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1. Introduction
The main objective of this talk is twofold:

We provide a general formula for the optimal set of a
relaxed minimization problem in terms of the approximate
minima of the data function.

We apply this result to derive explicit characterizations for
the subdifferential mapping of the supremum function of
an arbitrarily indexed family of convex functions,
exclusively in terms of the data functions.
Various applications to the ε-subdifferential calculus are
also given.
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Summary

1 Formula for the optimal set of the relaxed problem.
2 Subdifferential of the supremum function.
3 Particular cases:

a. Formula for affine functions.
b. Volle’s and Brøndsted’s formulae.

4 Calculus rules:

a. Subdifferential for the sum function.
b. Extension of Hiriart-Urruty–Phelps formula.
c. Chain rule under the Moreau–Rockafellar constraint

qualification.
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2. Notations and basic tools

X : (real) separated locally convex space (lcs, for short).

X� : dual space.
X and X� are paired in duality by the bilinear form

(x�, x) 2 X� �X 7! hx, x�i := x�(x)

θ : zero in all the involved spaces.

R := R[ f�∞,+∞g.
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Given A, B � X (or in X�), we consider the operations:

A+ B := fa+ b j a 2 A, b 2 Bg, A+∅ := ∅+A := ∅;

and, if ∅ 6= Λ � R we set

ΛA := fλa j λ 2 Λ, a 2 Ag, Λ∅ := ∅.

Furthermore, Λx := Λfxg, λA := fλgA and x+A := fxg+A.
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co A : convex hull of A,

cone A : conic hull of A,

aff A : affine hull of the set A,

int A : interior of A,

cl A and A : closure of A (w�–closure if A � X�).

We set coA := cl(co A) and coneA := cl(cone A).

ri A : topological relative interior of A (i.e., the interior of A in the
topology relative to aff A if aff A is closed, and the empty set
otherwise).

April 12-13, 2010, Sevilla WOFAO



Notations and basic tools
Optimal set formula for the relaxed problem

Subdifferential of the supremum function
Other calculus rules

co A : convex hull of A,

cone A : conic hull of A,

aff A : affine hull of the set A,

int A : interior of A,

cl A and A : closure of A (w�–closure if A � X�).

We set coA := cl(co A) and coneA := cl(cone A).

ri A : topological relative interior of A (i.e., the interior of A in the
topology relative to aff A if aff A is closed, and the empty set
otherwise).

April 12-13, 2010, Sevilla WOFAO



Notations and basic tools
Optimal set formula for the relaxed problem

Subdifferential of the supremum function
Other calculus rules

Associated with A 6= ∅ we consider the sets

A� := fx� 2 X� j hx, x�i � �1 8x 2 Ag ,
A� := � (cone A)� = fx� 2 X� j hx, x�i � 0 8x 2 Ag ,

A? := (�A�) \A� = fx� 2 X� j hx, x�i = 0 8x 2 Ag ,

i.e. the (one-sided) polar, the negative dual cone, and the
orthogonal subspace (or annihilator) of A, respectively.

By the bipolar theorem , we have

A�� = cone(co A).
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If A � X is convex and x 2 X, we define the normal cone to A at
x as

NA(x) :=
�
(A� x)� if x 2 A,
∅ if x 2 X nA.

If A 6= ∅ is convex and closed, A∞ represents its recession cone
defined as

A∞ := fy 2 X j x+ λy 2 X for some x 2 X and 8λ � 0g .

April 12-13, 2010, Sevilla WOFAO



Notations and basic tools
Optimal set formula for the relaxed problem

Subdifferential of the supremum function
Other calculus rules

If A � X is convex and x 2 X, we define the normal cone to A at
x as

NA(x) :=
�
(A� x)� if x 2 A,
∅ if x 2 X nA.

If A 6= ∅ is convex and closed, A∞ represents its recession cone
defined as

A∞ := fy 2 X j x+ λy 2 X for some x 2 X and 8λ � 0g .

April 12-13, 2010, Sevilla WOFAO



Notations and basic tools
Optimal set formula for the relaxed problem

Subdifferential of the supremum function
Other calculus rules

Given a function h : X �! R, its (effective) domain and epigraph
are defined by

dom h := fx 2 X j h(x) < +∞g,
epi h := f(x, α) 2 X�R j h(x) � αg.

h is proper if dom h 6= ∅ and h(x) > �∞ for all x 2 X. Then we
consider the graph of h which is defined by

gph h := f(x, h(x)) 2 X�R j x 2 dom hg.

h is convex if epi h is convex.
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The lower closure of h is the function cl h : X �! R defined by

(cl h)(x) := infft j (x, t) 2 cl(epi h)g.

We have:

epi (cl h) = cl (epi h). Then, cl h is the greatest lower
semicontinuous (lsc, in brief) function dominated by h; i.e.
cl h � h.

If h is convex, then cl h is also convex, and cl h does not take
the value �∞ iff h admits a continuous affine minorant.
Given h : X �! R, the lsc convex hull of h is the lsc convex
function coh : X �! R such that epi(coh) = co (epi h) .
Obviously coh � cl h.

Λ(X) : set of all the proper convex functions on X
Γ(X) : subset of Λ(X) consisting of the lsc functions.
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The Legendre-Fenchel conjugate of h is the lsc convex function
h� : X� �! R given by

h�(x�) := supfhx, x�i � h(x) j x 2 Xg.

We have h� = (cl h)� = (coh)�. Moreover, h� 2 Γ(X) iff
dom h 6= ∅ and h admits a continuous affine minorant.

The bi-conjugate of h is the function h�� : X �! R given by

h��(x) := supfhx, x�i � h�(x�) j x� 2 X�g.

We have

fh 2 R
X : h = h��g = Γ(X) [ f+∞gX [ f�∞gX.

Moreover, h�� � coh, and the equality holds if h admits a
continuous affine minorant.
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The support and the indicator functions of A 6= ∅ are defined as

σA(x�) : = supfha, x�i j a 2 Ag, for x� 2 X�, and

IA(x) : =

�
0 if x 2 A,
+∞ if x 2 X nA.

σA is sublinear, lsc, and satisfies σA = σcoA = I�coA
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Given h : X �! R and ε � 0 , the ε�subdifferential of h at a
point x 2 X such that h(x) 2 R is the w�–closed convex set

∂εh(x) := fx� 2 X� j h(y)� h(x) � hy� x, x�i � ε 8y 2 Xg.

If h(x) /2 R we set ∂εh(x) := ∅. In particular, for ε = 0 we get
∂h(x) := ∂0h(x), the subdifferential of h at x.
Given x 2 X and ε � 0 :
a) ∂h(x) = \ε>0∂εh(x),

b) 0 2 ∂εh(x), x 2 ε� argmin h.
c) If h is convex, then

∂εh(x) 6= ∅ 8ε > 0 () h is lsc at x.

d) If A is convex and x 2 A,

∂IA(x) = (cone(A� x))� = NA(x).
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3. Optimal set for the relaxed problem
Let h : X ! R. The relaxed problem associated with

(P) : minimize h(x) s.t. x 2 X

is classically defined as

(P 0) : minimize h��(x) s.t. x 2 X.

The optimal values of both problems coincide:

inf
X

h = inf
X

h�� =: m 2 R.

Our purpose here is to obtain the optimal set of (P 0) , i.e. argmin
h��, in terms of the approximate solutions of (P), i.e.
ε� argmin h.
For convenience we set ε� argmin h = ∅ for all ε � 0
whenever m /2 R.
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whenever m /2 R.
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Next we establish the main result in this section.

Theorem 1

For any function h : X ! R such that dom h� 6= ∅, one has

argmin h�� =
\
ε>0

x�2dom h�

co
�
(ε� argmin h) + fx�g�

�
.

If cone(dom h�) is w��closed or ri(cone(dom h�)) 6= ∅, then

argmin h�� =
\
ε>0

co
�
(ε� argmin h) + (dom h�)�

�
.

In particular, if cone(dom h�)) = X� , then

argmin h�� =
\
ε>0

co (ε� argmin h) .
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Now we proceed with a relevant application of Theorem 1 to
the subdifferential calculus.

Given a function h : X ! R and ε � 0, we represent by
Mεh : X� � X

Mεh = (∂εh)�1

the inverse multivalued mapping of the ε�subdifferential of h.
In other words, for any x� 2 X�,

(Mεh)(x�) = (∂εh)�1(x�) = fx 2 X : x� 2 ∂εh(x)g
= fx 2 X : h(x)� hx, x�i � �h�(x�) + εg
= ε� argmin (h(�)� h�, x�i) .
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We are now in position to state the following result:

Theorem 2

For any function h : X ! R such that dom h� 6= ∅, one has for all
x� 2 X�,

∂h�(x�) =
\
ε>0

u�2dom h�

co
�
(Mεh)(x�) + fu� � x�g�

�
.

If cone ((dom h�)� x�) is w��closed or
ri(cone((dom h�)� x�)) 6= ∅, then

∂h�(x�) =
\
ε>0

co ((Mεh)(x�) +Ndom h�(x�)) .
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Theorem 3

Given fft, t 2 Tg � R
X, T 6= ∅, consider the supremum function

f := supt2T ft. Assume that dom f 6= ∅ and that

f �� �
 

sup
t2T

ft

!��
= sup

t2T
f ��t .

Then, at every x 2 X, we have

∂f (x) =
\

ε>0, z2dom f

co

0@ [
t2Tε(x)

∂εft(x) + fz� xg�
1A ,

where Tε(x) := ft 2 T : ft(x) � f (x)� εg if f (x) 2 R and
Tε(x) = ∅ if f (x) /2 R.
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Theorem 3
If, moreover, cone co(dom f � x) is closed or
ri(cone co(dom f � x)) 6= ∅, then

∂f (x) =
\
ε>0

co

0@ [
t2Tε(x)

∂εft(x) +Ndom f (x)

1A .
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Theorem 4

Given h : X ! R and fCi, i 2 Ig, convex subsets of X� satisfying

dom h� �
[
i2I

Ci,

and
ri (cone(Ci \ dom h�)) 6= ∅, for all i 2 I,

one has

argmin h�� =
\

ε>0, i2I

co
�
(ε� argmin h) + (Ci \ dom h�)�

�
.

Remark: If we take fCi, i 2 Ig = ffx�g, x� 2 dom h�g, we get
Theorem 1.
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Corollary 1

For any function h : X ! R with dom h� 6= ∅, if

Fx� :=
�

L � X�
���� L is a finite-dimensional linear subspace

such that x� 2 L

�
,

one has for all x� 2 X�,

∂h�(x�) =
\

ε>0, L2Fx�

co ((Mεh)(x�) +NL\dom h�(x�)) .

Remember that (Mεh)(x�) = ε� argmin (h(�)� h�, x�i) .
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4. Subdifferential of the supremum function

Theorem 5 (HLV09)

Given nonempty family fft, t 2 Tg � R
X, consider the supremum

function f := supt2T ft, and assume that dom f 6= ∅ and

f �� = sup
t2T

f ��t . (CC)

Then, for every x 2 X,

∂f (x) =
\

ε>0, L2Fx
cl
�

co
�S

t2Tε(x) ∂εft(x)
�
+NL\dom f (x)

�
.
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The following lemma provides alternative characterizations of
Ndom f (z).

Lemma 1

Let T 6= ∅, fft, t 2 Tg � R
X, and f := supfft : t 2 Tg. Then, for

every x 2 dom f we have

x� 2 Ndom f (x)() (x�, hx�, xi) 2 [co ([t2T gph f �t )]∞
() (x�, hx�, zi) 2 [co ([t2T epi f �t )]∞
() (x�, hx�, zi) 2 (epi f �)∞

() (x�, hx�, zi) 2 epi(σdom f ).
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In the affine case our formula takes a simpler form:

Corollary 1

Assume that T 6= ∅ and f (x) := supfha�t , xi � βt j t 2 Tg, with
a�t 2 X� and βt 2 R. Then, for every x 2 X we have

∂f (x) =
T

L2Fx,ε>0
cl (cofa�t j t 2 Tε(x)g+ BL) ,

where

x� 2 BL , (x�, hx�, xi) 2
h
co
�
(L? � f0g) [ f(a�t , βt), t 2 Tg

�i
∞

.
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Corollary 2

Let fft : X ! R j t 2 Tg be a non-empty family of convex functions
and set f := supt2T ft. Assume that one of the following conditions
holds:
(1) - All the functions ft with t 2 T are lsc.
(2) - 9x0 2 dom f such that ft is continuous at x0, 8t 2 T.
(3) - T := f1, . . . , k, k+ 1g and 9x0 2 dom fk+1 \ (

Tk
i=1 dom fi)

such that f1, . . . , fk are continuous at x0.
(4) - X = Rn and dom f \ (\t2T ri(dom ft)) is nonempty.
Then, (CC) holds and for every x 2 X

∂f (x) =
\

L2Fx , ε>0

cl

 
co

 S
t2Tε(x)

∂εft(x)

!
+NL\dom f (x)

!
.
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The following result, due to Volle (see, e.g., [22]), is originally
established in the context of normed spaces.

Corollary 3

Let fft : X ! R j t 2 Tg be a non-empty family of convex functions,
and set f := supt2T ft. Assume that f is finite and continuous at
z 2 X. Then, we have

∂f (z) =
T

ε>0 co (
S

t2Tε(z) ∂εft(z)).

Proof. Because f is finite and continuous at z we have that
z 2 int(dom f ), and so Ndom f (z) = fθg. Further, as
z 2 \t2T int(dom ft), Condition (2) of Corollary 2 yields
cl f = supfcl ft j t 2 Tg, and so the conclusion follows.
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Using our approach we derive the following result which is
due to Brøndsted (e.g., [1]); see also [3, Proposition 7], where
such a formula is extended to families of infinitely many
convex functions defined on Rn.

Corollary 4

Consider the convex functions fi : X ! R for i = 1, . . . , k, and set
f := maxff1, . . . , fkg. Assume that

cl f = maxfcl f1, . . . , cl fkg.

Given z 2 X such that (cl f )(z) = (cl fi)(z) for i = 1, . . . , k, we have

∂f (z) =
T

ε>0
co
�

kS
i=1

∂εfi(z)
�

.
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4. Other calculus rules

X, Y (separated) real locally convex spaces
f : Y ! R, g : X ! R convex functions
A : X ! Y a continuous affine mapping

Ax = A0x+ b,

where A0 is the linear part of A and b 2 Y. We denote by A�0 the
adjoint operator of A0.
We show that our formula for the subdifferential of the
supremum function also gives calculus rules for other
operations, expressed by means of the convex function
g+ f �A.
The resulting formulas are not new, but our aim here is to
highlight the unifying character of Theorem 5.
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We derive a slight extension of Hiriart-Urruty –Phelps formula
[6] . This allows us to express ∂(g+ f �A) in terms of the
approximate subdifferentials of f and g.

Theorem 6
Under the current notation, assume that the following holds

cl(g+ f �A) = (cl g) + (cl f ) �A.

Then, for every z 2 X we have

∂(g+ f �A)(z) =
T

ε>0
cl (∂εg(z) +A�0∂εf (Az)) .
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Assuming that f and g are lsc in Theorem 3 we obtain the
following result of Hiriart-Urruty–Phelps:

Corollary 5

Let f , g, and A be as in Theorem 3. If f and g are lsc , then for every
z 2 X we have

∂(g+ f �A)(z) =
T

ε>0
cl (∂εg(z) +A�0∂εf (Az)) .
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Lemma 3

Let f : Y ! R and g : X ! R be convex functions and A : X ! Y
be a continuous affine mapping. Assume that f is finite and
continuous at Ax0 for some x0 2 (dom g) \A�1 (dom f ) . Then

cl(f �A+ g) = (cl f ) �A+ (cl g).

Corollary 6

([13], p. 47) Under the assumptions of Lemma 3 and denoting by A0
the linear part of A, we have, for every z 2 X,

∂(f �A+ g)(z) = A�0∂f (Az) + ∂g(z).
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