Some new results in convex subdifferential calculus

Marco A. López Cerdá

Alicante University

April 8, 2010

1. Introduction

The main objective of this talk is twofold:

• We provide a general formula for the optimal set of a relaxed minimization problem in terms of the approximate minima of the data function.

1. Introduction

The main objective of this talk is twofold:

- We provide a general formula for the optimal set of a relaxed minimization problem in terms of the approximate minima of the data function.
- We apply this result to derive explicit characterizations for the subdifferential mapping of the supremum function of an arbitrarily indexed family of convex functions, exclusively in terms of the data functions.

1. Introduction

The main objective of this talk is twofold:

- We provide a general formula for the optimal set of a relaxed minimization problem in terms of the approximate minima of the data function.
- We apply this result to derive explicit characterizations for the subdifferential mapping of the supremum function of an arbitrarily indexed family of convex functions, exclusively in terms of the data functions.
- Various applications to the ε-subdifferential calculus are also given.

1. Introduction

The main objective of this talk is twofold:

- We provide a general formula for the optimal set of a relaxed minimization problem in terms of the approximate minima of the data function.
- We apply this result to derive explicit characterizations for the subdifferential mapping of the supremum function of an arbitrarily indexed family of convex functions, exclusively in terms of the data functions.
- Various applications to the ε-subdifferential calculus are also given.

Optimal set formula for the relaxed problem Subdifferential of the supremum function Other calculus rules

Summary

• Formula for the optimal set of the *relaxed problem*.

- Formula for the optimal set of the *relaxed problem*.
- Subdifferential of the supremum function.

- Formula for the optimal set of the *relaxed problem*.
- Subdifferential of the supremum function.
- O Particular cases:

- Formula for the optimal set of the *relaxed problem*.
- Subdifferential of the supremum function.
- O Particular cases:
 - a. Formula for affine functions.
 - b. Volle's and Brøndsted's formulae.

- Formula for the optimal set of the *relaxed problem*.
- Subdifferential of the supremum function.
- O Particular cases:
 - a. Formula for affine functions.
 - b. Volle's and Brøndsted's formulae.
- Calculus rules:

- Formula for the optimal set of the *relaxed problem*.
- Subdifferential of the supremum function.
- O Particular cases:
 - a. Formula for affine functions.
 - b. Volle's and Brøndsted's formulae.
- Calculus rules:
 - a. Subdifferential for the sum function.
 - b. Extension of Hiriart-Urruty-Phelps formula.
 - c. Chain rule under the Moreau–Rockafellar constraint qualification.

2. Notations and basic tools

X : (real) separated locally convex space (lcs, for short).

2. Notations and basic tools

X : (real) separated locally convex space (lcs, for short).

 X^* : dual space.

X and X^* are paired in duality by the bilinear form

 $(x^*, x) \in X^* \times X \mapsto \langle x, x^* \rangle := x^*(x)$

2. Notations and basic tools

X : (real) separated locally convex space (lcs, for short).

X^{*} : dual space.

X and X^* are paired in duality by the bilinear form

 $(x^*, x) \in X^* \times X \mapsto \langle x, x^* \rangle := x^*(x)$

 θ : zero in all the involved spaces.

 $\overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty, +\infty\}.$

Given $A, B \subset X$ (or in X^*), we consider the operations:

Given $A, B \subset X$ (or in X^*), we consider the operations:

 $A + B := \{a + b \mid a \in A, b \in B\}, \quad A + \emptyset := \emptyset + A := \emptyset;$

and, if $\emptyset \neq \Lambda \subset \mathbb{R}$ we set

 $\Lambda A := \{ \lambda a \mid \lambda \in \Lambda, \ a \in A \}, \quad \Lambda \emptyset := \emptyset.$

Furthermore, $\Lambda x := \Lambda \{x\}$, $\lambda A := \{\lambda\}A$ and $x + A := \{x\} + A$.

coA: convex hull of A,

cone *A* : *conic hull* of *A*,

aff *A* : *affine hull* of the set *A*,

- co A: convex hull of A,
- **cone** *A* : *conic hull* of *A*,
- aff *A* : *affine hull* of the set *A*,
- int A : interior of A,
- cl *A* and \overline{A} : *closure* of *A* (*w*^{*}–*closure* if $A \subset X^*$).
- We set $\overline{co}A := cl(coA)$ and $\overline{cone}A := cl(coneA)$.

ri *A* : topological *relative interior* of *A* (i.e., the interior of *A* in the topology relative to aff *A* if aff *A* is closed, and the empty set otherwise).

Associated with $A \neq \emptyset$ we consider the sets

$$\begin{aligned} A^{\circ} &:= \left\{ x^* \in X^* \mid \langle x, x^* \rangle \ge -1 \; \forall x \in A \right\}, \\ A^{-} &:= -\left(\operatorname{cone} A \right)^{\circ} = \left\{ x^* \in X^* \mid \langle x, x^* \rangle \le 0 \; \forall x \in A \right\}, \\ A^{\perp} &:= \left(-A^{-} \right) \cap A^{-} = \left\{ x^* \in X^* \mid \langle x, x^* \rangle = 0 \; \forall x \in A \right\}, \end{aligned}$$

i.e. the (one-sided) *polar*, the *negative dual cone*, and the *orthogonal subspace* (or *annihilator*) of *A*, respectively.

Associated with $A \neq \emptyset$ we consider the sets

$$\begin{split} A^{\circ} &:= \left\{ x^* \in X^* \mid \langle x, x^* \rangle \geq -1 \; \forall x \in A \right\}, \\ A^{-} &:= -\left(\operatorname{cone} A \right)^{\circ} = \left\{ x^* \in X^* \mid \langle x, x^* \rangle \leq 0 \; \forall x \in A \right\}, \\ A^{\perp} &:= \left(-A^{-} \right) \cap A^{-} = \left\{ x^* \in X^* \mid \langle x, x^* \rangle = 0 \; \forall x \in A \right\}, \end{split}$$

i.e. the (one-sided) *polar*, the *negative dual cone*, and the *orthogonal subspace* (or *annihilator*) of *A*, respectively.

By the *bipolar theorem*, we have

$$A^{--} = \overline{\operatorname{cone}}(\operatorname{co} A).$$

If $A \subset X$ is convex and $x \in X$, we define the *normal cone* to A at x as

$$\mathbf{N}_A(x) := \begin{cases} (A-x)^- & \text{if } x \in A, \\ \emptyset & \text{if } x \in X \setminus A. \end{cases}$$

If $A \subset X$ is convex and $x \in X$, we define the *normal cone* to A at x as

$$\mathbf{N}_A(x) := \begin{cases} (A-x)^- & \text{if } x \in A, \\ \emptyset & \text{if } x \in X \setminus A. \end{cases}$$

If $A \neq \emptyset$ is convex and closed, A_{∞} represents its *recession cone* defined as

 $A_{\infty} := \{ y \in X \mid x + \lambda y \in X \text{ for some } x \in X \text{ and } \forall \lambda \ge 0 \}.$

Given a function $h : X \longrightarrow \mathbb{R}$, its (*effective*) *domain* and *epigraph* are defined by

dom $h := \{x \in X \mid h(x) < +\infty\},$ epi $h := \{(x, \alpha) \in X \times \mathbb{R} \mid h(x) \le \alpha\}.$

Given a function $h : X \longrightarrow \mathbb{R}$, its (*effective*) *domain* and *epigraph* are defined by

dom $h := \{x \in X \mid h(x) < +\infty\},\$ epi $h := \{(x, \alpha) \in X \times \mathbb{R} \mid h(x) \le \alpha\}.$

h is *proper* if dom $h \neq \emptyset$ and $h(x) > -\infty$ for all $x \in X$. Then we consider the *graph* of *h* which is defined by

 $gph h := \{(x, h(x)) \in X \times \mathbb{R} \mid x \in \operatorname{dom} h\}.$

Given a function $h : X \longrightarrow \mathbb{R}$, its (*effective*) *domain* and *epigraph* are defined by

dom $h := \{x \in X \mid h(x) < +\infty\},\$ epi $h := \{(x, \alpha) \in X \times \mathbb{R} \mid h(x) \le \alpha\}.$

h is *proper* if dom $h \neq \emptyset$ and $h(x) > -\infty$ for all $x \in X$. Then we consider the *graph* of *h* which is defined by

 $gph h := \{(x, h(x)) \in X \times \mathbb{R} \mid x \in \operatorname{dom} h\}.$

h is *convex* if epi*h* is convex.

The *lower closure* of *h* is the function $\operatorname{cl} h : X \longrightarrow \overline{\mathbb{R}}$ defined by

$(\operatorname{cl} h)(x) := \inf\{t \mid (x,t) \in \operatorname{cl}(\operatorname{epi} h)\}.$

We have:

epi (cl h) = cl (epi h). Then, cl h is the *greatest* lower semicontinuous (lsc, in brief) function dominated by h; i.e. cl h ≤ h.

The *lower closure* of *h* is the function $\operatorname{cl} h : X \longrightarrow \overline{\mathbb{R}}$ defined by

$(\operatorname{cl} h)(x) := \inf\{t \mid (x,t) \in \operatorname{cl}(\operatorname{epi} h)\}.$

We have:

- epi (cl h) = cl (epi h). Then, cl h is the *greatest* lower semicontinuous (lsc, in brief) function dominated by h; i.e. cl h ≤ h.
- If *h* is convex, then cl *h* is also convex, and cl *h* does not take the value −∞ iff *h* admits a continuous affine minorant.

The *lower closure* of *h* is the function $\operatorname{cl} h : X \longrightarrow \overline{\mathbb{R}}$ defined by

$(\operatorname{cl} h)(x) := \inf\{t \mid (x,t) \in \operatorname{cl}(\operatorname{epi} h)\}.$

We have:

- epi (cl h) = cl (epi h). Then, cl h is the *greatest* lower semicontinuous (lsc, in brief) function dominated by h; i.e. cl h ≤ h.
- If *h* is convex, then cl *h* is also convex, and cl *h* does not take the value −∞ iff *h* admits a continuous affine minorant.
- Given $h : X \longrightarrow \overline{\mathbb{R}}$, the *lsc convex hull* of *h* is the lsc convex function $\overline{\operatorname{coh}} : X \longrightarrow \overline{\mathbb{R}}$ such that $\operatorname{epi}(\overline{\operatorname{coh}}) = \overline{\operatorname{co}}(\operatorname{epi} h)$.
- Obviously $\overline{co}h \leq clh$.

The *lower closure* of *h* is the function $\operatorname{cl} h : X \longrightarrow \overline{\mathbb{R}}$ defined by

$(\mathbf{cl}\,h)(x) := \inf\{t \mid (x,t) \in \mathbf{cl}(\operatorname{epi} h)\}.$

We have:

- epi (cl h) = cl (epi h). Then, cl h is the *greatest* lower semicontinuous (lsc, in brief) function dominated by h; i.e. cl h ≤ h.
- If *h* is convex, then cl *h* is also convex, and cl *h* does not take the value −∞ iff *h* admits a continuous affine minorant.
- Given $h : X \longrightarrow \overline{\mathbb{R}}$, the *lsc convex hull* of *h* is the lsc convex function $\overline{\operatorname{coh}} : X \longrightarrow \overline{\mathbb{R}}$ such that $\operatorname{epi}(\overline{\operatorname{coh}}) = \overline{\operatorname{co}}(\operatorname{epi} h)$.
- Obviously $\overline{\operatorname{co}}h \leq \operatorname{cl} h$.

Λ(X) : set of all the proper convex functions on *X* Γ(X) : subset of Λ(X) consisting of the lsc functions.

The *Legendre-Fenchel conjugate* of *h* is the lsc convex function $h^*: X^* \longrightarrow \overline{\mathbb{R}}$ given by

$$h^*(x^*) := \sup\{\langle x, x^* \rangle - h(x) \mid x \in X\}.$$

We have $h^* = (\operatorname{cl} h)^* = (\overline{\operatorname{co}} h)^*$. Moreover, $h^* \in \Gamma(X)$ iff dom $h \neq \emptyset$ and h admits a continuous affine minorant.

The *Legendre-Fenchel conjugate* of *h* is the lsc convex function $h^*: X^* \longrightarrow \overline{\mathbb{R}}$ given by

$$h^*(x^*) := \sup\{\langle x, x^* \rangle - h(x) \mid x \in X\}.$$

We have $h^* = (\operatorname{cl} h)^* = (\overline{\operatorname{co}} h)^*$. Moreover, $h^* \in \Gamma(X)$ iff dom $h \neq \emptyset$ and h admits a continuous affine minorant.

The *bi-conjugate* of *h* is the function $h^{**} : X \longrightarrow \overline{\mathbb{R}}$ given by

$$h^{**}(x) := \sup\{\langle x, x^* \rangle - h^*(x^*) \mid x^* \in X^*\}.$$

We have

$$\{h \in \overline{\mathbb{R}}^X : h = h^{**}\} = \Gamma(X) \cup \{+\infty\}^X \cup \{-\infty\}^X.$$

Moreover, $h^{**} \leq \overline{coh}$, and the equality holds if *h* admits a continuous affine minorant.

The *support* and the *indicator* functions of $A \neq \emptyset$ are defined as

$$\sigma_A(x^*) := \sup\{\langle a, x^* \rangle \mid a \in A\}, \text{ for } x^* \in X^*, \text{ and} \\ \mathbf{I}_A(x) := \begin{cases} 0 & \text{if } x \in A, \\ +\infty & \text{if } x \in X \setminus A. \end{cases}$$

The *support* and the *indicator* functions of $A \neq \emptyset$ are defined as

$$\sigma_A(x^*) := \sup\{\langle a, x^* \rangle \mid a \in A\}, \text{ for } x^* \in X^*, \text{ and} \\ \mathbf{I}_A(x) := \begin{cases} 0 & \text{if } x \in A, \\ +\infty & \text{if } x \in X \setminus A. \end{cases}$$

 σ_A is sublinear, lsc, and satisfies $\sigma_A = \sigma_{\overline{co}A} = I^*_{\overline{co}A}$

The *support* and the *indicator* functions of $A \neq \emptyset$ are defined as

$$\sigma_A(x^*) := \sup\{\langle a, x^* \rangle \mid a \in A\}, \text{ for } x^* \in X^*, \text{ and} \\ \mathbf{I}_A(x) := \begin{cases} 0 & \text{if } x \in A, \\ +\infty & \text{if } x \in X \setminus A. \end{cases}$$

 σ_A is sublinear, lsc, and satisfies $\sigma_A = \sigma_{\overline{co}A} = I^*_{\overline{co}A}$

Given $h : X \longrightarrow \mathbb{R}$ and $\varepsilon \ge 0$, the ε -subdifferential of h at a point $x \in X$ such that $h(x) \in \mathbb{R}$ is the w^* -closed convex set

 $\partial_{\varepsilon}h(x) := \{x^* \in X^* \mid h(y) - h(x) \ge \langle y - x, x^* \rangle - \varepsilon \; \forall y \in X\}.$

If $h(x) \notin \mathbb{R}$ we set $\partial_{\varepsilon}h(x) := \emptyset$. In particular, for $\varepsilon = 0$ we get $\partial h(x) := \partial_0 h(x)$, the *subdifferential* of *h* at *x*. Given $x \in X$ and $\varepsilon \ge 0$:

a) $\partial h(x) = \cap_{\varepsilon > 0} \partial_{\varepsilon} h(x)$,

Given $h : X \longrightarrow \mathbb{R}$ and $\varepsilon \ge 0$, the ε -subdifferential of h at a point $x \in X$ such that $h(x) \in \mathbb{R}$ is the w^* -closed convex set

 $\partial_{\varepsilon}h(x) := \{x^* \in X^* \mid h(y) - h(x) \ge \langle y - x, x^* \rangle - \varepsilon \ \forall y \in X\}.$

If $h(x) \notin \mathbb{R}$ we set $\partial_{\varepsilon}h(x) := \emptyset$. In particular, for $\varepsilon = 0$ we get $\partial h(x) := \partial_0 h(x)$, the *subdifferential* of *h* at *x*. Given $x \in X$ and $\varepsilon \ge 0$: a) $\partial h(x) = \bigcap_{\varepsilon > 0} \partial_{\varepsilon}h(x)$, b) $0 \in \partial_{\varepsilon}h(x) \Leftrightarrow x \in \varepsilon$ – argmin *h*.

Given $h : X \longrightarrow \mathbb{R}$ and $\varepsilon \ge 0$, the ε -subdifferential of h at a point $x \in X$ such that $h(x) \in \mathbb{R}$ is the w^* -closed convex set

 $\partial_{\varepsilon}h(x) := \{x^* \in X^* \mid h(y) - h(x) \ge \langle y - x, x^* \rangle - \varepsilon \ \forall y \in X\}.$

If $h(x) \notin \mathbb{R}$ we set $\partial_{\varepsilon}h(x) := \emptyset$. In particular, for $\varepsilon = 0$ we get $\partial h(x) := \partial_0 h(x)$, the *subdifferential* of *h* at *x*. Given $x \in X$ and $\varepsilon \ge 0$: a) $\partial h(x) = \bigcap_{\varepsilon > 0} \partial_{\varepsilon}h(x)$, b) $0 \in \partial_{\varepsilon}h(x) \Leftrightarrow x \in \varepsilon$ – argmin *h*. c) If *h* is convex, then

$$\partial_{\varepsilon}h(x) \neq \emptyset \ \forall \varepsilon > 0 \iff h \text{ is lsc at } x.$$

d) If *A* is convex and $x \in A$,

$$\partial \mathbf{I}_A(x) = (\operatorname{cone}(A - x))^- = \mathbf{N}_A(x).$$

3. Optimal set for the *relaxed problem* Let $h : X \to \overline{\mathbb{R}}$. The *relaxed problem* associated with $(\mathcal{P}) :$ minimize h(x) s.t. $x \in X$

3. Optimal set for the *relaxed problem* Let $h : X \to \overline{\mathbb{R}}$. The *relaxed problem* associated with $(\mathcal{P}) : \text{minimize } h(x) \text{ s.t. } x \in X$ is classically defined as

is classically defined as

 (\mathcal{P}') : minimize $h^{**}(x)$ s.t. $x \in X$.

3. Optimal set for the *relaxed problem* Let $h : X \to \overline{\mathbb{R}}$. The *relaxed problem* associated with $(\mathcal{P}) :$ minimize h(x) s.t. $x \in X$ is classically defined as

 (\mathcal{P}') : minimize $h^{**}(x)$ s.t. $x \in X$.

The optimal values of both problems coincide:

 $\inf_X h = \inf_X h^{**} =: m \in \overline{\mathbb{R}}.$

3. Optimal set for the *relaxed problem* Let $h: X \to \overline{\mathbb{R}}$. The *relaxed problem* associated with $(\mathcal{P}):$ minimize h(x) s.t. $x \in X$ is classically defined as

is classically defined as

 (\mathcal{P}') : minimize $h^{**}(x)$ s.t. $x \in X$.

The optimal values of both problems coincide:

 $\inf_X h = \inf_X h^{**} =: m \in \overline{\mathbb{R}}.$

Our purpose here is to obtain the *optimal set* of (\mathcal{P}') , i.e. argmin h^{**} , in terms of the approximate solutions of (\mathcal{P}) , i.e. ε – argmin h.

3. Optimal set for the *relaxed problem* Let $h : X \to \overline{\mathbb{R}}$. The *relaxed problem* associated with $(\mathcal{P}) :$ minimize h(x) s.t. $x \in X$

is classically defined as

 (\mathcal{P}') : minimize $h^{**}(x)$ s.t. $x \in X$.

The optimal values of both problems coincide:

```
\inf_X h = \inf_X h^{**} =: m \in \overline{\mathbb{R}}.
```

Our purpose here is to obtain the *optimal set* of (\mathcal{P}') , i.e. argmin h^{**} , in terms of the approximate solutions of (\mathcal{P}) , i.e. ε – argmin h. For convenience we set ε – argmin $h = \emptyset$ for all $\varepsilon \ge 0$ whenever $m \notin \mathbb{R}$.

Next we establish the main result in this section.

Next we establish the main result in this section.

Theorem 1

For any function $h : X \to \overline{\mathbb{R}}$ *such that* dom $h^* \neq \emptyset$ *, one has*

argmin
$$h^{**} = \bigcap_{\substack{\varepsilon > 0 \\ x^* \in \operatorname{dom} h^*}} \overline{\operatorname{co}} \left((\varepsilon - \operatorname{argmin} h) + \{x^*\}^- \right).$$

If cone(dom h^*) *is* w^* -*closed or* ri(cone(dom h^*)) $\neq \emptyset$, *then*

$$\operatorname{argmin} h^{**} = \bigcap_{\varepsilon > 0} \overline{\operatorname{co}} \left((\varepsilon - \operatorname{argmin} h) + (\operatorname{dom} h^*)^{-} \right).$$

In particular, if $cone(dom h^*)) = X^*$, then

argmin
$$h^{**} = \bigcap_{\varepsilon > 0} \overline{\operatorname{co}} (\varepsilon - \operatorname{argmin} h).$$

Now we proceed with a relevant application of Theorem 1 to the subdifferential calculus.

Now we proceed with a relevant application of Theorem 1 to the subdifferential calculus.

Given a function $h : X \to \mathbb{R}$ and $\varepsilon \ge 0$, we represent by $M_{\varepsilon}h : X^* \rightrightarrows X$

 $M_{\varepsilon}h = (\partial_{\varepsilon}h)^{-1}$

the inverse multivalued mapping of the ε -subdifferential of *h*.

Now we proceed with a relevant application of Theorem 1 to the subdifferential calculus.

Given a function $h : X \to \overline{\mathbb{R}}$ and $\varepsilon \ge 0$, we represent by $M_{\varepsilon}h : X^* \Longrightarrow X$

 $M_{\varepsilon}h = (\partial_{\varepsilon}h)^{-1}$

the inverse multivalued mapping of the ε -subdifferential of *h*. In other words, for any $x^* \in X^*$,

$$\begin{aligned} (M_{\varepsilon}h)(x^*) &= (\partial_{\varepsilon}h)^{-1}(x^*) = \{x \in X : x^* \in \partial_{\varepsilon}h(x)\} \\ &= \{x \in X : h(x) - \langle x, x^* \rangle \le -h^*(x^*) + \varepsilon\} \\ &= \varepsilon - \operatorname{argmin} (h(\cdot) - \langle \cdot, x^* \rangle). \end{aligned}$$

We are now in position to state the following result:

We are now in position to state the following result:

Theorem 2

For any function $h : X \to \mathbb{R}$ such that dom $h^* \neq \emptyset$, one has for all $x^* \in X^*$,

$$\frac{\partial h^*(x^*)}{u^* \in \mathrm{dom} \, h^*} = \bigcap_{\substack{\varepsilon > 0 \\ u^* \in \mathrm{dom} \, h^*}} \overline{\mathrm{co}}\left((M_\varepsilon h)(x^*) + \{u^* - x^*\}^- \right).$$

If cone $((\operatorname{dom} h^*) - x^*)$ is w^* -closed or ri(cone $((\operatorname{dom} h^*) - x^*)) \neq \emptyset$, then

$$\partial h^*(x^*) = igcap_{arepsilon>0} \overline{\operatorname{co}}\left((M_arepsilon h)(x^*) + \operatorname{N}_{\operatorname{dom} h^*}(x^*)
ight).$$

Theorem 3

Given $\{f_t, t \in T\} \subset \overline{\mathbb{R}}^X$, $T \neq \emptyset$, consider the supremum function $f := \sup_{t \in T} f_t$. Assume that dom $f \neq \emptyset$ and that

$$f^{**} \equiv \left(\sup_{t \in T} f_t\right)^{**} = \sup_{t \in T} f_t^{**}.$$

Then, at every $x \in X$ *, we have*

$$\partial f(x) = \bigcap_{\varepsilon > 0, \ z \in \operatorname{dom} f} \overline{\operatorname{co}} \left(\bigcup_{t \in T_{\varepsilon}(x)} \partial_{\varepsilon} f_t(x) + \{z - x\}^- \right).$$

where $T_{\varepsilon}(x) := \{t \in T : f_t(x) \ge f(x) - \varepsilon\}$ if $f(x) \in \mathbb{R}$ and $T_{\varepsilon}(x) = \emptyset$ if $f(x) \notin \mathbb{R}$.

Theorem 3

If, moreover, $\operatorname{cone} \operatorname{co}(\operatorname{dom} f - x)$ *is closed or* $\operatorname{ri}(\operatorname{cone} \operatorname{co}(\operatorname{dom} f - x)) \neq \emptyset$, *then*

$$\partial f(x) = \bigcap_{\varepsilon > 0} \overline{\operatorname{co}} \left(\bigcup_{t \in T_{\varepsilon}(x)} \partial_{\varepsilon} f_t(x) + \mathcal{N}_{\operatorname{dom} f}(x) \right)$$

Theorem 4

Given $h: X \to \overline{\mathbb{R}}$ *and* $\{C_i, i \in I\}$ *, convex subsets of* X^* *satisfying*

dom $h^* \subseteq \bigcup_{i\in I} C_i$,

and

 $\operatorname{ri}(\operatorname{cone}(C_i \cap \operatorname{dom} h^*)) \neq \emptyset$, for all $i \in I$,

one has

 $\operatorname{argmin} h^{**} = \bigcap_{\varepsilon > 0, \ i \in I} \overline{\operatorname{co}} \left((\varepsilon - \operatorname{argmin} h) + (C_i \cap \operatorname{dom} h^*)^- \right).$

Remark: If we take $\{C_i, i \in I\} = \{\{x^*\}, x^* \in \text{dom } h^*\}$, we get Theorem 1.

Corollary 1

For any function $h : X \to \overline{\mathbb{R}}$ with dom $h^* \neq \emptyset$, if

$$\mathcal{F}_{x^*} := \left\{ L \subset X^* \; \middle| \; \begin{array}{c} L \text{ is a finite-dimensional linear subspace} \\ \text{such that } x^* \in L \end{array} \right\}$$

one has for all $x^* \in X^*$,

 $\partial h^*(x^*) = \bigcap_{\varepsilon > 0, \, L \in \mathcal{F}_{x^*}} \overline{\operatorname{co}}\left((M_{\varepsilon}h)(x^*) + N_{L \cap \operatorname{dom} h^*}(x^*) \right).$

Remember that $(M_{\varepsilon}h)(x^*) = \varepsilon - \operatorname{argmin}(h(\cdot) - \langle \cdot, x^* \rangle)$.

4. Subdifferential of the supremum function

Theorem 5 (HLV09)

Given nonempty family $\{f_t, t \in T\} \subset \overline{\mathbb{R}}^X$, consider the supremum function $f := \sup_{t \in T} f_t$, and assume that dom $f \neq \emptyset$ and

$$f^{**} = \sup_{t \in T} f_t^{**}.$$
 (CC)

Then, for every $x \in X$ *,*

$$\partial f(x) = \bigcap_{\varepsilon > 0, \ L \in \mathcal{F}_x} \operatorname{cl}\left(\operatorname{co}\left(\bigcup_{t \in T_{\varepsilon}(x)} \partial_{\varepsilon} f_t(x)\right) + \operatorname{N}_{L \cap \operatorname{dom} f}(x)\right).$$

The following lemma provides alternative characterizations of $N_{\text{dom}f}(z)$.

Lemma 1

Let $T \neq \emptyset$, $\{f_t, t \in T\} \subset \overline{\mathbb{R}}^X$, and $f := \sup\{f_t : t \in T\}$. Then, for every $x \in \text{dom } f$ we have

$$x^* \in \mathbb{N}_{\operatorname{dom} f}(x) \iff (x^*, \langle x^*, x \rangle) \in [\overline{\operatorname{co}} (\cup_{t \in T} \operatorname{gph} f_t^*)]_{\infty}$$
$$\iff (x^*, \langle x^*, z \rangle) \in [\overline{\operatorname{co}} (\cup_{t \in T} \operatorname{epi} f_t^*)]_{\infty}$$
$$\iff (x^*, \langle x^*, z \rangle) \in (\operatorname{epi} f^*)_{\infty}$$
$$\iff (x^*, \langle x^*, z \rangle) \in \operatorname{epi}(\sigma_{\operatorname{dom} f}).$$

In the affine case our formula takes a simpler form:

Corollary 1

Assume that $T \neq \emptyset$ and $f(x) := \sup\{\langle a_t^*, x \rangle - \beta_t \mid t \in T\}$, with $a_t^* \in X^*$ and $\beta_t \in \mathbb{R}$. Then, for every $x \in X$ we have

$$\partial f(x) = \bigcap_{L \in \mathcal{F}_{x,\varepsilon} > 0} \operatorname{cl}\left(\operatorname{co}\{a_t^* \mid t \in T_{\varepsilon}(x)\} + B_L\right),$$

where

$$x^* \in B_L \Leftrightarrow (x^*, \langle x^*, x \rangle) \in \left[\overline{\operatorname{co}} \left((L^{\perp} \times \{0\}) \cup \{(a_t^*, \beta_t), t \in T\} \right) \right]_{\infty}$$

Corollary 2

Let $\{f_t : X \to \overline{\mathbb{R}} \mid t \in T\}$ be a non-empty family of convex functions and set $f := \sup_{t \in T} f_t$. Assume that one of the following conditions holds:

(1) - All the functions f_t with $t \in T$ are lsc. (2) - $\exists x_0 \in \text{dom} f$ such that f_t is continuous at $x_0, \forall t \in T$. (3) - $T := \{1, ..., k, k+1\}$ and $\exists x_0 \in \text{dom} f_{k+1} \cap (\bigcap_{i=1}^k \text{dom} f_i)$ such that $f_1, ..., f_k$ are continuous at x_0 . (4) - $X = \mathbb{R}^n$ and $\text{dom} f \cap (\bigcap_{t \in T} \text{ri}(\text{dom} f_t))$ is nonempty. Then, (CC) holds and for every $x \in X$

$$\partial f(x) = \bigcap_{L \in \mathcal{F}_{x, \varepsilon > 0}} \operatorname{cl}\left(\operatorname{co}\left(\bigcup_{t \in T_{\varepsilon}(x)} \partial_{\varepsilon} f_t(x)\right) + \operatorname{N}_{L \cap \operatorname{dom} f}(x)\right).$$

The following result, due to Volle (see, e.g., [22]), is originally established in the context of normed spaces.

Corollary 3

Let $\{f_t : X \to \overline{\mathbb{R}} \mid t \in T\}$ be a non-empty family of convex functions, and set $f := \sup_{t \in T} f_t$. Assume that f is finite and continuous at $z \in X$. Then, we have

$$\partial f(z) = \bigcap_{\varepsilon > 0} \overline{\operatorname{co}} \left(\bigcup_{t \in T_{\varepsilon}(z)} \partial_{\varepsilon} f_t(z) \right).$$

Proof. Because *f* is finite and continuous at *z* we have that $z \in int(dom f)$, and so $N_{dom f}(z) = \{\theta\}$. Further, as $z \in \bigcap_{t \in T} int(dom f_t)$, Condition (2) of Corollary 2 yields $clf = sup\{clf_t \mid t \in T\}$, and so the conclusion follows.

Using our approach we derive the following result which is due to Brøndsted (e.g., [1]); see also [3, Proposition 7], where such a formula is extended to families of infinitely many convex functions defined on \mathbb{R}^n .

Corollary 4

Consider the convex functions $f_i : X \to \overline{\mathbb{R}}$ for i = 1, ..., k, and set $f := \max\{f_1, ..., f_k\}$. Assume that

 $\mathrm{cl}f = \max{\mathrm{cl}f_1,\ldots,\mathrm{cl}f_k}.$

Given $z \in X$ such that $(clf)(z) = (clf_i)(z)$ for i = 1, ..., k, we have

$$\partial f(z) = \bigcap_{\varepsilon > 0} \overline{\operatorname{co}} \left(\bigcup_{i=1}^k \partial_{\varepsilon} f_i(z) \right).$$

4. Other calculus rules

- *X*, *Y* (separated) real locally convex spaces
- $f: Y \to \overline{\mathbb{R}}, g: X \to \overline{\mathbb{R}}$ convex functions
- $A: X \to Y$ a continuous affine mapping

 $Ax = A_0x + b,$

where A_0 is the linear part of A and $b \in Y$. We denote by A_0^* the adjoint operator of A_0 .

We show that our formula for the subdifferential of the supremum function also gives calculus rules for other operations, expressed by means of the convex function $g + f \circ A$.

The resulting formulas are not new, but our aim here is to highlight the unifying character of Theorem 5.

We derive a slight extension of Hiriart-Urruty –Phelps formula [6]. This allows us to express $\partial(g + f \circ A)$ in terms of the approximate subdifferentials of f and g.

Theorem 6

Under the current notation, assume that the following holds

$$\operatorname{cl}(g+f\circ A) = (\operatorname{cl} g) + (\operatorname{cl} f) \circ A.$$

Then, for every $z \in X$ *we have*

 $\partial(g+f\circ A)(z) = \bigcap_{\varepsilon>0} \operatorname{cl}\left(\partial_{\varepsilon}g(z) + A_0^*\partial_{\varepsilon}f(Az)\right).$

Assuming that f and g are lsc in Theorem 3 we obtain the following result of Hiriart-Urruty–Phelps:

Corollary 5

Let f, g, and A be as in Theorem 3. If f and g are lsc, then for every $z \in X$ we have

 $\partial(g+f\circ A)(z) = \bigcap_{\varepsilon>0} \operatorname{cl}\left(\partial_{\varepsilon}g(z) + A_0^*\partial_{\varepsilon}f(Az)\right).$

Lemma 3

Let $f : Y \to \overline{\mathbb{R}}$ and $g : X \to \overline{\mathbb{R}}$ be convex functions and $A : X \to Y$ be a continuous affine mapping. Assume that f is finite and continuous at Ax_0 for some $x_0 \in (\operatorname{dom} g) \cap A^{-1}(\operatorname{dom} f)$. Then

 $\operatorname{cl}(f \circ A + g) = (\operatorname{cl} f) \circ A + (\operatorname{cl} g).$

Corollary 6

([13], p. 47) Under the assumptions of Lemma 3 and denoting by A_0 the linear part of A, we have, for every $z \in X$,

 $\partial (f \circ A + g)(z) = A_0^* \partial f(Az) + \partial g(z).$

References

- [1] A. Brøndsted: On the subdifferential of the supremum of two convex functions, *Math. Scand.*, **31** (1972), 225–230.
- [2] A. Hantoute: Subdifferential set of the supremum of lower semi-continuous convex functions and the conical hull property, *Top*, **14** (2006), 355–374.
- [3] A. Hantoute, M.A. López: A complete characterization of the subdifferential set of the supremum of an arbitrary family of convex functions, *J. Convex Anal.*, **15** (2008), 831-858.
- [4] A. Hantoute, M.A. López, C. Zălinescu: Subdifferential calculus rules in convex analysis: A unifying approach via pointwise supremum functions, *SIAM J. Optim.* 19 (2008), 863-882.

- [5] J.-B. Hiriart-Urruty, R.R. Phelps: Subdifferential calculus using ε-subdifferentials, *J. Funct. Anal.*, **118** (1993), 154–166.
- [6] J.-B. Hiriart-Urruty, M. Moussaoui, A. Seeger, M. Volle: Subdifferential calculus without qualification conditions, using approximate subdifferentials: A survey, *Nonlinear Anal.*, 24 (1995), 1727–1754.
- [7] A.D. Ioffe, V.L. Levin: Subdifferentials of convex functions, *Trudy Moskov Mat. Obshch*, 26 (1972) 3–73 (Russian).
- [8] A.D. Ioffe, V.H. Tikhomirov: *Theory of Extremal Problems*, Studies in Mathematics and its Applications, Vol. 6, North-Holland, Amsterdam, 1979.
- [9] F. Jules, M. Lassonde: Formulas for subdifferentials of sums of convex functions, J. Convex Anal., 9 (2002), 519–533.

- [10] V.L. Levin: An application of Helly's theorem in convex programming, problems of best approximation and related questions. *Mat. Sb., Nov. Ser.* **79**(121) (1969), 250–263. English transl.: Math. USSR, Sb. 8, 235-247.
- [11] J.-J. Moreau: *Fonctionnelles convexes*, Rome: Instituto Poligrafico e Zecca dello Stato, 2003.
- [12] J.-P. Penot: Subdifferential calculus without qualification assumptions, *J. Convex Anal.*, **3** (1996), 207–219.
- [13] R.R. Phelps: *Convex functions, monotone operators and differentiability,* 2nd ed., Lecture Notes in Mathematics, Vol 1364, Springer-Verlag, Berlin (1993).

- [14] B.N. Pschenichnyi: Convex programming in a normalized space, *Kibernetika*, 5 (1965), 46–54 (Russian); translated as *Cybernetics* 1 (1965) no. 5, 46–57 (1966).
- [15] R.T. Rockafellar: Directionally Lipschitzian functions and subdifferential calculus, *Proc. London Math. Soc.*, 39 (1979), 331–355.
- [16] R.T. Rockafellar: *Convex Analysis*, Princeton University Press, Princeton, N.J., 1970.
- [17] R.T. Rockafellar: *Conjugate Duality and Optimization*, in: CBMS Regional Conference Series in Applied Mathematics 16, SIAM VI, Philadelphia, Pa. (1974).
- [18] V.N. Solov'ev: The subdifferential and the directional derivatives of the maximum of a family of convex functions, *Izvestiya RAN: Ser. Mat.*, **65** (2001), 107–132.

- [19] L. Thibault: Sequential convex subdifferential calculus and sequential Lagrange multipliers, SIAM J. Control Optim., 35 (1997), 1434–1444.
- [20] V.M. Tikhomirov: *Analysis II, Convex Analysis and Approximation Theory*, RX Gamkrelidze (Ed.), Encyclopedia of Mathematics Vol 14 (1987).
- [21] M. Valadier: Sous-différentiels d'une borne supérieure et d'une somme continue de fonctions convexes, C. R. Acad. Sci. Paris Sér. A-B 268 (1969), A39–A42.
- [22] M. Volle: Sous-différentiel d'une enveloppe supérieure de fonctions convexes, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 845–849.

- [23] M. Volle: On the subdifferential of an upper envelope of convex functions, *Acta Math. Vietnam.*, **19** (1994), 137–148.
- [24] C. Zalinescu: Stability for a class of nonlinear optimization problems and applications, in Nonsmooth optimization and related topics (Erice, 1988), 437–458, Ettore Majorana Internat. Sci. Ser. Phys. Sci., 43, Plenum, New York, 1989.
- [25] C. Zalinescu: On several results about convex set functions, *J. Math. Anal. Appl.*, **328** (2007), 1451–1470.
- [26] C. Zalinescu: *Convex Analysis in General Vector Spaces*, World Scientific, Singapore, 2002.

New references:

- J.-B. Hiriart-Urruty, M.A. López, M. Volle: The ε -strategy in variational analysis, 2009.
- M.A. López, M. Volle: A formula for the set of optimal solutions of a relaxed minimization problem. Applications to subdifferential calculus, *J. Convex Anal.*, to appear.