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Overview: Solving strongly monotone inclusions
Throughout, H is a real Hilbert space.

Given r ∈ H and maximal monotone operators (Bi )1≤i≤m acting
on H, with B1 strongly monotone,

Find x ∈ H such that r ∈
m∑

i=1

Bix .

This problem arises in PDEs, inverse problems, signal
denoising, best approximation, etc.

Equivalent formulation: Given r ∈ H and maximal monotone
operators (Ai )1≤i≤m on H, weights (ωi )1≤i≤m in ]0,1[ such that∑m

i=1 ωi = 1, solve r ∈
∑m

i=1 ωiAix , i.e., compute

x = (Id + A)−1r = JAr , where A =
m∑

i=1

ωiAi .

We propose two algorithms to construct JAr .
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PART I: Douglas-Rachford splitting

A first algorithm to construct JAr .
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Douglas-Rachford splitting for two monotone operators

Douglas-Rachford (1956), Lieutaud (1969), Lions-Mercier (1979),
Eckstein-Bertsekas (1992),...

Algorithm 1

(H, ||| · |||) a real Hilbert space, A and B maximal monotone
operators fromH to 2H such that zer (A + B) 6= Ø, γ ∈ ]0,+∞[,
(λn)n∈N in ]0,2], and (an)n∈N and (bn)n∈N inH.
Routine:

Initialization⌊
z0 ∈H

For n = 0,1, . . .⌊
yn = JγBzn + bn
zn+1 = zn + λn

(
JγA(2yn − zn) + an − yn

)
.
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Douglas-Rachford splitting for two monotone operators

Theorem

Suppose that
∑

n∈N λn(|||an|||+ |||bn|||) < +∞,∑
n∈N λn(2− λn) = +∞, and (∀n ∈ N) λn < 2. Then:

(zn)n∈N converges weakly to a point z ∈H and JγBz is a
zero of A + B [PLC, 2004].

Nothing else in general!
Suppose that A = ND , where D is a closed affine subspace
ofH. Then JγA zn ⇀y ∈ zer (A + B).
Suppose that A = ND , where D is a closed vector subspace
ofH, and that bn ⇀0. Then JγAyn ⇀y ∈ zer (A + B).

Suppose that
∑

n∈N |||an||| < +∞,
∑

n∈N |||bn||| < +∞,
infn∈N λn > 0, and B is uniformly monotone on the bounded
subsets ofH. Then yn→y ∈ zer (A + B). In particular this
covers Peaceman-Rachford splitting.
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Douglas-Rachford splitting for two monotone operators

Setting A = ND , where D is a closed affine subspace ofH, we obtain:

Algorithm 2

z0 ∈H and (∀n ∈ N)


yn = JγBzn + bn
xn = PDyn
pn = PDzn
zn+1 = zn + λn(2xn − pn − yn).

Corollary
Suppose that

∑
n∈N λn|||bn||| < +∞,

∑
n∈N λn(2− λn) = +∞,

and (∀n ∈ N) λn < 2. Then pn ⇀p ∈ zer (ND + B).

Suppose that
∑

n∈N |||bn||| < +∞, infn∈N λn > 0, and B is
uniformly monotone on the bounded subsets ofH. Then
xn→x ∈ zer (ND + B).
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Splitting for m monotone operators

(Bi )1≤i≤m are maximal monotone operators from H to 2H, and

B =
m∑

i=1

ωiBi , where {ωi}1≤i≤m ⊂ ]0,1[ and
m∑

i=1

ωi = 1.

H is the m-fold Cartesian product of H with scalar product
(x ,y) 7→

∑m
i=1 ωi〈xi | yi〉.

A = ND , where D =
{

(x , . . . , x) ∈H | x ∈ H
}

.

B : H→ 2H : x 7→
m×

i=1
Bixi .

j : H → D : x 7→ (x , . . . , x).

Thus, j(zer B) = zer (ND + B).
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Splitting for m monotone operators

Algorithm 3
Initialization⌊

For i = 1, . . . ,m⌊
zi,0 ∈ H

For n = 0,1, . . .

For i = 1, . . . ,m⌊
yi,n = JγBi zi,n + bi,n

xn =
∑m

i=1 ωiyi,n

pn =
∑m

i=1 ωizi,n

λn ∈ ]0,2]

For i = 1, . . . ,m⌊
zi,n+1 = zi,n + λn

(
2xn − pn − yi,n

)
.
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Splitting for m monotone operators

Proposition

Suppose that max1≤i≤m
∑

n∈N λn‖bi,n‖ < +∞,∑
n∈N λn(2− λn) = +∞, and (∀n ∈ N) λn < 2. Then:

pn ⇀p ∈ zer B.
Suppose that (∀i ∈ {1, , . . . ,m}) bi,n ⇀0. Then
xn ⇀ x ∈ zer B.

NN

Suppose that max1≤i≤m
∑

n∈N ‖bi,n‖ < +∞, infn∈N λn > 0, and
the Bis are strongly monotone. Then xn→ x ∈ zer B. NN

Remark
A special case of NN was obtained by Spingarn (1983) via the
method of partial inverses.
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Splitting for m monotone operators

Spingarn’s splitting algorithm

Initialization⌊
s0 ∈ H
(vi,0)1≤i≤m ∈ Hm satisfy

∑m
i=1 ωivi,0 = 0

For n = 0,1, . . .

For i = 1, . . . ,m⌊
find (yi,n,ui,n) ∈ gr Bi such that yi,n + ui,n = sn + vi,n

sn+1 =
∑m

i=1 ωiyi,n

qn =
∑m

i=1 ωiui,n

For i = 1, . . . ,m⌊
vi,n+1 = ui,n − qn.
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Splitting for the resolvent of the sum

Back to our problem...

(Ai )1≤i≤m are maximal monotone

Set

A =
m∑

i=1

ωiAi , where {ωi}1≤i≤m ⊂ ]0,1[ and
m∑

i=1

ωi = 1.

Let r ∈ ran(Id + A)

The goal is to construct JA r .
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Splitting for the resolvent of the sum

Algorithm 4

Let γ ∈ ]0,+∞[, (λn)n∈N in ]0,2], and, for every i ∈ {1, . . . ,m},
(ai,n)n∈N in H.

Initialization⌊
For i = 1, . . . ,m⌊

zi,0 ∈ H
For n = 0,1, . . .

For i = 1, . . . ,m⌊
yi,n = J γ

γ+1 Ai

((
zi,n + γr

)
/
(
γ + 1

))
+ ai,n

xn =
∑m

i=1 ωiyi,n

pn =
∑m

i=1 ωizi,n

For i = 1, . . . ,m⌊
zi,n+1 = zi,n + λn

(
2xn − pn − yi,n

)
.

P. L. Combettes Splitting methods for constructing the resolvent of a sum of maximal monotone operators



Int PartI DR2 Resol PartII m ops prox2 proxm

Splitting for the resolvent of the sum

Proposition

Suppose that infn∈N λn > 0 and that max1≤i≤m
∑

n∈N ‖ai,n‖ < +∞.
Then xn → JA r .

Proof: Set

(∀i ∈ {1, . . . ,m}) Bi : H → 2H : y 7→ −r + y + Aiy

in NN.
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The proximity operator of the sum

Let (fi )1≤i≤m be functions in Γ0(H) such that
⋂m

i=1 dom fi 6= Ø.

Set f =
∑m

i=1 ωi fi , where {ωi}1≤i≤m ⊂ ]0,1[ and
∑m

i=1 ωi = 1.

For every r ∈ H,

proxf r = argminx∈H f (x) +
1
2
‖r − x‖2

is uniquely defined.

Setting Ai = ∂fi in Algorithm 4 and assuming some CQ so that
∂f =

∑m
i=1 ωiAi , we can construct proxf r .
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Some applications of splitting in signal processing
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1168-1200, 2005.

C. Chaux, PLC, J.-C. Pesquet, and V. R. Wajs, “A variational
formulation for frame-based inverse problems,” Inverse
Problems, vol. 23, pp. 1495-1518, 2007.

PLC and J.-C. Pesquet, “Proximal thresholding algorithm for
minimization over orthonormal bases,” SIAM J. Optim., vol. 18,
pp. 1351–1376, 2007.

PLC and J.-C. Pesquet, “A Douglas-Rachford splitting approach
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PART II: A Dykstra-like approach

A second algorithm to construct JAr .
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Von Neumann’s alternating projections algorithm

Theorem (von Neumann, 1933)

Let r ∈ H, let U and V be closed vector subspaces of H, and set

y0 = r and (∀n ∈ N)

⌊
xn = PV yn
yn+1 = PUxn.

Then xn→PU∩V r .

Von Neumann’s theorem is a best approximation result.

If U and V are intersecting closed convex subsets of H, we
merely have xn ⇀ x , where x ∈ U ∩ V is undetermined
(Bregman, 1965).
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Dykstra’s alternating projections algorithm

Theorem (Boyle/Dykstra, 1986)

Let z ∈ H, let C and D be closed convex subsets of H such that
C ∩ D 6= Ø, and set y0 = r

p0 = 0
q0 = 0

and (∀n ∈ N)


xn = PD(yn

+ qn

)

qn+1 = yn + qn − xn

yn+1 = PC(xn

+ pn

)

pn+1 = xn + pn − yn+1

.

Then xn⇀ x ∈ C ∩ D [Bregman (1965)]

xn→PC∩Dr

.

Von Neumann’s theorem is a special case.

Nontrival incremental proofs: Dykstra 1983, Han 1988,
Boyle/Dykstra 1986, Gaffke/Mathar 1989, De Pierro/Iusem 1991,
Bauschke/Borwein 1994, etc.
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The resolvent of the sum of two monotone operators

Theorem (Bauschke/PLC, 2008)

Let (H, ||| · |||) be a real Hilbert space, and let A and B be maximal
monotone operators fromH to 2H.

Let (an)n∈N and (bn)n∈N be
sequences inH such that∑

n∈N
|||an||| < +∞ and

∑
n∈N
|||bn||| < +∞.

Furthermore, let r ∈ ran(Id + A + B) and let (xn)n∈N be the
sequence generated by the following routine. y0 = r

p0 = 0
q0 = 0

and


xn = JB(yn + qn)

+bn

qn+1 = yn + qn − xn
yn+1 = JA(xn + pn)

+an

pn+1 = xn + pn − yn+1.

Then xn→ JA+B r .
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The resolvent of the sum of two monotone operators

Theorem (Bauschke/PLC, 2008)

Let (H, ||| · |||) be a real Hilbert space, and let A and B be maximal
monotone operators fromH to 2H. Let (an)n∈N and (bn)n∈N be
sequences inH such that∑

n∈N
|||an||| < +∞ and

∑
n∈N
|||bn||| < +∞.

Furthermore, let r ∈ ran(Id + A + B) and let (xn)n∈N be the
sequence generated by the following routine. y0 = r

p0 = 0
q0 = 0

and


xn = JB(yn + qn)+bn
qn+1 = yn + qn − xn
yn+1 = JA(xn + pn)+an
pn+1 = xn + pn − yn+1.

Then xn→ JA+B r .
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Proof outline

Note that qn+1 + pn + xn = yn + qn + pn and qn + pn = r − yn.

Hence r = yn + qn + pn = qn+1 + pn + xn.

Rewrite algorithm as

 y0 = r
q0 = 0
p0 = 0

and (∀n ∈ N)


xn = JB(r − pn) + bn
qn+1 = r − pn − xn
yn+1 = JA(r − qn+1) + an
pn+1 = r − qn+1 − yn+1.

Set u0 = −r and (∀n ∈ N) un = pn − r and vn = −qn+1.

Then vn − un = xn, vn − un+1 = yn+1, and{
vn = pn − r + xn = un + JB(−un) + bn

un+1 = pn+1 − r = −qn+1 − yn+1 = vn − JA(vn + r)− an.
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Set C : v 7→ A−1(v + r) and D = B∼ = −B−1(−·).

Then C−1 = −r + A, D∼ = B, JC = Id− JA(·+ r), and
JD = Id + JB ◦ (−Id).

Thus, u0 = −r and (∀n ∈ N)

⌊
vn = JDun + bn
un+1 = JCvn − an.

Using [Bauschke/PLC/Reich, 2005], get

r ∈ ran(Id + A + B)⇔ Fix (JCJD) 6= Ø.

Deduce from Martinet’s Lemma that there exists u ∈ Fix (JCJD)
such that

xn = vn − un = bn + JDun − un→ JDu − u.

Using [Bauschke/PLC/Reich, 2005], get

JDu − u = JC−1+D∼ 0 = JA+B r .

Underlying duality: 0 ∈ Cx + 1Dx ⇔ 0 ∈ C−1u + ( 1D)∼u.
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Lemma (Martinet, 1972)

Let T1 and T2 be firmly nonexpansive operators fromH toH such
that Fix (T1T2) 6= Ø, and let (e1,n) and (e2,n) be sequences inH such
that

∑
n∈N |||e1,n||| < +∞ and

∑
n∈N |||e2,n||| < +∞. Let (un)n∈N be

the sequence resulting from the iteration

u0 ∈H and (∀n ∈ N) un+1 = T1
(
T2un + e2,n

)
+ e1,n.

Then there exists u ∈ Fix (T1T2) such that un ⇀u. Moreover,
T2un − un→T2u − u.
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Remarks

In the case of normal cones, say A = NC and B = ND , then
JA = PC and JB = PD .

The new algorithm therefore extends the original Dykstra
algorithm.

... but the theorem does not capture the Boyle/Dykstra theorem
since JNC+ND 6= PC∩D !

In addition, how to handle m > 2 maximal monotone operators ?
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The resolvent of the sum of m monotone operators

Theorem

Let (Ai )1≤i≤m be maximal monotone from H to 2H. Set

A =
m∑

i=1

ωiAi , where {ωi}1≤i≤m ⊂ ]0,1[ and
m∑

i=1

ωi = 1.

For every i ∈ {1, . . . ,m}, let (ai,n)n∈N be a sequence in H such that∑
n∈N ‖ai,n‖ < +∞. Furthermore, let r ∈ ran(Id + A) and set

 x0 = r
For i = 1, . . . ,m⌊

zi,0 = x0

and (∀n ∈ N)


For i = 1, . . . ,m⌊

yi,n = JAi zi,n + ai,n

xn+1 =
∑m

i=1 ωiyi,n
For i = 1, . . . ,m⌊

zi,n+1 = xn+1 + zi,n − yi,n.

Then xn→ JAr .
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Proof outline

H = Hm with (x ,y) 7→
∑m

i=1 ωi〈xi | yi〉.

A : x 7→
m×

i=1
Aixi .

B = ND , where D =
{

(x , . . . , x) ∈H | x ∈ H
}

.

j : x 7→ (x , . . . , x).

JA : x 7→
(
JAi xi

)
1≤i≤m and JB = PD : x 7→ j

(∑m
i=1 ωixi

)
.

j(JAr) = JA+B j(r).

To construct JA+B j(r) use Theorem 8 with bn ≡ 0.

Since JB = PD , algorithm reduces to⌊
y0 = j(r)
p0 = 0 and (∀n ∈ N)

 xn = PD yn
yn+1 = JA(xn + pn) + an
pn+1 = xn + pn − yn+1.
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After reordering and introducing zn = xn + pn:

⌊
x0 = PD j(r)
z0 = x0

and (∀n ∈ N)

 yn = JAzn + an
xn+1 = PD yn
zn+1 = xn+1 + zn − yn.

Now set an = (ai,n)1≤i≤m, yn = (yi,n)1≤i≤m, and zn = (zi,n)1≤i≤m
to get (∀n ∈ N) xn = j(xn).

Conclude that

xn = j−1(xn)→ j−1(JA+B j(r)) = JAr .

P. L. Combettes Splitting methods for constructing the resolvent of a sum of maximal monotone operators



Int PartI DR2 Resol PartII m ops prox2 proxm

The proximity operator of the sum

Let (fi )1≤i≤m be functions in Γ0(H) such that
⋂m

i=1 domfi 6= Ø.

Set f =
∑m

i=1 ωi fi , where {ωi}1≤i≤m ⊂ ]0,1[ and
∑m

i=1 ωi = 1.

For every r ∈ H,

proxf r = argminx∈H f (x) +
1
2
‖r − x‖2

is uniquely defined.

Setting Ai = ∂fi in the theorem and assuming some CQ so that
∂f =

∑m
i=1 ωiAi , we can construct proxf r .
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The prox of the sum of two convex functions

Proposition [Bauschke/PLC/Reich, 2005]

Let (H, ||| · |||) be a real Hilbert space, and let ϕ and ψ be functions in
Γ0(H) such that

inf ϕ+ env(ψ) > −∞.

Set

u0 ∈H and (∀n ∈ N) vn = proxψun and un+1 = proxϕvn.

Then un ⇀u, where u ∈ argmin ϕ+ env(ψ), and proxψun −un→w ,
where w = proxϕ∗+ψ∗∨0 is the unique solution to the dual problem

inf ϕ∗ +ψ∗∨ +
1
2
||| · |||2.
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The prox of the sum of two convex functions

Theorem (Bauschke/PLC, 2008)

Let (H, ||| · |||) be a real Hilbert space, and let f and g be functions in
Γ0(H) such that domf ∩ domg 6= Ø. Furthermore, let r ∈H and let
(xn)n∈N be the sequence generated by the following routine. y0 = r

p0 = 0
q0 = 0

and


xn = proxg(yn + qn)
qn+1 = yn + qn − xn
yn+1 = proxf (xn + pn)
pn+1 = xn + pn − yn+1.

Then xn→proxf+g r .
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Proof highlights

Set ϕ : v 7→ f ∗(v + r)− 1
2‖r‖

2 and ψ = g∗∨.

Then proxϕv = v − proxf (v + r) and proxψv = v + proxg(−v).

Use Fenchel, some changes of variables, algebraic
manipulations, and the proposition on the dual asymptotic
behavior of the alternating prox algorithm.

Remark
When f = ιC and g = ιD we do recover the Boyle/Dykstra theorem.
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The prox of the sum of m convex functions

Proposition

Let (fi )1≤i≤m be functions in Γ0(H) such that
⋂m

i=1 domfi 6= Ø. Set

f =
m∑

i=1

ωi fi , where {ωi}1≤i≤m ⊂ ]0,1[ and
m∑

i=1

ωi = 1.

Furthermore, let r ∈ H and set x0 = r
For i = 1, . . . ,m⌊

zi,0 = x0

and (∀n ∈ N)


For i = 1, . . . ,m⌊

yi,n = proxfi zi,n

xn+1 =
∑m

i=1 ωiyi,n
For i = 1, . . . ,m⌊

zi,n+1 = xn+1 + zi,n − yi,n.

Then xn→proxf r .

Remark
The above result provides a strongly convergent, qualification-free
minimization algorithm for strongly convex problems.
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Projecting onto the intersection of convex sets
Corollary (Gaffke/Mathar, 1989)

Let (Ci )1≤i≤m be closed convex subsets of H such that
C =

⋂m
i=1 Ci 6= Ø. Take {ωi}1≤i≤m ⊂ ]0,1[ such that

∑m
i=1 ωi = 1.

Furthermore, let r ∈ H and set

 x0 = r
For i = 1, . . . ,m⌊

zi,0 = x0

and (∀n ∈ N)


For i = 1, . . . ,m⌊

yi,n = PCi zi,n

xn+1 =
∑m

i=1 ωiyi,n
For i = 1, . . . ,m⌊

zi,n+1 = xn+1 + zi,n − yi,n.

Then xn→PCr .

Remark (Lapidus, 1980)

Suppose that the sets (Ci )1≤i≤m are closed vector subspaces. Then
the update rule reduces to xn+1 =

∑m
i=1 ωiPCi xn. Hence,

(
∑m

i=1 ωiPCi )
n→PC .
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