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Abstract. Let X be a nearly uniformly convex Banach space, C a convex
closed bounded subset of X and T : C → 2C a multivalued nonexpansive
mapping with convex compact values. We prove that T has a fixed point.
This result improves former results in [4] and solves an open problem
appearing in [17]

1. Introduction

In 1969 Nadler [15] extended the Banach Contraction Principle to multival-
ued contractive mappings in complete metric spaces. Namely, he proved: Let X
be a complete metric space and T : X → 2X a contraction with closed bounded
values. Then T has a fixed point. Since then, many authors have studied the
possibility of extending classical fixed point theorems for single-valued nonex-
pansive mappings to the setting of multivalued nonexpansive mappings. Even
though several authors have obtained fixed point results for Banach spaces sat-
isfying some strong geometric restriction (see [14][2][12] and the survey [17])
many problems remain open in this theory. For instance the following very
general problem is still open [16]: Let X be a Banach space satisfying the fixed
point property (FPP), i.e. every nonexpansive single valued mapping defined
from a convex bounded closed subset of X into itself has a fixed point. Does X
satisfy the same property for multivalued nonexpansive mappings with closed
bounded values? The answer to this question could be strongly connected
with the problem of obtaining a nonexpansive selection for any nonexpansive
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multivalued mapping. In spite of the well known Michael selection theorem
which gives a continuous selection for multivalued upper semicontinuos map-
pings, almost nothing is known about obtaining a nonexpansive selection. A
positive result in this direction was obtained by W. A. Kirk, M. A. Khamsi
and C. Mart́ınez Yañez [6] for a class of nonexpansive multivalued mappings
in hyperconvex metric spaces. However these problems are too general and we
cannot expect a positive answer for them. Thus, it seems to be more convenient
to study particular problems. For instance, the celebrated Kirk’s theorem [7]
which states the FPP for reflexive Banach spaces with normal structure yields
to a very natural question: Do reflexive Banach spaces with normal struc-
ture have the FPP for multivalued nonexpansive mappings ? The answer is
unknown either. Since normal structure is implied by different geometrical
properties of Banach spaces, it is natural to consider the following problem:
Do these properties imply the FPP for multivalued mappings? Let us list some
of the properties implying reflexivity and normal structure:

(1) X is uniformly convex (UC)
(2) X is nearly uniformly convex (NUC)
(3) ε0(X) < 1 where ε0(X) is the characteristic of convexity.
(4) εα(X) < 1 where εα(X) is the characteristic of noncompact convexity

for the Kuratowski measure of noncompactness.
(5) εβ(X) < 1 where εβ(X) is the characteristic of noncompact convexity

for the separation measure of noncompactness.
Furthermore, we have the following relationships between these notions:

UC ⇒ NUC

⇓ ⇓
ε0(X) < 1 ⇒ εα(X) < 1 ⇒ εβ(X) < 1

Hence the following question arises: Does any of the above properties imply
the FPP for multivalued nonexpansive mappings? Of course, these questions
are scaled. A positive answer for the case εβ(X) < 1 solves all cases.

T.C. Lim [13] obtained a fixed point theorem for a multivalued nonexpan-
sive self-mapping in a uniformly convex Banach space. W. A. Kirk [8] gave
an extension of Lim’s theorem proving the existence of a fixed point in a Ba-
nach space for which the asymptotic center of a bounded sequence in a closed
bounded convex subset is nonempty and compact (note that the asymptotic
center is a singleton in UC spaces). First, he proved the following result:

Theorem 1.1. Let C be a nonempty weakly compact and separable subset of
a Banach space X, T : C → 2C a nonexpansive mapping with compact values
and {xn} a sequence in C such that lim

n
d(xn, Txn) = 0. Then, there exists a
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subsequence {zn} of {xn} such that

Tx ∩A 6= ∅, ∀x ∈ A := A(C, {zn}).
Noting that we can reduce to a separable setting and using a fixed point

theorem for compact operators he proved that Banach spaces such that as-
ymptotic centers of bounded sequences are compact enjoy the FPP for multi-
valued nonexpansive mappings with convex bounded closed values. However
the asymptotic center of bounded sequences in NUC spaces can be noncompact
[11]. Thus, Kirk’s result does not solve the other questions arisen above. Using
some inequalities relating characteristic of noncompact convexity, Chebyshev
centers and asymptotic centers the following partial extension of Kirk’s result
is obtained in [4]

Theorem 1.2. Let X be a Banach space such that εβ(X) < 1 and X satisfies
the nonstrict Opial condition, C a convex bounded subset of X and T : C → 2C

a nonexpansive mapping with convex compact values. Then T has a fixed point.

An open question in [4] is the possibility of removing the nonstrict Opial
property from the assumptions. We will prove in this paper that the above
result holds without any assumption on Opial conditions.

2. Notation

Let us fix the notation which will be used.

Let C be a nonempty bounded closed subset of a Banach space X and {xn}
a bounded sequence in X, we use r(C, {xn}) and A(C, {xn}) to denote the
asymptotic radius and the asymptotic center of {xn} in C, respectively, i.e.

r(C, {xn}) = inf{lim sup
n

‖xn − x‖ : x ∈ C},

A(C, {xn}) = {x ∈ C : lim sup
n

‖xn − x‖ = r(C, {xn})}.
It is known that A(C, {xn}) is a nonempty weakly compact convex set as C is.

If D is a bounded subset of X, the Chebyshev radius of D relative to C is
defined by

rC(D) := inf{sup{‖x− y‖ : y ∈ D} : x ∈ C}.
Let X be a Banach space. We denote by CB(X) the family of all nonempty

closed bounded subsets of X and by K(X) (resp. KC(X)) the family of all
nonempty compact (resp. compact convex) subsets of X. On CB(X) we have
the Hausdorff metric H given by

H(A, B) := max
{

sup
a∈A

d(a,B), sup
b∈B

d(b, A)
}

, A, B ∈ CB(X)
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where for x ∈ X and E ⊂ X d(x,E) := inf{‖x − y‖ : y ∈ E} is the distance
from the point x to the subset E.

If C is a closed convex subset of X, then a multivalued mapping T : C →
CB(X) is said to be k−contractive if there exists a constant k ∈ [0, 1) such
that

H(Tx, Ty) ≤ k‖x− y‖, x, y ∈ C,

and T is said to be nonexpansive if

H(Tx, Ty) ≤ ‖x− y‖, x, y ∈ C.

A multivalued mapping T : C → 2X is called k − φ−contractive where φ is
a measure of noncompactness if, for each bounded subset B of C, we have

φ(T (B)) ≤ kφ(B).

Let us recall the definition of a nearly uniformly convex space:

Definition 2.1. X is said to be nearly uniformly convex (NUC) if it is reflexive
and its norm is uniformly Kadec-Klee, that is, for any positive number ε there
exists a corresponding number δ = δ(ε) > 0 such that for any sequence {xn}

‖xn‖ ≤ 1 n = 1, 2, ...
w − lim

n
xn = x

sep({xn}) = inf{‖xn − xm‖ : n 6= m} ≥ ε



 =⇒ ‖x‖ ≤ 1− δ.

Assume that C is a subset of a Banach space X. Looking at C as a metric
space we can consider the Hausdorff measure of noncompactness χC defined for
any bounded subset A of C by χC(A) = inf{ε > 0 : A can be covered by finitely
many balls centered at points in C with radii less than ε}. It must be noted
that this measure depends on C and it is, in general, different of χ =: χX .
Furthermore, if C is a convex closed set, it is easy to check that the usual
arguments to prove χX(A) = χX(co(A)) (see, for instance [1],Theorem 2.4)
equally well apply to prove χC(A) = χC(co(A)) for any bounded subset A ⊂ C.
Furthermore if C is separable, for any bounded subset A of C there exists B ⊂ A
such that χC(B) = χC(A) and B is χC−minimal, i.e. χC(B) = χC(D) for any
infinite subset D of B (for definition and properties of χC−minimal sets, see
[10], Chapter 8). Apart from χ and χC , we shall consider in this paper the
separation measure of noncompactness defined by

β(B) = sup{ε : there exists a sequence {xn} in B such that sep({xn}) ≥ ε}.
for any bounded subset B of a Banach space X.
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Definition 2.2. Let X be a Banach space. The modulus of noncompact con-
vexity associated to β is defined in the following way

∆X,β(ε) = inf{1− d(0, A) : A ⊂ BX is convex, β(A) ≥ ε}.
(BX is the unit ball of X).

The characteristic of noncompact convexity of X associated with the measure
of noncompactness β is defined by

εβ(X) = sup{ε ≥ 0 : ∆X,β(ε) = 0}.
When X is a reflexive Banach space we have the following alternative ex-

pression for the modulus of noncompact convexity associated with β,

∆X,β(ε) = inf{1− ‖x‖ : {xn} ⊂ BX , x = w − lim
n

xn, sep({xn}) ≥ ε},
It is known that X is NUC if and only if εβ(X) = 0. The above-mentioned

definitions and properties can be found in [1].

3. Fixed point results

In the following we are going to use the following result:

Theorem 3.1. [3](Lemma 11.5) Let X be a Banach space and ∅ 6= D ⊂ X be
compact convex. Let F : D → 2X be upper semicontinuous with closed convex
values. If Fx∩ ID(x) 6= ∅ on D then F has a fixed point. (Here ID(x) is called
the inward set at x defined by ID(x) := {x + λ(y − x) : λ ≥ 0, y ∈ D}).

The following lemma is the key of this paper, stating a relationship between
k−contractive and k − χC−contractive mappings.

Theorem 3.2. Let C be a weakly compact convex separable subset of a Banach
space X. Assume that T : C → 2C is a multivalued k−contractive mappings
with compact values. Then, T is k − χC−condensing.

Proof. Let A be a bounded subset of C. Since C is separable there exists a
χC-minimal subset B ⊂ T (A) such that χC(B) = χC(T (A)). We can assume
that B is countable, i.e. B = {yn : n ∈ N}. Since C is separable, taking a
subsequence, we can assume that lim ‖yn − x‖ exists for any x ∈ C. Then
χC({yn : n ∈ N}) = r(C, {yn}). Indeed, denote h = χC({yn : n ∈ N}). For
any ε > 0 there exist a1, ...aN ∈ C such that {yn : n ∈ N} ⊂ ∪N

i=1B(ai, h + ε)
where B(a, r) denotes the open ball centered at a with radius r. Thus, for a
subsequence {zn} of {yn} and some i ∈ {1, ..., N} we have lim supn ‖zn−ai‖ =
limn ‖yn − ai‖ ≤ h + ε. Hence r(C, {yn}) ≤ h + ε and, since ε is arbitrary,
we have r(C, {yn}) ≤ h. On the other hand, denote r = r(C, {yn}). We
know that the asymptotic center A(C, {yn}) is nonempty. Take a ∈ A(C, {yn})
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and ε > 0. There exists n0 such that ‖yn − a‖ < r + ε for n > n0. Thus
χC({yn : n ∈ N}) = χC({yn : n > n0}) ≤ r + ε and we obtain the opposite
inequality.

Choose xn ∈ A such that yn ∈ Txn. Taking again a subsequence we can
assume that the set {xn : n ∈ N} is χC−minimal and limn ‖xn − x‖ exists for
every x ∈ C. The same argument as above proves that χC({xn : n ∈ N}) =
r(C, {xn}). Let u ∈ A(C, {xn}), i.e. limn ‖xn − u‖ = χC({xn : n ∈ N}). Since
T is compact valued, we can take un ∈ Tu such that ‖yn − un‖ = d(yn, Tu).
Using the compactness of Tu and taking again a subsequence we can assume
that un converges strongly to a point v ∈ Tu. Hence, we have

χC(T (A)) = r(C, {yn}) ≤ lim
n
‖yn − v‖ = lim sup

n
‖yn − un‖ =

lim sup
n

d(yn, Tu) ≤ lim sup
n

H(Txn, Tu) ≤ k lim
n
‖xn − u‖ =

kχC({xn : n ∈ N}) ≤ kχC(A).

Theorem 3.3. Let C be a weakly compact convex separable subset of a Banach
space X. Assume that T : C → 2C is a multivalued k−contractive (k < 1)
mapping with convex compact values. Assume that A is a convex closed subset
of C such that Tx ∩A 6= ∅ for every x ∈ A. Then, T has a fixed point in A.

Proof.According to Theorem 3.2, the mapping T is k − χC−condensing. We
could check that the arguments in the proof of [3](Theorem 11.5) equally well
work for the measure χC when we assume that T (C) ⊂ C. However, we are
going to proof that theorem 3.1 can be directly applied to obtain the fixed
point. To do that, we follow an induction argument. Denote A1 = A and
assume that we have defined a finite decreasing sequence of convex closed sets
An ⊂ An−1 ⊂ ... ⊂ A1 such that Tx ∩ Ak 6= ∅ for every x ∈ Ak and for all
k = 1, ..., n. Define An+1 = [co T (An)] ∩ An. Then, An+1 is a closed convex
subset of An. Furthermore, for every x ∈ An+1 we have Tx ∩ An 6= ∅. Since
Tx ⊂ T (An) we obtain that Tx ∩An+1 is nonempty. Furthermore

χC(An+1) = χC([co T (An)] ∩An) ≤ χC(T (An)) ≤ kχC(An).

Then, A∞ =: ∩∞n=1An is a nonempty compact convex subset of A. Let x ∈ A∞
and take an ∈ Tx ∩ An which is nonempty. The sequence {an}, which lies in
a weakly compact set, has some cluster points for the weak topology. Assume
that a is a weak cluster point. Then a ∈ A∞. Since Tx is weakly closed and
the sequence {an} lies in Tx we have that a ∈ Tx and a ∈ A∞ which implies
that Tx ∩ A∞ 6= ∅. Since A∞ is compact we obtain from Theorem 3.1 that T
has a fixed point in A∞ ⊂ A.

Next, we present a theorem which gives a connection between the asymptotic
center of a sequence and the modulus of noncompact convexity.
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Theorem 3.4. [4](Theorem 3.1) Let C be a closed convex separable subset of
a reflexive Banach space X and let {yn} be a bounded sequence in C. Then,
there exists a subsequence {xn} such that

rC(A(C, {xn})) ≤ (1−∆X,β(1−))r(C, {xn}).
We can prove now that all conditions (1)-(5), assuring normal structure, in

the introduction, imply the FPP for multivalued nonexpansive mappings with
compact convex values. In particular, NUC spaces enjoy this property solving
an open problem appearing in [17].

Theorem 3.5. Let C be a nonempty closed bounded convex subset of a Banach
space X such that εβ(X) < 1, and T : C → KC(C) be a nonexpansive mapping.
Then T has a fixed point.

Proof. From [11] we can assume that C is separable. We claim that for any
bounded closed subset A of C such that Tx∩A 6= ∅ for every x ∈ A, there exists
an approximated fixed point sequence of T in A, i.e. there exists {xn} ⊂ A
such that d(xn, Txn) → 0. Indeed, let x0 ∈ A be fixed and, for each n ≥ 1,
define

Tnx :=
1
n

x0 + (1− 1
n

)Tx, x ∈ C.

Then, Tn is a (1 − 1/n)−contractive and from theorem 3.3 has a fixed point
xn. It is easily seen that lim

n
d(xn, Txn) = 0. Using this fact, we can follow

the proof as in [4] (Theorem 4.1). To do that we consider A1 = C. Assume
that sets A1, ..., Am and approximated fixed point sequences {xk

n} ⊂ Ak are
constructed where Ak = A(C, {xk−1

n }) and rC(Ak) ≤ (1 −∆X,β(1−))krC(A1)
for k = 2, ...,m. Defining Am+1 = A(C, {xm

n }) and choosing a suitable ap-
proximated fixed point sequence xm+1

n in Am+1 we obtain rC(Am+1) ≤ (1 −
∆X,β(1−))rC(Am) and we can continue the induction process. As in [4] (Theo-
rem 4.1) it can be proved that the diagonal sequence {xn

n} converges to a fixed
point of T .

Remark. According to [13], every uniformly convex space has the FPP for
multivalued nonexpansive mappings with compact values. In theorem 3.5, we
need to assume, in addition, that T has convex values. We do not know if this
assumption can be removed, but our method in the proof does not work without
convexity. Indeed, the main tool in our proof is to obtain an approximated fixed
point sequence for T in a set A such that Tx∩A 6= ∅. To do that, we cannot use
fixed point results for contractive mappings, because these results do not hold
for mappings which are not selfmappings. The following example illustrates
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this fact: Asume X = R, A = [0, 1] and define T : A → 2X by

Tx = [−1, 2] \
(

3x

4
− 1

2
,
3x

4
+

1
2

)
.

Then, T is 3/4-contractive and satisfies Tx ∩A 6= ∅ for every x ∈ A. However,
T is fixed point free. Thus, in the proof of theorem 3.5 we need to use a
fixed point result for compact mappings. On the other hand, we cannot expect
such a result without convexity assumptions. Indeed, consider the following
easy example. Assume that X = R2 and D is the closed unit disk. Define
T (0) = ∂D and T (x) = ∂D \B(x/‖x‖, ‖x‖) for x 6= 0. Then T is a continuous
and fixed point free mapping.
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hyperconvex spaces, Proc. Amer. Math. Soc. 128 (11) (2000), 3275-3283.

[7] W. A. Kirk, A fixed point theorem for mappings which do not increase the distances,
Amer. Math. Monthly 72 (1965), 1004-1006.

[8] W. A. Kirk, Nonexpansive mappings in product spaces, set-valued mappings and k-
uniform rotundity, Nonlinear Analysis (F. Browder, ed.) Amer. Math. Soc. Proc. Symp.
Pure Math. 45, pt. 2 (1986), 51-64.

[9] W. A. Kirk, S. Massa, Remarks on asymptotic and Chebyshev centers, Houston J. Math.
16 (1990), no. 3, 357-364.

[10] W. A. Kirk, B. Sims (eds), Handbook of Metric Fixed Point Theory, Kluwer Academic
Publishers (2001).

[11] T. Kuczumov, S. Prus, Asymptotic centers and fixed points of multivalued nonexpansive
mappings, Houston J. Math. 16 (1990) 465-468.

[12] E. Lami Dozo, Multivalued nonexpansive mappings and Opial’s condition, Proc. Amer.
Math. Soc. 38 (1973) 286-292.

[13] T.C. Lim, A fixed point theorem for multivalued nonexpansive mappings in a uniformly
convex Banach space, Bull. Amer. Math. Soc. 80 (1974) 1123-1126.

[14] J. Markin, A fixed point theorem for set valued mappings, Bull. Amer. Math. Soc. 74
(1968) 639-640.

[15] S.B. Nadler, Jr., Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475-488.
[16] S. Reich, Some problems and results in fixed point theory, Contemporary Math. 21

(1983) 179-187.



ASYMPTOTIC CENTERS AND FIXED POINTS 9

[17] H.K. Xu, Metric Fixed Point Theory for Multivalued Mappings,, Dissertationes
Math.(Rozprawy Mat.) 389 (2000).

E-mail address: tomasd@us.es; ploren@us.es


