions

Throughout, H is a real Hilbert space.

@ Given r € H and maximal monotone operators (B;)1<j<m acting
on H, with By strongly monotone,

m
Find x €’H suchthat re Z B;x.

i=1
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Int

Overview: Solving strongly monotone inclusions

Throughout, H is a real Hilbert space.

@ Given r € H and maximal monotone operators (B;)1<j<m acting
on H, with By strongly monotone,

m
Find x €’H suchthat re Z B;x.

i=1

@ This problem arises in PDEs, inverse problems, signal
denoising, best approximation, etc.
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Int

Overview: Solving strongly monotone inclusions

Throughout, H is a real Hilbert space.

@ Given r € H and maximal monotone operators (B;)1<j<m acting
on H, with By strongly monotone,

m
Find x €’H suchthat re Z B;x.
i=1
@ This problem arises in PDEs, inverse problems, signal
denoising, best approximation, etc.

@ Egquivalent formulation: Given r € H and maximal monotone
operators (A;)1<i<m on H, weights (w;)1<j<m in ]0, 1] such that
ST wi=1,s0lvere >, wAyx, ie., compute

m
x=(d+A)""r=Jsr, where A= Zw,-A,-.
P
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Int

Overview: Solving strongly monotone inclusions

Throughout, H is a real Hilbert space.

@ Given r € H and maximal monotone operators (B;)1<j<m acting
on H, with By strongly monotone,

m
Find x €’H suchthat re Z B;x.
i=1
@ This problem arises in PDEs, inverse problems, signal
denoising, best approximation, etc.

@ Egquivalent formulation: Given r € H and maximal monotone
operators (A;)1<i<m on H, weights (w;)1<j<m in ]0, 1] such that
ST wi=1,s0lvere >, wAyx, ie., compute

m
x=(d+A)""r=Jsr, where A= Zw,-A,-.
P

@ We propose two algorithms to construct Jur.
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PART I: Douglas-Rachford splitting

A first algorithm to construct Jar.
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Partll m ops 2 proxm

Douglas-Rachford spllttlng for two monotone operators

Douglas-Rachford (1956), Lieutaud (1969), Lions-Mercier (1979),
Eckstein-Bertsekas (1992),...

Algorithm 1

(M, || - ||]) a real Hilbert space, A and B maximal monotone
operators from H to 2* such that zer (A + B) # @, v € ]0, +oc],
()\n)neN |n ]O, 2], and (an)neN and (bn)neN |n H

Routine:

Initialization
L ZoeH
Forn=0,1,...

{ Yo =JyBZn+ b,
Zo =2Zn+ Mn(haRy,—2zn) +an—y,).
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Partll m ops 2 proxm

Douglas Rachford spllttlng for two monotone operators

® Suppose that ey An(l[anl[| + [[[bnl|[) < 400,
> nen An(2 = An) = +o0, and (Vn € N) A\, < 2. Then:

@ (zn)nen converges weakly to a pointz € ‘H and J,gZ is a
zero of A+ B [PLC, 2004].
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Partll m ops 2 proxm

Douglas Rachford spllttlng for two monotone operators

® Suppose that ey An(l[anl[| + [[[bnl|[) < 400,
> nen An(2 = An) = +o0, and (Vn € N) A\, < 2. Then:

@ (zn)nen converges weakly to a pointz € ‘H and J,gZ is a
zero of A+ B [PLC, 2004]. Nothing else in general!
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Int Partl DR2 Partll prox2 proxm

Douglas-Rachford splitting for two monotone operators

® Suppose that ey An(l[anl[| + [[[bnl|[) < 400,
> nen An(2 = An) = +o0, and (Vn € N) A\, < 2. Then:

@ (zn)nen converges weakly to a pointz € ‘H and J,gZ is a
zero of A+ B [PLC, 2004]. Nothing else in general!

e Suppose that A = Np, where D is a closed affine subspace
of H. Then J,pz, —y € zer(A+ B).

e Suppose that A = Np, where D is a closed vector subspace
of H, and that b, — 0. Then J,ay,—y € zer (A + B).

® Suppose that -,y Il|anll] < +00, 3 e [l|bnll] < +o0,
inf,en Ap > 0, and B is uniformly monotone on the bounded
subsets of H. Theny,—y < zer (A+ B).
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Int Partl DR2 Partll prox2 proxm

Douglas-Rachford splitting for two monotone operators

® Suppose that ey An(l[anl[| + [[[bnl|[) < 400,
> nen An(2 = An) = +o0, and (Vn € N) A\, < 2. Then:

@ (zn)nen converges weakly to a pointz € ‘H and J,gZ is a
zero of A+ B [PLC, 2004]. Nothing else in general!

e Suppose that A = Np, where D is a closed affine subspace
of H. Then J,pz, —y € zer(A+ B).

e Suppose that A = Np, where D is a closed vector subspace
of H, and that b, — 0. Then J,ay,—y € zer (A + B).

® Suppose that 3",y |[|anll| < +00, X ey Il|bnll| < +oo,
inf,en Ap > 0, and B is uniformly monotone on the bounded
subsets of H. Theny,—y < zer (A + B). In particular this
covers Peaceman-Rachford splitting.
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Partll m ops 2 proxm

Douglas Rachford spllttlng for two monotone operators

Setting A = Np, where D is a closed affine subspace of ‘H, we obtain:

Algorithm 2

Yn = J—szn + bn

Xn = PDyn
zpeH and (VneN) p, = Pozy

Zni1 =2Zp+ An(2Xn — Pp— Vp)-

Corollary

@ Suppose that ), Anl||bn]|| < +00, > ey An(2 — Ap) = +00
and (Vn e N) A\, < 2. Then p,— p € zer (Np + B).

@ Suppose that .\ |||bnl|| < +oo, infren Ay > 0, and B is
uniformly monotone on the bounded subsets of H. Then
Xp— X € zer (Np + B).
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DR2

Splitting for ~ monotone operators

@ (B))1<i<m are maximal monotone operators from H to 2%, and

m m
B=> wB, where {w}icicmC]0,1[ and Y w;i=1.

i=1 i=1
@ "M is the m-fold Cartesian product of H with scalar product
(X, y) — S wilxi | yi).
@ A= Np,where D= {(x,...,x) € H | x € H}.
m
e B H—-2": x— XB,‘X,'.
i=1
@ j:H—-D:x— (X,...,X).
@ Thus, j(zer B) = zer (Np + B).
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Int Partl

Splitting for

DR2 Resol Partll

monotone operators

proxm

Algorithm 3

Initialization
Fori=1,....m
L Zjo € H

For n=0,1,...

Fori=1,....m

| Yin=JygZin+ bin

Xn = E;; WiVin

Pn = Zinl1 wiZjn

An €]0,2]

Fori=1,...,m

L Zint1 = Zin + >\n(2Xn —Pn— }/i,n)-
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Partl DR2 Partll

Splitting for m monotone operators

@ Suppose that maxi<j<m Y _ ey Anl|binll < +o0,
Y nen An(2 = An) = +o0, and (Vn € N) A\, < 2. Then:

@ pp—pczerB.
e Suppose that (Vi€ {1,,...,m}) b, —0. Then
X, — X € zer B.

@ Suppose that maxi<j<m Y pen 1binl| < +00, infpen Ay > 0, and
the B;s are strongly monotone. Then x, — x € zer B. AA
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Int Partl DR2 Partll prox2 proxm

Splitting for m monotone operators

@ Suppose that maxi<j<m Y _ ey Anl|binll < +o0,
Y nen An(2 = An) = +o0, and (Vn € N) A\, < 2. Then:

@ pp—pczerB.
e Suppose that (Vi€ {1,,...,m}) b, —0. Then
Xpn—X € zerB. AA

@ Suppose that maxi<j<m Y pen |1binl| < +00, infpen Ay > 0, and
the B;s are strongly monotone. Then x, — x € zer B. AA

Remark

A special case of A A was obtained by Spingarn (1983) via the
method of partial inverses.
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Partl DR2 Partll mops 2 proxm

Splitting for m monotone operators

Spingarn’s splitting algorithm

Initialization

So €H

L (Vi,0)1§i§m e H™ satisfy Z,n:’1 wiVio = 0

For n=0,1,...

Fori=1,...,m

| find (Vin, Uin) € gr B; such that y; , + Ujn = Sn+ Vip

Snt1 = 221 WiYi,n
Gn =20 willin
Fori=1,...,m

| Vintt = Uin — Gn-
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Splitting for the resolvent of the sum

Back to our problem...
@ (Aj)1<i<m are maximal monotone
@ Set

m m
A=Y wA, where {w}icicmC10,1[ and > wi=1.

i=1 i=1

@ Letr eran(ld + A)

@ The goal is to construct Ja r.
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Int Partl DR2 Resol Partll m ops 2 proxm

Splitting for the resolvent of the sum

Algorithm 4

Let v € 10,400, (An)nen in ]0,2], and, for every i € {1,..., m},
(@i,n)nen in H.
Initialization
Fori=1,...,m
L Zio€EH

For n=0,1,...

Fori=1,...,m

{ Yin= JﬁA; ((Zi,n JF’Yr)/('Y + 1)> + ain
Xn = 221 WiYin

Pn = ZL wiZjn

Fori=1,....m

|_ Zint1 = Zin + >\n(2Xn — Pn — y/‘,n)~
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Splitting for the resolvent of the sum

Proposition

Suppose that inf,en A\p > 0 and that maxi<j<m Y pey ll@inll < +oo.
Then x, — Jar.

Proof: Set
(Vvie{1,...,m}) B,-:H—>2H:yn—>—r+y+A,-y

in AA.
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The proximity operator of the sum

@ Let (f})1<i<m be functions in () such that N, dom f; # @.
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The proximity operator of the sum

@ Let (f})1<i<m be functions in () such that N, dom f; # @.
@ Setf=>",wf, where {wi}1<i<m C]0,1[ and 37", wi = 1.
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The proximity operator of the sum

@ Let (f})1<i<m be functions in () such that N, dom f; # @.
@ Setf=>",wf, where {wi}1<i<m C]0,1[ and 37", wi = 1.

@ Foreveryre™H,
. 1 2
prox, r = argmin, _,, f(x) + §||r — x|l

is uniquely defined.
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The proximity operator of the sum

@ Let (f})1<i<m be functions in () such that N, dom f; # @.
@ Setf=>",wf, where {wi}1<i<m C]0,1[ and 37", wi = 1.

@ Foreveryre™H,
. 1 2
prox, r = argmin, _,, f(x) + §||r — x|l

is uniquely defined.

@ Setting A; = 9f; in Algorithm 4 and assuming some CQ so that
of = 31, wiAi, we can construct prox; r.
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Resol

Some applications of splitting in signal processing

@ PLC and V. R. Wajs, “Signal recovery by proximal
forward-backward splitting,” Multiscale Model. Simul., vol. 4, pp.
1168-1200, 2005.

@ C. Chaux, PLC, J.-C. Pesquet, and V. R. Wajs, “A variational
formulation for frame-based inverse problems,” Inverse
Problems, vol. 23, pp. 1495-1518, 2007.

@ PLC and J.-C. Pesquet, “Proximal thresholding algorithm for
minimization over orthonormal bases,” SIAM J. Optim., vol. 18,
pp. 1351-1376, 2007.

@ PLC and J.-C. Pesquet, “A Douglas-Rachford splitting approach
to nonsmooth convex variational signal recovery,” IEEE J.
Selected Topics Signal Process., vol. 1, pp 564-574, 2007.

@ PLC and J.-C. Pesquet, “A proximal decomposition method for
solving convex variational inverse problems,” vol. 24, 2008.
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PART II: A Dykstra-like approach

A second algorithm to construct Jar.
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Von Neumann’s alternating projections algorithm

Theorem (von Neumann, 1933)

Letr € H, let U and V be closed vector subspaces of H, and set

Xn = Pvyn

= v N
Yo=r and (vneN) {Yn+1=PUXn-

Then x, — Pynyr.

@ Von Neumann’s theorem is a best approximation result.

@ If U and V are intersecting closed convex subsets of H, we
merely have x, — x, where x € UnN V is undetermined
(Bregman, 1965).
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Partll

Dykstra’s alternating projections algorithm

Theorem (Boyle/Dykstra, 1986)

Letz € H, let C and D be closed convex subsets of H such that
CnD+#@®, and set

Yo=r o =Polyn )
A N
and (VneN) Vo1 = Pol(Xn )

Then x, — x € CN D [Bregman (1965)]
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Partll

Dykstra’s alternating projections algorithm

Theorem (Boyle/Dykstra, 1986)

Letz € H, let C and D be closed convex subsets of H such that
Cn D # @, and set

Yo=r Xn = Pp(Yn+qn)

Qni1i = Yn+ Qn — Xn
=0 and (VneN
'Zg =0 { ) Yn+1 = Pc(Xn+ pn)

Pn+1 = Xn + Pn — Ynt1.

Then x, — Pgnpr.
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Partll

Dykstra’s alternating projections algorithm

Theorem (Boyle/Dykstra, 1986)
Letz € H, let C and D be closed convex subsets of H such that
Cn D # @, and set

Yo=r Xn = Pp(Yn+qn)

Qni1i = Yn+ Qn — Xn
=0 and (VneN
Zg -0 ( ) Y1 = Pc(Xn+ pn)

Pn+1 = Xn + Pn — Ynt1.
Then x, — Pgnpr.

@ Von Neumann’s theorem is a special case.

@ Nontrival incremental proofs: Dykstra 1983, Han 1988,
Boyle/Dykstra 1986, Gaffke/Mathar 1989, De Pierro/lusem 1991,
Bauschke/Borwein 1994, etc.
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Int Partl DR2 Resol Partll mops prox2 proxm

The resolvent of the sum of two monotone operators

Theorem (Bauschke/PLC, 2008)

Let (M, ||| - |||) be a real Hilbert space, and let A and B be maximal
monotone operators from H to 2.

Furthermore, let r € ran(ld + A+ B) and let (X)nen be the
sequence generated by the following routine.

Xp = JB(ynJrqn)

Yo=Tr _
_ A1 =Yntd,— Xn
=0 and it

gz -0 Yo = JA(Xn+pn)

Pni1 :xn+pn_yn+1-

Then x, — Ja, g r.
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Int Partl DR2 Resol Partll m ops prox2 proxm

The resolvent of the sum of two monotone operators

Theorem (Bauschke/PLC, 2008)

Let (M, ||| - |||) be a real Hilbert space, and let A and B be maximal
monotone operators from H to 2™. Let (ap)nen and (bp)nen be
sequences in H such that

> lllanlll < +oo and ) |llbs||] < +oo.

neN neN
Furthermore, let r € ran(ld + A+ B) and let (X)nen be the
sequence generated by the following routine.
Xn = JB(ynJrqn)ern

=r
l}DlO:o and 9ni1 =Yntdn— Xn
q((; -0 Yo = JA(XH + pn)+an

Pni1 :xn+pn_yn+1-

Then x, — Ja, g r.
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Partll
Proof outline

@ Note that dni1 t Pt Xn=Y,+dn+t Py andq,+p,=r-Yy,
@ Hencer=y,+q,+p,= dni1+ Pt Xn.
@ Rewrite algorithm as

= Xn  =Js(r—p,)+bn
go _ 6 and (vnenN) | It =T = Pn—Xn
pg:O Ynii :JA(r_qn+1)+an
Pnit =F—dn1 — Ynyr-
@ Setup=—-rand (VneN)u,=p,—rand v,=—q,,;.

@ Thenv,—Up=Xp, Vo — Upny1 =Y, 4, and

Vo=p,—F+X,=Un+Js(—Up)+ by
Uni1 =Pppr —Fr=—Ap 1 —Yni1 = Vn— Ja(Vn+r) — an.
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Partll

SetC:v— A '(v+randD=B"=-B'(—).

ThenC' = —r+ A, D~ =B, Joc = Id — Ja(- + r), and
Jp = Id + Jg o (—Id).

Vn = JDUn + bn
Up 1 = JcVn — anp.

Using [Bauschke/PLC/Reich, 2005], get
reran(ld + A+ B) < Fix(JeJp) # 9.

Thus, up = —r and (VneN) L

Deduce from Martinet’s Lemma that there exists u € Fix (JcJp)
such that

Xp=V,—U,=b,+ Jpu, — u,— Jpu — u.
Using [Bauschke/PLC/Reich, 2005], get

JDu_ u:ch1+D~ O = JA+B r.

Underlying duality: 0 € Cx + 'Dx <0 € C 'u+ ('D)~u.
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Partll

Lemma (Martinet, 1972)

Let Ty and T, be firmly nonexpansive operators from ‘H to H such
that Fix(T1 Ty) # @, and let (e1.») and (ez,n) be sequences in H such

thaty . |ll€e1,n]|| < +ooand}” lll€zn|l| < +oo. Let (Un)nen be
the sequence resulting from the iteration

UpeH and (Vne€N) Upyr = T1(Toln+ €2,) + €1 0.

Then there exists u € Fix (T4 Tz) such that u, — u. Moreover,
Tou, —up, — Tou — u.
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Partll

Remarks

@ In the case of normal cones, say A = N¢ and B = Np, then
Ja = Pc and Jg = Pp.
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Partll
REINEISS

@ In the case of normal cones, say A = N¢ and B = Np, then
Ja = Pc and Jg = Pp.

@ The new algorithm therefore extends the original Dykstra
algorithm.
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Partll
REINEISS

@ In the case of normal cones, say A = N¢ and B = Np, then
Ja = Pc and Jg = Pp.

@ The new algorithm therefore extends the original Dykstra
algorithm.

@ ... but the theorem does not capture the Boyle/Dykstra theorem
since JNc+ND =+ Pcnp!
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Partll
REINEISS

@ In the case of normal cones, say A = N¢ and B = Np, then
Ja = Pc and Jg = Pp.

@ The new algorithm therefore extends the original Dykstra
algorithm.

@ ... but the theorem does not capture the Boyle/Dykstra theorem
since JNc+ND 7é PCDD!
@ In addition, how to handle m > 2 maximal monotone operators ?
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Partl Partll mops prox2 proxm

The resolvent of the sum of ' monotone operators

Let (Ai)1<i<m be maximal monotone from H to 2™. Set
m m
A= "wA;, where {wi}1<i<m C10,1[ and > w;=1.
i=1 i=1

Foreveryie {1,...,m}, let(ajn)nen be a sequence in’H such that
> nen ll@inll < +oo. Furthermore, let r < ran(ld + A) and set

Fori=1,....,m
Xo="r L Yin=JaZin+ ain
g m
Fori=1,...,m and (VneN) | Xot1 =Y iy wiYin
LZi,o:Xo Fori=1,....m

L Zin+1 = Xnt1 + Zin — Yin-

Then X, — Jar.
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m ops
Proof outline

® H ="H"with (x,y) — ST, wi(X; | ¥i)-

m
@ A x+— XA,‘X,'.
i=1

B = Np, where D = {(x,...,x) € H | x € H}.
Jixe—(x,...,X).

Ja: X — (JAin)1§i§m and Jg = Pp: x ’_>.I<Z7l1 w;X/>.

J(Jar) = JasB(r).
To construct Ja. g j(r) use Theorem 8 with b, = 0.

Since Jg = Pp, algorithm reduces to
i Xp,=Pp Yn
{ Yo=J(r)  znq (Vn € N) { Yoi1 = Ja(Xn+p,) + an
0 Pn+1:Xn+Pn—.Vn+1~
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m ops

@ After reordering and introducing z, = x, + p,:

25 = Xo and (VneN) Xnt1=Ppy,

{ Xo = Ppj(r) Yo = JaZn+an
Znii =Xp1+2Zn =Y,

@ Now set a, = (@i,n)1<i<m, ¥n = (Vi,n)1<i<m, and Zp, = (Zin)1<i<m
to get (Vn € N) x, = j(x»).

@ Conclude that

Xn=J ' (Xn) = (Jarg(r)) = Jar.
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The proximity operator of the sum

@ Let (f})1<i<m be functions in Mo(H) such that N", domf; # @.
@ Setf=>"", wifi, where {wi}1<icm € 10,1[ and Y7, w; = 1.

@ Foreveryre™H,
. 1 2
prox, r = argmin, _,, f(x) + §||r — x|l

is uniquely defined.

@ Setting A; = Of; in the theorem and assuming some CQ so that
of = 31, wiAi, we can construct prox; r.
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ol Partll mops prox2 proxm

Int Partl DR2 Re

The prox of the sum of two convex functions

Proposition [Bauschke/PLC/Reich, 2005]

Let (H, ||| - |||) be a real Hilbert space, and let ¢ and 1 be functions in
l'o(7H) such that

inf ¢ +env(y) > —oo.
Set
uo € H and (Vn € N) v, = prox,,up and Up1 = prox,, vn.

Then u, — u, where u € argmin ¢ +env(z), and prox,,u, — Up — W,
where w = prox,,._, ,,~v0 is the unique solution to the dual problem

. » X 1
inf * + 4™+ 51l 1II%
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Int Partl DR2 Resol Partll

mops prox2 proxm

The prox of the sum of two convex functions

Theorem (Bauschke/PLC, 2008)

Let (H, ||| - |||) be a real Hilbert space, and let f and g be functions in
Fo(H) such that domf Nndomg # @. Furthermore, let r € ‘H and let
(xn)nen be the sequence generated by the following routine.

Yo=r Xn :proxg(yn+qn)
pO:O and dni1 = Ynt4n— Xn
qg -0 Yo = prox,(xn +pn)

Pni1 =Xn+Pp—Yni1-
Then x, — prox; g
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Proof highlights

@ Sety: v fF(v+r)—5|r|?and ¢ = g*V.
@ Then prox,v = v — prox,(v + r) and prox,, vV = v + proxy(—v).

@ Use Fenchel, some changes of variables, algebraic
manipulations, and the proposition on the dual asymptotic
behavior of the alternating prox algorithm.
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Proof highlights

@ Sety: v fF(v+r)—5|r|?and ¢ = g*V.
@ Then prox,v = v — prox,(v + r) and prox,, vV = v + proxy(—v).

@ Use Fenchel, some changes of variables, algebraic
manipulations, and the proposition on the dual asymptotic
behavior of the alternating prox algorithm.

When f = .c and g = «p we do recover the Boyle/Dykstra theorem.

P. L. Combettes Splitting methods for constructing the resolvent of a sum of maxi



Partl 12 Partll

The prox of the sum of ' convex func ons

Let (f)1<i<m be functions in To(H) such that ﬂ, 1 omf #+@. Set

f= Zw,f,, where {w;}1<i<m € 10,1[ and Zw, =1.
i=1 i=1

Furthermore, let r € H and set

Fori=1,....m
Xo="r L Yi,n = ProxXgzi n
c m
Fori=1,....m and (Yn€N) | Xnt1 =D i WiYin
LZi,o=Xo Fori=1,...,m

L Zint1 = Xnt1 + Zin — Yin-

Then x, — prox;r.
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Partl 2 Partll

The prox of the sum of ' convex functlons

Let (f)1<i<m be functions in To(H) such that ﬂ, 1 omf #+@. Set

f= Zw,f,, where {w;}1<i<m € 10,1[ and Zw, =1.
i=1 i=1

Furthermore, let r € H and set

Fori=1,....m
Xo="r L Yi,n = ProxXgzi n
c m
Fori=1,....m and (Yn€N) | Xnt1 =D i WiYin
LZi,o=Xo Fori=1,...,m

L Zint1 = Xnt1 + Zin — Yin-

Then x, — prox;r.

Remark

The above result provides a strongly convergent, qualification-free
minimization algorithm for strongly convex problems.
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Int Partl DR2 | Partll o]

Projecting onto the intersection of convex sets

Corollary (Gaffke/Mathar, 1989)

Let (Ci)1<i<m be closed convex subsets of H such that
C=N_,Ci#0. Take {wi}1<i<m C ]0,1[ such that 31" , w; = 1.
Furthermore, let r € H and set

Fori=1,...,m
Xo=1"r | Yin= PgzZin
o m
Fori=1,....m and (VneN) | Xop1 =D iy WiVin
LZ;70=X0 Fori:1,...,m

L Zint1 = Xn+1 + Zin — Yin-

Then x, — Pcr.

Remark (Lapidus, 1980)

Suppose that the sets (C;)1<i<m are closed vector subspaces. Then
the update rule reduces to X1 = > 1, wiP¢ Xn. Hence,
(X wiPg)" — Pe.
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