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1. Introduction
The main objective of this talk is twofold:

@ We provide a general formula for the optimal set of a
relaxed minimization problem in terms of the approximate
minima of the data function.
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Summary

@ Formula for the optimal set of the relaxed problem.
@ Subdifferential of the supremum function.
@ Particular cases:

a. Formula for affine functions.
b. Volle’s and Brendsted’s formulae.

@ Calculus rules:

a. Subdifferential for the sum function.

b. Extension of Hiriart-Urruty—Phelps formula.

¢. Chain rule under the Moreau—-Rockafellar constraint
qualification.
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2. Notations and basic tools

X : (real) separated locally convex space (Ics, for short).

X* : dual space.
X and X* are paired in duality by the bilinear form

(x*,x) € X* X X — (x,x*) := x*(x)

6 : zero in all the involved spaces.

R :=RU{—o00, +oo}.
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Given A, B C X (or in X*), we consider the operations:



Given A, B C X (or in X*), we consider the operations:
A+B:={a+blacAbeB}, A+QD:=0+A:=0Q;
and, if ©® # A C R we set
ANA:={ a|rAeN ac A}, AD:=0.

Furthermore, Ax := A{x}, AMA:= {A}Aand x + A := {x} + A.
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co A : convex hull of A,

cone A : conic hull of A,

aff A : affine hull of the set A,

intA : interior of A,

clAand A : closure of A (w*—closure if A C X*).
We set cOA := cl(co A) and coneA := cl(cone A).

ri A : topological relative interior of A (i.e., the interior of A in the
topology relative to aff A if aff A is closed, and the empty set
otherwise).
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Associated with A # @ we consider the sets

A ={x" e X" | (x,x*) > —1Vx € A},
A7 = —(coneA)” = {x* € X* | (x,x") <0Vx e A},
At = (“AT)NA" = {x* € X* | (x,x*) =0Vx € A},

i.e. the (one-sided) polar, the negative dual cone, and the
orthogonal subspace (or annihilator) of A, respectively.
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Associated with A # @ we consider the sets

A ={x" e X" | (x,x*) > —1Vx € A},
A7 = —(coneA)” = {x* € X* | (x,x") <0Vx e A},
At = (“AT)NA" = {x* € X* | (x,x*) =0Vx € A},

i.e. the (one-sided) polar, the negative dual cone, and the
orthogonal subspace (or annihilator) of A, respectively.

By the bipolar theorem , we have

A~ =cone(coA).
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If A C Xisconvex and x € X, we define the normal cone to A at
X as

| (A=-x) ifxeA,
Na(®) '_{ % ifxe X\ A



If A C Xisconvex and x € X, we define the normal cone to A at
X as

[ (A=x)" ifx€eA,
Na(®) '_{ % ifxe X\ A

If A # @ is convex and closed, Ao represents its recession cone
defined as

A :={y € X|x+ Ay € X for some x € X and VA > 0}.
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Given a function /1 : X — IR, its (effective) domain and epigraph
are defined by

dom#h := {x € X | h(x) < +oo},
epih:={(x,0) € X xR | h(x) < a}.
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Given a function 1 : X — R, its (effective) domain and epigraph
are defined by

domh :={x € X | h(x) < 400},
epih = {(x,a) € X xR | h(x) < a}.

h is proper if domh # @ and h(x) > —oo for all x € X. Then we

consider the graph of h which is defined by

gphh = {(x,h(x)) € X xR | x € domh}.
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Given a function 1 : X — R, its (effective) domain and epigraph
are defined by

domh :={x € X | h(x) < +o0},
epih = {(x,a) € X xR | h(x) < a}.
h is proper if domh # @ and h(x) > —oo for all x € X. Then we
consider the graph of h which is defined by
gphh = {(x,h(x)) € X xR | x € domh}.

h is convex if epih is convex.
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The lower closure of h is the function clh : X — R defined by
(clh)(x) :=inf{t | (x,t) € cl(epih)}.

We have:

@ epi(clh) = cl(epih). Then, clh is the greatest lower
semicontinuous (Isc, in brief) function dominated by #; i.e.
clh <h.
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The lower closure of h is the function clh : X — R defined by
(clh)(x) :=inf{t | (x,t) € cl(epih)}.

We have:

@ epi(clh) = cl(epih). Then, clh is the greatest lower
semicontinuous (Isc, in brief) function dominated by #; i.e.
ch <h.

o If his convex, then cl h is also convex, and cl & does not take
the value —oo iff 1 admits a continuous affine minorant.
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The lower closure of h is the function clh : X — R defined by
(clh)(x) :=inf{t | (x,t) € cl(epih)}.

We have:

@ epi(clh) = cl(epih). Then, clh is the greatest lower
semicontinuous (Isc, in brief) function dominated by #; i.e.
ch <h.

o If his convex, then cl h is also convex, and cl & does not take
the value —oo iff 1 admits a continuous affine minorant.

e Givenh: X — R, the Isc convex hull of h is the Isc convex
function coh : X — R such that epi(coh) = o (epih).

@ Obviously coh < clh.
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The lower closure of h is the function clh : X — R defined by
(clh)(x) :=inf{t | (x,t) € cl(epih)}.

We have:

@ epi(clh) = cl(epih). Then, clh is the greatest lower
semicontinuous (Isc, in brief) function dominated by #; i.e.
ch <h.

o If his convex, then cl h is also convex, and cl & does not take
the value —oo iff 1 admits a continuous affine minorant.

e Givenh: X — R, the Isc convex hull of h is the Isc convex
function coh : X — R such that epi(coh) = o (epih).

@ Obviously coh < clh.

A(X) : set of all the proper convex functions on X
I'(X) : subset of A(X) consisting of the Isc functions.
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The Legendre-Fenchel conjugate of h is the Isc convex function
h* : X* — R given by

h*(x*) := sup{(x,x*) — h(x) | x € X}.

We have h* = (clh)* = (coh)*. Moreover, h* € I'(X) iff
dom’ # @ and h admits a continuous affine minorant.
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The Legendre-Fenchel conjugate of h is the Isc convex function
h* : X* — R given by

h*(x*) := sup{(x,x*) — h(x) | x € X}.

We have h* = (clh)* = (coh)*. Moreover, h* € I'(X) iff
dom’ # @ and h admits a continuous affine minorant.

The bi-conjugate of h is the function h** : X — R given by
W (x) := sup{(x,x*) —h*(x") | x* € X" }.
We have
(heR*: h=h"} =T(X)U{+00}¥U{—co}¥.
Moreover, i** < coh, and the equality holds if & admits a

continuous affine minorant.
April 12-13, 2010, Sevilla WOFAO



The support and the indicator functions of A # @ are defined as

ga(x") : =sup{(a,x*) |ac A}, forx" € X*, and
Lh(x) : = 0 ifx € A,
AT T 4o ifxe X\ A
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The support and the indicator functions of A # @ are defined as

ga(x") : =sup{(a,x*) |ac A}, forx" € X*, and
Lh(x) : = 0 ifx € A,
AT T 4o ifxe X\ A

o4 is sublinear, Isc, and satisfies 04 = 054 = 1554
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Givenh: X — Rand ¢ > 0, the e—subdifferential of hata
point x € X such that h(x) € R is the w*—closed convex set

dch(x) == {x* € X* | h(y) —h(x) > (y — x,x*) —e Vy € X}.

If h(x) ¢ R we set d:h(x) := @. In particular, for ¢ = 0 we get
dh(x) := doh(x), the subdifferential of h at x.
Givenx € Xande > 0:

a) Oh(x) = Ne=0deh(x),
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Givenh: X — Rand ¢ > 0, the e—subdifferential of h ata
point x € X such that i(x) € R is the w*—closed convex set

dch(x) == {x* € X* | h(y) —h(x) > (y — x,x*) —e Vy € X}.

If h(x) ¢ R we set d:h(x) := @. In particular, for ¢ = 0 we get
dh(x) := doh(x), the subdifferential of h at x.

Givenx € Xande > 0:

a) ah(x) = ﬂs>()ash(x)r

b) 0 € 9:h(x) < x € ¢ — argminh.
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Givenh: X — Rand ¢ > 0, the e—subdifferential of hata
point x € X such that i(x) € R is the w*—closed convex set

dch(x) == {x* € X* | h(y) —h(x) > (y — x,x*) —e Vy € X}.

If h(x) ¢ R we set d:h(x) := @. In particular, for ¢ = 0 we get
dh(x) := doh(x), the subdifferential of h at x.
Givenx € Xande > 0:

a) oh(x) = Ne=00:h(x),
b) 0 € 9:h(x) < x € ¢ — argminh.
¢) If h is convex, then

deh(x) # D Ve >0 <= hislscatx.
d) If Ais convex and x € A,
dl4(x) = (cone(A —x))~ = Na(x).
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3. Optimal set for the relaxed problem
Let h : X — RR. The relaxed problem associated with
(P) : minimize h(x) s.t.x € X
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3. Optimal set for the relaxed problem
Let h : X — RR. The relaxed problem associated with

(P) : minimize h(x) s.t.x € X
is classically defined as

(P'): minimize h**(x) s.t. x € X.
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3. Optimal set for the relaxed problem
Leth : X — R. The relaxed problem associated with
(P): minimize h(x) st xe€ X
is classically defined as
(P'): minimize " (x) s.t.x € X.
The optimal values of both problems coincide:

infh =infh** =:m € R.
X X
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3. Optimal set for the relaxed problem
Leth : X — R. The relaxed problem associated with
(P): minimize h(x) s.t.x e X
is classically defined as
(P'): minimize ©**(x) s.t.x € X.
The optimal values of both problems coincide:

infh =infh** =:m € R.
X X

Our purpose here is to obtain the optimal set of (P’) ,i.e. argmin
h**, in terms of the approximate solutions of (P), i.e.
€ — argmin h.
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3. Optimal set for the relaxed problem
Leth : X — R. The relaxed problem associated with
(P): minimize h(x) s.t.x e X
is classically defined as
(P'): minimize ©**(x) s.t.x € X.
The optimal values of both problems coincide:

infh =infh** =:m € R.
X X

Our purpose here is to obtain the optimal set of (P’) ,i.e. argmin
h**, in terms of the approximate solutions of (P), i.e.

€ — argmin h.

For convenience we set ¢ — argmin i = @ for alle > 0

whenever m ¢ R.
April 12-13, 2010, Sevilla WOFAO
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Next we establish the main result in this section.

Theorem 1

For any function h : X — R such that domh* # @, one has
argmin h"* = (] Co((e —argminh) + {x"}").
x* €£d>o?nh*
If cone(dom hi*) is w* —closed or ri(cone(dom h*)) # @, then

argmin h™* = (") o ((e — argminh) + (dom#h*)”).

e>0

In particular, if cone(domh*)) = X*, then

argmin h™* = (7] o (e — argminh).
e>0

April 12-13, 2010, Sevilla WOFAO




Now we proceed with a relevant application of Theorem 1 to
the subdifferential calculus.
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Now we proceed with a relevant application of Theorem 1 to
the subdifferential calculus.

Given a function /7 : X — Rand ¢ > 0, we represent by
Mh: X=X
Mch = (an)_1

the inverse multivalued mapping of the e —subdifferential of /.

April 12-13, 2010, Sevilla WOFAO



Notations and basic tools

Optimal set formula for the relaxed problem
Subdifferential of the supremum function
Other calculus rules

Now we proceed with a relevant application of Theorem 1 to
the subdifferential calculus.

Given a function /7 : X — Rand ¢ > 0, we represent by
Mh: X=X
Mch = (aJl)_1

the inverse multivalued mapping of the e —subdifferential of /.
In other words, for any x* € X*,

(Mch)(x*) = (9:h) H(x*) = {x € X: x* € 9:h(x)}
= {xeX: h(x)— (x,x*) < —h*(x*) + ¢}
= e—argmin (h(-) — (-, x%)).
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We are now in position to state the following result:
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We are now in position to state the following result:

Theorem 2

For any function h : X — R such that dom h* # @, one has for all
x* e X*,

()= () @ (Mch)(x")+ {u* —x"}7).

e>0
u*edomh*

If cone ((dom h*) — x*) is w* —closed or
ri(cone((domh*) — x*)) # @, then

O (x*) = ()@ ((Meh) (x") + Naompe (7)) -

e>0

April 12-13, 2010, Sevilla WOFAO
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Theorem 3

Given {f;, t € T} C R, T # O, consider the supremum function
f = sup,.p fr. Assume that domf # @ and that

= (supﬁ) =supf,”.
teT teT

Then, at every x € X, we have

fx)= () @| U 9fitx)+{z—x}" |,

e>0, zedomf teTe(x)

where Te(x) :={t € T: fiy(x) > f(x) —e} iff(x) € Rand
T.(x) = D iff(x) & R.
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Theorem 3

If, moreover, cone co(dom f — x) is closed or
ri(cone co(domf — x)) # @, then

af(x) = ﬂ co U asft +Ndomf(x)

>0 tETe(x)

April 12-13, 2010, Sevilla WOFAO
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Theorem 4
Given h: X — Rand {C,, i € I}, convex subsets of X* satisfying

dom#h* C U C;,

i€l

and
ri (cone(C;Ndomh*)) # @, foralli €1,

one has

argmin i** = (| o ((¢ —argmink) + (C;Ndomh*)™).

e>0, i€l

Remark: If we take {C;, i € I} = {{x*}, x* € domh*}, we get
Theorem 1.
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Corollary 1
For any function h : X — R with domh* # @, if

L is a finite-dimensional linear subspace
such that x* € L ’

one has for all x* € X*,

o (x")= () @ ((Meh)(x*) + Nradomn (x¥)) -
e>0, LEF «

Remember that (M.h)(x*) = e — argmin (h(-) — (-, x*)).
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4. Subdifferential of the supremum function

Theorem 5 (HLV(09)

Given nonempty family {f;, t € T} C R”, consider the supremum
function f := sup, 1 f;, and assume that domf # @ and

= supf;™. (CQO)

teT

Then, for every x € X,

of (x) = ﬂ£>0’ Ler Sl (co <Ut€T€(x) Bgft(x)> + deomf(x)) :

<

April 12-13, 2010, Sevilla WOFAO
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The following lemma provides alternative characterizations of
Ndom f (Z) .

Let T £ @, {fi, t € T} C R, and f := sup{f, : t € T}. Then, for
every x € domf we have

X" € Ngomf(¥) <= (x*, (x*,x)) € [0 (Urer gphf)]s
= (x%, (x%,z)) € [c0 (Urer epifi’)]s

= (x", (x",2)) € (epif)

(

= (x*,(x",2)) € epi(Fdoms)-
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In the affine case our formula takes a simpler form:

Corollary 1

Assume that T # @ and f(x) := sup{(af,x) — B, | t € T}, with
af € X* and B, € R. Then, for every x € X we have

of (x) = Lefﬂm cl(cofa; [t € Te(x)} + Br),

where

x* € B & (x*, (x*,x)) € [@ ((Ll x {0}) U{(a;, By), t € T}>]oo

v
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Corollary 2

Let {f; : X — R | t € T} be a non-empty family of convex functions
and set f := sup, 1 fi. Assume that one of the following conditions
holds:

(1) - All the functions f; with t € T are Isc.

(2) - Ixg € domf such that f is continuous at xg, Vt € T.
(3)-T:={1,...,kk+1} and Ixy € domfi 1 N (N, domf))
such that fi, . . ., f are continuous at xo.

(4) - X = R" and domf N (N¢er ri(dom f;) ) is nonempty.

Then, (CC) holds and for every x € X

of(x)= () d <CO< U asﬁ(X)>+deomf(X)>-

LeFy, 50 teTe(x)
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The following result, due to Volle (see, e.g., [22]), is originally
established in the context of normed spaces.

Corollary 3

Let {f; : X — R | t € T} be a non-empty family of convex functions,
and set f := sup,_r fi. Assume that f is finite and continuous at
z € X. Then, we have

f(z) = N0 O (UteTe(z) 0eft(2)).

Proof. Because f is finite and continuous at z we have that
z € int(domf), and s0 Ngoms(z) = {6}. Further, as

z € Nier int(dom f;), Condition (2) of Corollary 2 yields
clf = sup{clf; | t € T}, and so the conclusion follows. =

April 12-13, 2010, Sevilla WOFAO
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Using our approach we derive the following result which is
due to Brendsted (e.g., [1]); see also [3, Proposition 7], where
such a formula is extended to families of infinitely many
convex functions defined on R".

Corollary 4

Consider the convex functions f; : X — R fori = 1,...,k, and set
f:=max{f1,...,fx}. Assume that

clf = max{clfy,...,clfy}.
Given z € X such that (clf)(z) = (clf;)(z) fori=1,...,k, we have

w@:nm(

e>0

024i@).

1
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4. Other calculus rules

@ X, Y (separated) real locally convex spaces
o f:Y— R, g:X— R convex functions
@ A: X — Y acontinuous affine mapping

Ax — on"'b/

where Ay is the linear part of A and b € Y. We denote by A the
adjoint operator of Ay.

We show that our formula for the subdifferential of the
supremum function also gives calculus rules for other
operations, expressed by means of the convex function
g+foA.

The resulting formulas are not new, but our aim here is to
highlight the unifying character of Theorem 5.
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We derive a slight extension of Hiriart-Urruty —Phelps formula
[6] . This allows us to express d(g + f o A) in terms of the
approximate subdifferentials of f and g.

Theorem 6
Under the current notation, assume that the following holds

c(g+foA) = (clg) + (cIf) o A.

Then, for every z € X we have

I(g+foA)(z) = N cl(9:g(2) + Agdef (Az)).

e>0
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Assuming that f and g are Isc in Theorem 3 we obtain the
following result of Hiriart-Urruty—Phelps:

Corollary 5

Let f, g, and A be as in Theorem 3. If f and g are Isc , then for every
z € X we have

I(g+foA)(z) = N cl(9:g(2) + Agdef (Az)).

e>0
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Lemma 3

Letf:Y — Rand g : X — R be convex functionsand A : X — Y
be a continuous affine mapping. Assume that f is finite and
continuous at Ax for some xo € (domg) NA~! (domf) . Then

cd(foA+g) = (clf) o A+ (clg).

| A

Corollary 6

([13], p. 47) Under the assumptions of Lemma 3 and denoting by Ag
the linear part of A, we have, for every z € X,

d(f o A+ g)(z) = Ajdf (Az) + 9g(z).
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