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Abstract. We define an infinite-dimensional modulus which can be si-
multaneously considered as a measure of nearly uniform convexity and
nearly uniform smoothness. We compute this modulus in some classical
Banach spaces and we show some basic properties of this modulus and
some applications to prove that a Banach space satisfies the w-fixed point
property for non-expansive mappings.

1. Introduction

In 1995 C. Beńıtez, K. Przeslawski and D. Yost [?] defined a two-dimensional
modulus for normed spaces. Given a normed space X, one observes that for
any x, y ∈ X with ‖y‖ < 1 < ‖x‖, there is a unique z = z(x, y) in the line
segment [x, y] with ‖z‖ = 1. They define ξX : [0, 1) → R by

ξX(β) = sup
{‖x− z(x, y)‖

‖x‖ − 1
: ‖y‖ ≤ β < 1 < ‖x‖

}

They called ξ modulus of squareness because its extreme values characterize
nearly-squareness (we recall that X is nearly square if for all ε > 0 there
exists Y subspace of X with dim Y = 2 such that d(Y, `1(2)) < 1 + ε, where
d(E,F ) is the Banach-Mazur distance between two normed spaces E and F ).
The behaviour of the modulus of squareness is strongly connected with the
geometry of space. In particular, the modulus of squareness tells us whether
or not a space is uniformly smooth, uniformly convex, uniformly non-square or
an inner product space. Furthermore, this modulus can also be used to obtain
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uniform normal structure.
The main properties of the modulus ξ are collected in the following theorem:

Theorem 1.1. [?] Let X be any normed space and ξ its modulus of squareness.
Then:

(1) ξ(β) = sup{ξM (β) : M ⊂ X, dim M = 2}
(2) ξ is strictly increasing and convex
(3) ξ(β) < ξ1(β) for each β ∈ (0, 1), unless X is nearly square, in that case

ξ(β) = ξ1(β) for all β ∈ (0, 1), where

ξ1(β) =
1 + β

1− β
.

In particular, if X is non-reflexive, ξ(β) = ξ1(β) for all β ∈ (0, 1)
(4) ξ′ ≤ ξ′1 almost everywhere on (0, 1)
(5) ξ(β) > ξ2(β) for each β ∈ (0, 1), unless X is an inner product space,

in that case ξ(β) = ξ2(β) for all β ∈ (0, 1), where

ξ2(β) =
1√

1− β2

(6) Let X and Y be two isomorphic normed spaces whose Banach-Mazur
distance is less than 1 + δ2 where δ ≤ 1. Then

|ξX(β)− ξY (β)| ≤ 2(δ + δ2)
(1− β)2

for all β ∈ (0, 1)

(7) X is uniformly convex if and only if limβ→1(1− β)ξ(β) = 0
(8) X is uniformly smooth if and only if ξ′(0) = 0
(9) The modulus of squareness of X∗ at β is ξX∗(β) = 1/ξ−1(1/β)

(10) If ξ(β) < 1/(1− β) for some β, then X has uniform normal structure.

The modulus of squareness has an advantage with respect to other previ-
ously defined moduli: it is simultaneously suitable for the uniform convexity
and the uniform smoothness of the space. This modulus, just as uniform con-
vexity and uniform smoothness, has a finite-dimensional character, that is, it
only depends on the finite-dimensional subspaces of the space. It is well known
that nearly uniform convexity and nearly uniform smoothness are natural gen-
eralizations of uniform convexity and uniform smoothness (respectively) and
they have infinite dimensional character. These notions have proved to be very
useful in Fixed Point Theory and Geometric Theory of Banach spaces. In this
paper we define a new infinite-dimensional modulus ζ which can be simultane-
ously considered as a measure of nearly uniform convexity and nearly uniform
smoothness. We study in depth this new modulus, computing its value in `p-
spaces and c0, proving some basic properties and its connections with other
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important geometric properties of Banach spaces yielding to some fixed point
results.

2. Preliminaries

In this section we introduce some known results related to the existence of
fixed points for nonexpansive mappings which will be used through this paper.
For more details the reader may consult, for instance [?] and [?].

Throughout this paper X will be a Banach space. We say that X has the
weak fixed point property (w-FPP) if every nonexpansive mapping T defined
from a weakly compact convex subset C of X into C has a fixed point. We
say that X has weak normal structure (w-NS) if every weakly compact convex
subset of X with more than one member is not diametral.

Theorem 2.1. [?]If X has w-NS then X has the w-FPP.

Associated to the weak normal structure of a Banach space, Bynum [?]
defined the weakly convergent sequence coefficient. We shall use an equivalent
definition [?]

Let X be a Banach space without Schur property. The weakly convergent
sequence coefficient of X is defined by

WCS(X) = inf
{

limn,m;n6=m ‖xn − xm‖
limn ‖xn‖

}

where the infimum is taken over all weakly null sequences {xn} such that both
limits exist and limn ‖xn‖ 6= 0.

It must be noted that every bounded sequence contained in a metric space
has a subsequence {xn} such that limn,m;n6=m d(xn, xm) exists (see [?] Theorem
III.1.5).

Theorem 2.2. [?] If WCS(X) > 1 then X has w-NS.

We say that X has weak uniform normal structure (w-UNS) if WCS(X) > 1.
In the following theorem we recall the value of WCS(X) in some particular

Banach spaces. Previously we recall the definition of Bynum spaces.
Let p ∈ [1, +∞), q ∈ [1, +∞]. The Bynum spaces `p,q are defined as `p,q =

(`p, ‖ · ‖p,q) where

‖x‖p,q = (‖x+‖q
p + ‖x−‖q

p)
1/q if q ∈ [1, +∞)

‖x‖p,∞ = max{‖x+‖p, ‖x−‖p}
x+, x− denote the positive and the negative part of x respectively and ‖x‖p

denotes the norm of x in `p.

Theorem 2.3. [?][?]
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(1) For every real number p ≥ 1, we have WCS(`p) = 21/p

(2) WCS(c0) = 1
(3) For p > 1, q ≥ 1, we have WCS(`p,q) = min

{
21/p, 21/q

}

Now we are going to consider some geometric properties connected with
normal structure.

The space X is said to be uniformly convex (UC) if for each ε ∈ (0, 2] there
exists δ > 0 such that for x, y ∈ X with ‖x‖, ‖y‖ ≤ 1 and ‖x − y‖ ≥ ε then∥∥x+y

2

∥∥ ≤ 1− δ.
The space X is said to be uniformly smooth (US) if

lim
t→0+

ρX(t)
t

= 0

where

ρX(t) = sup
{‖x + ty‖+ ‖x− ty‖

2
− 1 : ‖x‖ ≤ 1, ‖y‖ ≤ 1

}

Next we recall the definitions of nearly uniform convexity and nearly uni-
form smoothness which are infinite-dimensional generalizations of the notions
of uniform convexity and uniform smoothness.

The space X is said to be nearly uniformly convex (NUC) if X is reflexive
and ∆X(ε) > 0 for each ε > 0, i.e., ∆0(X) = 0, where

∆X(ε) = inf{1− ‖x‖ : {xn} ⊂ BX , xn ⇀ x, lim inf
n

‖xn − x‖ ≥ ε}

∆0(X) = sup{ε > 0 : ∆X(ε) = 0}
The space X is said to be nearly uniformly smooth (NUS) if X is reflexive

and for any ε > 0 there exists η > 0 such that for any t ∈ (0, η) and any weakly
null sequence {xn} ⊂ BX there exists k > 1 such that ‖x1 + txk‖ ≤ 1 + εt.

Notice that every NUC space has normal structure ([?] Remark VI.4.7). The
situation for NUS spaces is different. Indeed, `p,1 is NUC, so its dual `q,∞ is
NUS but this space fails to have normal structure ([?] Example VI.2). However
NUS spaces have the fixed point property [?].

Up to now we have deduced the existence of fixed points for nonexpansive
mappings as a consequence of normal structure. Now we recall other geomet-
ric properties of Banach spaces which give fixed point results without normal
structure.

In 1991 J. Garćıa Falset [?] defined the following geometric coefficient

R(X) = sup
{

lim inf
n→∞

‖xn + x‖ : {xn}, x ∈ BX , xn ⇀ 0
}

and, later, he proved the following theorem

Theorem 2.4. [?] A Banach space X has the w-FPP if R(X) < 2.
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3. A universal infinite-dimensional modulus

The first problem appearing when we try to define a modulus suitable for
NUC and NUS is the non existence of a relationship between these concepts for
a fixed space. Indeed, if X is at the worst situation for uniform convexity, i.e.
ε0(X) = 2, then ξ′X(0) = 2 and so X is not uniformly smooth (see [?] Theorem
2.4). However there is no a similar behaviour for nearly uniform convexity and
nearly uniform smoothness as the following example shows.

Example 3.1. Let X be the Bynum space `2,∞. Since `2,1 is NUC ([?] Example
V.1), its dual `2,∞ is NUS. We recall that for any bounded set A ⊂ X, the
Hausdorff measure of noncompactness is defined by χ(A) = inf{ε >=: A has
a finite ε−net}. The characteristic of noncompact convexity of X is defined
by εχ(X) = sup{ε > 0 : ∆χ(ε) = 0} where ∆χ(ε) = inf{1 − d(0, A) : A ⊂
BX is convex , χ(A) > ε}. We are going to show that εχ(X) = 1, that is, the
maximum value for εχ. Let A be the convex hull of the sequence xn = e1− en,
which is w-convergent to e1. Since limn ‖xn − e1‖ exists and `2,∞ satisfies the
non strict Opial condition [?], using [?] Lemma 1.1 we have

χ({xn}) = lim
n
‖xn − e1‖ = lim

n
‖en‖ = 1.

Since the measure χ satisfies the invariance under passage to the convex hull
[?], we have χ(A) = 1 and εχ(X) = 1.

Definition 3.2. Let X be a Banach space. For each β ∈ (0, 1), the universal
infinite-dimensional modulus is defined by

ζX(β) = sup
{

lim inf
n→∞

‖xn − y‖
1− ‖x‖

}

where the supremum is taken over all sequences {xn} ⊂ Bβ such that xn ⇀
x 6= 0, lim infn ‖xn − x‖ ≤ β and y = x

‖x‖ , where Bβ denotes the closed ball
centered at 0 with radius β.

Remark: Since the norm ‖ · ‖ is w-sequentially lower semicontinuous (w-slsc),
for each β ∈ (0, 1) we have

1 ≤ ζX(β) ≤ 1
1− β

.

In the following theorem we will show that both extreme values are attained
in some spaces.

Theorem 3.3. (1) If X satisfies Schur property, that is, every weakly con-
vergent sequence is norm convergent, then ζX(β) = 1 for any β ∈ (0, 1).

(2) ζ`∞(β) = 1
1−β for each β ∈ (0, 1).
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(3) ζ`2(β) = ξ`2(β) = 1√
1−β2

for each β ∈ (0, 1).

(4) If 1 < p < ∞, then ζ`p(β) = ((1−βq)p−1+βp)1/p

(1−βq)1/q for each β ∈ (0, 1).

(5) ζc0(β) = max
(
1, β

1−β

)
for each β ∈ (0, 1).

Proof.
(1) Obvious
(2) Denote 1 =

∑∞
n=1 en and consider the sequence xn = β(1 − en) ∈

Bβ which converges weakly to β1 =: x with lim infn ‖xn − x‖ ≤ β.
Furthermore, ‖xn − y‖ = 1 for every n. Easily we deduce the claimed
value of ζ`∞(β).

(3) The following result can be derived from [?]: Let {xn} be a w-null
sequence in `p, 1 ≤ p < +∞. Then

(3.1) lim inf
n→∞

‖xn − x‖p = lim inf
n→∞

‖xn‖p + ‖x‖p.

for every x ∈ `p.
Let {xn} be a sequence in Bβ ⊂ `2 which is weakly convergent to

x (which implies lim infn ‖xn − x‖ ≤ β because `2 satisfies the Opial
property). We denote A = ‖x‖ and, using (??), we have

β2 ≥ lim inf
n

‖xn‖2 = lim inf
n

‖xn − x‖2 + A2

and

lim inf
n

‖xn − y‖2
(1− ‖x‖)2 = lim inf

n

‖xn − x‖2
(1− ‖x‖)2 + 1 ≤ β2 −A2

(1−A)2
+ 1.

Elementary calculus proves that the function f(A) = (β2−A2)/(1−A)2

attains its maximum in [0, β] at the point A = β2. By substitution of
this value we obtain

ζ`2(β) ≤ 1√
1− β2

and this upper bound is attained for xn = β2e1 + β
√

1− β2en.
(4) It is analogous to the case p = 2.
(5) Let {xn} ⊂ Bβ be a sequence which converges weakly to x and lim infn ‖xn−

x‖ ≤ β. Taking a subsequence, if necessary, we can assume

supp (xn − x) ∩ supp (x− y) = ∅
where for every x = (xk) we denote supp x = {k : xk 6= 0}. We have

lim inf
n

‖xn − y‖ = lim inf
n

‖xn − x + x− y‖ =

= max(lim inf
n

‖xn − x‖, ‖x− y‖) ≤ max(β, 1− ‖x‖).
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Thus

ζco
(β) ≤ max(β, 1− ‖x‖)

1− ‖x‖ ≤ max
(

β

1− β
, 1

)

and this value is attained at xn = β(e1 + en).
Now we study some basic properties of the new modulus. The following is

obvious:

Proposition 3.4. Let X be a Banach space. The function ζX(·) is increasing.

In general ζX(·) is not strictly increasing, consider for example a Banach
space X with Schur property or X = c0 (see Theorem ??).

On the other hand this modulus is convex what is noteworthy having in
mind that the modulus of convexity need not be a convex function.

Proposition 3.5. For every Banach space X, ζX(·) is a convex function.

Proof. Consider 0 < β1 < β2 < 1, 0 < t < 1. We have to prove

ζX(tβ1 + (1− t)β2) ≤ tζX(β1) + (1− t)ζX(β2).

Let {xn} ⊂ Btβ1+(1−t)β2 such that xn ⇀ x, lim infn ‖xn − x‖ ≤ tβ1 + (1− t)β2

and y = x/‖x‖. It is enough to find two sequences {x1
n} ⊂ Bβ1 , {x2

n} ⊂ Bβ2

such that

lim inf
n→∞

‖xn − y‖
1− ‖x‖ ≤ t lim inf

n

‖x1
n − y1‖

1− ‖x1‖ + (1− t) lim inf
n

‖x2
n − y2‖

1− ‖x2‖ .

Consider for i = 1, 2

xi
n =

βi

tβ1 + (1− t)β2
xn ⇀

βi

tβ1 + (1− t)β2
x = xi yi =

xi

‖xi‖ =
x

‖x‖ = y.

Using the convexity of the norm, we have

‖xn − y‖
1− ‖x‖ ≤ t‖x1

n − y1‖+ (1− t)‖x2
n − y2‖

t(1− ‖x1‖) + (1− t)(1− ‖x2‖) .

On the other hand if we consider

zn = λx2 + (1− λ)x2
n = µy + (1− µ)x1

n

with

λ =
1− β1

β2

1− ‖x1‖ ∈ (0, 1) and µ =
1− β1

β2

1− ‖x1‖‖x
2‖ ∈ (0, 1)

we have
‖zn − y‖ = (1− µ)‖x1

n − y‖
x2 = (1− µ)x1 + µy ⇒ 1− ‖x2‖ = (1− µ)(1− ‖x1‖)
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Furthermore, using that ‖ · ‖ is convex and w-slsc we obtain

lim inf
n

‖zn − y‖ ≤ λ‖x2 − y‖+ (1− λ) lim inf
n

‖x2
n − y‖ ≤ lim inf

n
‖x2

n − y‖
and we deduce

lim inf
n

‖x1
n − y‖

1− ‖x1‖ = lim inf
n

‖zn − y‖
1− ‖x2‖ ≤ lim inf

n

‖x2
n − y‖

1− ‖x2‖ .

Thus, using [?] Lemma 3.1 we have the desired inequality.

Proposition 3.6. The function ζX(·) is continuous in (0, 1).

Proof. We will prove continuity from the left. Continuity from the right can
be proved in the same way. Let ε > 0 be arbitrary, choose γ satisfying 1 <

γ < ε(1−β)2

2 + 1 and β′ = β/γ. Let {xn} ⊂ Bβ be a sequence which converges
weakly to x and lim infn ‖xn − x‖ ≤ β. The sequence {xn/γ} ⊂ Bβ′ converges
weakly to x/γ with lim infn ‖xn/γ − x/γ‖ ≤ β′. For y = x/‖x‖ we have

ζX(β′) ≥ lim inf
n

∥∥∥xn

γ − y
∥∥∥

1−
∥∥∥x

γ

∥∥∥
= lim inf

n

‖xn − γy‖
γ − ‖x‖ ≥

≥ lim inf
n

‖xn − y‖
γ − ‖x‖ − (γ − 1)‖y‖

γ − ‖x‖ ≥

≥ lim inf
n→∞

‖xn − y‖
1− ‖x‖ − ‖xn − y‖

(
1

1− ‖x‖ −
1

γ − ‖x‖
)
− γ − 1

1− β
≥

≥ lim inf
n→∞

‖xn − y‖
1− ‖x‖ − (γ − 1)(1 + β) + (γ − 1)(1− β)

(1− β)2
=

= lim inf
n→∞

‖xn − y‖
1− ‖x‖ − 2(γ − 1)

(1− β)2
≥ lim inf

n→∞
‖xn − y‖
1− ‖x‖ − ε.

Taking supremum we obtain ζX(β′) ≥ ζX(β)− ε.
Next we obtain the following relationship between modulus ζ and modulus

ξ. As a consequence, the new modulus is a refinement of the previous one.

Theorem 3.7. For any normed space X and any β ∈ (0, 1), ζX(β) ≤ ξX(β).

Proof. Let {xn} be a sequence in Bβ which converges weakly to x 6= 0 with
lim infn ‖xn − x‖ ≤ β. Choose γ > 1 arbitrary and zn ∈ [xn, γy] such that
‖zn‖ = 1. There exists λn ∈ (0, 1) such that zn = λnγy + (1 − λn)xn. Thus
‖λnγy+(1−λn)xn‖ = 1. We can assume, without loss of generality, that {λn}
is convergent to some λ. We obtain ‖λγy + (1− λ)x‖ ≤ 1, which implies

‖x‖
∣∣∣∣
λγ

‖x‖ + 1− λ

∣∣∣∣ ≤ 1
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and we deduce
λ(γ − ‖x‖) ≤ 1− ‖x‖

so we have
1− λ ≥ γ − 1

γ − ‖x‖
Choose c < 1 arbitrary. For n large enough (n > n0(c, γ)) we have

1− λn ≥ c
γ − 1

γ − ‖x‖
Thus

ξX(β) ≥ ‖γy − zn‖
γ − 1

=
(1− λn)‖γy − xn‖

γ − 1
≥ c

‖γy − xn‖
γ − ‖x‖

Hence

ξX(β) ≥ c lim inf
n

‖γy − xn‖
γ − ‖x‖ = c lim inf

n

∥∥∥y − xn

γ

∥∥∥
1− ‖x‖

γ

Taking supremum we obtain ξX(β) ≥ c ζX(β/γ). Since ζX(·) is continuous and
c is arbitrary, letting γ → 1+, we obtain ξX(β) ≥ ζX(β).

Theorem 3.8. Let X and Y be two isomorphic Banach spaces whose Banach-
Mazur distance is less than 1 + δ, where δ ≤ 1. Then, for all ∈ (0, 1),

|ζX(β)− ζY (β)| ≤ δ2 + 2δ

(1− β)2

Proof. Our hypothesis implies that we may regard X and Y as the same vector
space equipped with two equivalent norms, ‖ · ‖ and ||| · ||| respectively, such
that

‖x‖ ≤ |||x||| ≤ (1 + δ)‖x‖
for every x ∈ X. Let {xn} ⊂ BX(0, β) be a sequence such that xn ⇀ x with
lim infn ‖xn − x‖ ≤ β and y = x/‖x‖. Consider the sequence x′n = 1

1+δ xn ∈
BY (0, β) which converges weakly to x′ = 1

1+δ x with lim infn |||x′n − x′||| ≤ β

and y′ = x′
|||x′||| = x

|||x||| . We have

‖xn − y‖ − |||x′n − y′||| ≤ |||xn − y||| − |||x′n − y′||| ≤ |||xn − y − x′n + y′||| ≤

≤ |||xn − x′n|||+ |||y′ − y||| = |||xn|||
∣∣∣∣1−

1
1 + δ

∣∣∣∣ + |||x|||
∣∣∣∣

1
|||x||| −

1
‖x‖

∣∣∣∣ ≤

≤ |||xn||| δ

1 + δ
+ |||x|||δ 1

‖x‖ ≤ βδ + (1 + δ)δ = δ2 + δ(1 + β).

On the other hand we have

1− |||x′||| ≤ 1− 1
1 + δ

‖x‖ = 1− ‖x‖+
δ

1 + δ
‖x‖ ≤ 1− ‖x‖+

βδ

1 + δ
.
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Thus
‖xn − y‖
1− ‖x‖ − |||x′n − y′|||

1− |||x′||| ≤
‖xn − y‖
1− ‖x‖ − ‖xn − y‖ − [δ2 + δ(1 + β)]

1− ‖x‖+ βδ
1+δ

=

=
‖xn − y‖ βδ

1+δ + [δ2 + δ(1 + β)](1− ‖x‖)
(1− ‖x‖)(1− ‖x‖+ βδ

1+δ )
≤ ‖xn − y‖

1− ‖x‖
βδ
1+δ

1− ‖x‖+
δ2 + δ(1 + β)

1− ‖x‖ ≤

≤ 1 + β

1− β

βδ
1+δ

1− β
+

δ2 + δ(1 + β)
1− β

=
(1 + β) βδ

1+δ + [δ2 + δ(1 + β)](1− β)
(1− β)2

=

=
β2( δ

1+δ − δ) + β( δ
1+δ − δ2) + δ2 + δ

(1− β)2
≤ β δ

1+δ + δ2 + δ

(1− β)2
<

<
δ

1+δ + δ2 + δ

(1− β)2
≤ δ2 + 2δ

(1− β)2

which implies
|||x′n − y′|||
1− |||x′||| ≥

‖xn − y‖
1− ‖x‖ − δ2 + 2δ

(1− β)2
.

Hence

ζY (β) ≥ ζX(β)− δ2 + 2δ

(1− β)2
.

A symmetric argument yields ζX(β) ≥ ζY (β)− (δ2 + 2δ)/(1− β)2.
Next we give the characterizations of nearly uniformly convex and nearly

uniformly smooth spaces.

Lemma 3.9. Let X be a Banach space. Then

ζX(β) ≥ (β/2)∆0(X) + β − 1
1− β

Proof. The inequality is obvious if ∆0(X) = 0. If ∆0(X) > 0, assume 0 < c <
∆0(X). For any η > 0 there exists a sequence {zn} in BX weakly convergent,
say to z, such that ‖zn − z‖ ≥ c and ‖z‖ ≥ 1− η. Consider the sequence xn =
β
2 (zn+z) ∈ Bβ which is weakly convergent to x = βz with lim infn ‖xn−x‖ ≤ β.
Then we have

‖xn − y‖ ≥ ‖xn − x‖ − ‖x− y‖ ≥ β

2
c + ‖x‖ − 1 ≥ β

2
c + β(1− η)− 1.

Hence
‖xn − y‖
1− ‖x‖ ≥ (β/2)c + β(1− η)− 1

1− β(1− η)
.

Letting η → 0 and later c → ∆0(X) we obtain the inequality as stated.
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Lemma 3.10. Let X be a Banach space. Then
1
2
∆0(X) ≤ lim inf

β→1
(1− β)ζX(β) ≤ lim sup

β→1
(1− β)ζX(β) ≤ 2∆0(X).

Proof. From Lemma ??, we know that lim infβ→1(1− β)ζX(β) ≥ 1/2∆0(X).
On the other hand, consider any sequence {xn} in Bβ w-convergent to x with
lim infn ‖xn − x‖ ≤ β. Taking a subsequence, if necessary, we can assume that
limn ‖xn− y‖, limn ‖xn‖ = α ≤ β and limn ‖xn−x‖ = ε ≤ 2α do exist. For an
arbitrary η ∈ (0, 1 − β) we can assume |‖xn − x‖ − ε| < η and |‖xn‖ − α| < η
for every n. Choose p ∈ (0, 1) and define for β ∈ (0, 1)

rp(β) = sup {ε ≥ 0 : ∆X(ε) < (1− β)p} .

It is clear that rp(·) is nonincreasing and we claim that limβ→1− rp(β) ≤ ∆0(X).
Indeed, otherwise there is a number c such that rp(β) > c > ∆0(X) for any
β < 1. Choosing ε(β) ∈ (c, rp(β)) such that ∆X(ε(β)) < (1 − β)p, we obtain
∆X(c) ≤ (1 − β)p for any β < 1, which implies ∆X(c) = 0 and this is a
contradiction because c > ∆0(X).
We have the following inequalities

‖xn − y‖ ≤ ‖xn − x‖+ ‖x− y‖ ≤ ε + η + 1− ‖x‖

‖x‖ ≤ (α + η)
(

1−∆X

(
ε

α + η

))
≤ (α + η)(1−∆X(ε))

‖x‖ ≥ ‖xn‖ − ‖xn − x‖ ≥ α− 2η − ε.

Thus

‖xn − y‖
1− ‖x‖ ≤ 1− α + 3η + 2ε

1− α(1−∆X(ε))
.

If ε > rp(β), then ∆X(ε) ≥ (1− β)p and

‖xn − y‖
1− ‖x‖ ≤ 1− α + 3η + 4α

1− β(1−∆X(ε))
≤ 1 + 3α + 3η

1− β + β(1− β)p
≤ 1 + 3β + 3η

1− β + β(1− β)p
.

If ε ≤ rp(β), we have

‖xn − y‖
1− ‖x‖ ≤ 1− α + 3η + 2rp(β)

1− α
≤ 1− β + 3η + 2rp(β)

1− β
.

In all cases, we have
lim sup

β→1
(1− β)ζX(β) ≤

≤ max

{
lim sup

β→1
(1− β)

1 + 3β + 3η

1− β + β(1− β)p
, lim sup

β→1
1− β + 3η + 2rp(β)

}
≤
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≤ max

{
0, lim sup

β→1
3η + 2rp(β)

}
≤ 2∆0(X) + 3η.

Since η is arbitrary we obtain lim supβ→1(1− β)ζX(β) ≤ 2∆0(X)

Theorem 3.11. Let X be a Banach space. Then X is NUC if and only if X
is reflexive and limβ→1(1− β)ζX(β) = 0.

Theorem 3.12. Let X be a Banach space. Then X is NUS if and only if X
is reflexive and ζ ′X(0) = 0.

Proof. Assume that X is NUS and choose ε > 0 arbitrary and η = η(ε) given
by the definition of NUS. Take β < η/(1 + η). If {xn} is a sequence in Bβ

which converges weakly to x with lim infn ‖xn − x‖ ≤ β < η. We can assume,
without loss of generality, that limn ‖x− xn‖/(1− ‖x‖) =: t exists. We have

‖y − xn‖ = ‖y − x‖
∥∥∥∥

y − x

‖y − x‖ +
x− xn

‖y − x‖

∥∥∥∥ =

= (1− ‖x‖)
∥∥∥∥

y − x

‖y − x‖ +
‖x− xn‖
1− ‖x‖

x− xn

‖x− xn‖

∥∥∥∥ ≤

≤ (1− ‖x‖)
∥∥∥∥

y − x

‖y − x‖ + t
x− xn

‖x− xn‖

∥∥∥∥ + (1− ‖x‖)
∣∣∣∣t−

‖x− xn‖
1− ‖x‖

∣∣∣∣ .

Since

t = lim
n

‖x− xn‖
1− ‖x‖ ≤ β

1− β
< η,

we have

‖y − xn‖ ≤ (1− ‖x‖)(1 + εt) + (1− ‖x‖)
∣∣∣∣t−

‖x− xn‖
1− ‖x‖

∣∣∣∣ ≤

≤ (1− ‖x‖)
(

1 +
εβ

1− β
+

∣∣∣∣t−
‖x− xn‖
1− ‖x‖

∣∣∣∣
)

for infinitely many n. Hence

ζX(β) ≤ 1 +
εβ

1− β

which implies

0 ≤ ζX(β)− 1
β

≤ ε

1− β
for β <

η

1 + η
.

Thus

0 ≤ lim inf
β→0

ζX(β)− 1
β

≤ lim sup
β→0

ζX(β)− 1
β

≤ ε.

Since ε is arbitrary we obtain ζ ′X(0) = 0.
Conversely, assume that X is not NUS. There exists ε0 > 0 such that for every
η > 0 there exists t ∈ (0, η) and a weakly null sequence {un} in BX satisfying
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‖u1+tun‖ > 1+ε0t for all n. Choose η > 0 arbitrary and a = βε0/2 with β small
enough such that t = a/(1− a). Consider the sequence xn = a(u1 − un)/‖u1‖
which converges weakly to au1/‖u1‖ =: x. Since

1 + ε0
a

1− a
<

∥∥∥∥u1 +
a

1− a
un

∥∥∥∥ ≤ ‖u1‖+
a

1− a

and a/(1− a) < 1 we obtain

‖u1‖ ≥ 1 + (ε0 − 1)
a

1− a
> ε0.

Thus ‖xn‖ ≤ 2a/ε0 = β, lim infn ‖xn − x‖ ≤ β and

‖y − xn‖ = ‖y − x‖
∥∥∥∥

y − x

‖y − x‖ +
x− xn

‖y − x‖

∥∥∥∥ = ‖y − x‖
∥∥∥∥

u1

‖u1‖ +
a

1− a

un

‖u1‖

∥∥∥∥ ≥

≥ ‖y − x‖
‖u1‖

(
1 + ε0

a

1− a

)
≥ (1− ‖x‖)

(
1 + ε0

a

1− a

)
.

Hence ζX(β) ≥ 1+ ε0a/(1−a) which implies (ζX(β)−1)/β ≥ ε20/(2−βε0) and

lim inf
β→0

ζX(β)− 1
β

≥ ε20
2

> 0.

We can give a lower estimate for WCS(X) depending of the value of ζX(β).

Proposition 3.13. Let X be a Banach space. Then

WCS(X) ≥ sup
β∈(0,1)

β(2 + ζX(β))
ζX(β) + 1

Proof. Denote w = WCS(X). For any η > 0 there exists a weakly null sequence
{zn} in BX such that ‖zn − zm‖ ≤ 1 + η and ‖zn‖ ≥ 1/w(1 − η). Fix k ∈ N
and for any β ∈ (0, 1) we consider the sequence xn = β(zk − zn)/(1 + η) ∈ Bβ

which converges weakly to βzk/(1 + η) =: x with lim infn ‖xn − x‖ ≤ β. Then
we have

‖xn − y‖
1− ‖x‖ ≥

β
1+η‖zn‖ − ‖zk‖

(
1

‖zk‖ −
β

1+η

)

1− β
w(1−η2)

≥
2β

w(1−η2) − 1

1− β
w(1−η2)

Letting η → 0 we obtain

ζX(β) ≥ 2β − w

w − β

which is equivalent to

w ≥ β(2 + ζX(β))
ζX(β) + 1

.
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Remark: The above lower bound for WCS(X) is not sharp. Indeed, for
X = `1 we obtain

2 = WCS(X) ≥ sup
β∈(0,1)

β(2 + ζX(β))
ζX(β) + 1

=
3
2

and for X = `2 elementary calculus proves that
√

2 = WCS(X) ≥ sup
β∈(0,1)

β(2 + ζX(β))
ζX(β) + 1

≈ 1.19.

However, for X = c0 we have the equality

WCS(X) = 1 = sup
β∈(0,1)

β(2 + ζX(β))
ζX(β) + 1

.

As a consequence of the previous proposition and having in mind Theorem
?? and Theorem ?? we obtain a sufficient condition so that a Banach space X
has w-UNS.

Corollary 3.14. Let X be a Banach space. If

ζX(β) <
2β − 1
1− β

for some β ∈ (0, 1)

in particular if lim infβ→1(1−β)ζX(β) < 1, then X has w-UNS and, so, X has
the w-FPP.

Remark: We do not know if the estimate in Corollary ?? is sharp. Notice
that, since ζX(β) ≥ 1, this inequality only can be satisfied for β > 2/3. This
fact is not surprising because we have shown that the “good” behaviour of ζ
for β near zero is related to nearly uniform smoothness (Theorem ??) and this
property does not imply weak normal structure (see [?]).
On the other hand, we cannot hope the estimation ζX(β) < 1/(1−β) for some β
as a warranty for weak uniform normal structure as it happened with the finite-
dimensional modulus ξ ([?], Proposition 2.9). Indeed, the space X = `2,∞ does
not have w-UNS and satisfies ζX(β) < 1/(1 − β) for some β ∈ (0, 1) because
otherwise ζX(β) = 1/(1 − β) for all β which implies ζ ′X(0) = 1 and this is a
contradiction because X is NUS.

Finally, we give a sufficient condition for Banach space X to have the w-FPP
in absence of w-NS. We shall use the coefficient R(X).

Theorem 3.15. Let X be a Banach space. If ζX(β) < 1+β for some β ∈ (0, 1),
in particular if ζ ′X(0) < 1, then R(X) < 2 and, so, X has the w-FPP.

Proof. Assume R(X) = 2 and choose η > 0 arbitrary. There exists a weakly null
sequence {un} in BX and a point u ∈ BX such that lim infn ‖un + u‖ > 2− η.
We can assume ‖un‖ > 1 − η for every n and ‖u‖ > 1 − η. It is clear that
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‖λun + µu‖ ≥ (λ + µ)(1 − η) for every λ, µ ∈ (0, +∞) and every n. Consider
the sequence

xn = β

(
1

1 + a
u− a

1 + a
un

)
⇀

β

1 + a
u = x

with a > 0 arbitrary. We have

‖y − xn‖ =
∥∥∥∥
(

1
‖u‖ −

β

1 + a

)
u +

βa

1 + a
un

∥∥∥∥ ≥

≥
(

1
‖u‖ −

β

1 + a
+

βa

1 + a

)
(1− η) ≥

(
1− β

1 + a
+

βa

1 + a

)
(1− η)

‖x‖ =
β

1 + a
‖u‖ >

β

1 + a
(1− η).

Hence

‖xn − y‖
1− ‖x‖ ≥

(
1− β

1+a + βa
1+a

)
(1− η)

1− β
1+a (1− η)

.

Letting η → 0 and a →∞, we obtain ζX(β) ≥ 1 + β for all β ∈ (0, 1).

Remarks:

(1) If X is a reflexive Banach space with ζ ′X(0) < 1 then, as a consequence
of the previous theorem and [?] Corollary 4.3.6., we have Γ′X(0) < 1,
where ΓX(·) denotes the modulus of NUS of X (see [?]).

(2) We do not know if R(X) can be less than 2 for some space X satisfying
ζX(β) ≥ 1 + β for all β.

(3) The estimate in Theorem ?? does not imply new fixed point results for
β close to 1. Indeed, if β ≥ −1 +

√
3 we have

2β − 1
1− β

≥ 1 + β.

In this sense, we can say that Corollary ?? is useful for β close to 1 and
Theorem ?? for β close to 0. It would be interesting to obtain fixed
point results from the modulus ζX(β) for medium values of β in some
spaces where WCS(X) = 1 and R(X) = 2.

Acknowledgement. The authors are very grateful to S. Prus for some useful
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