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Abstract

We study the connection between the Kadec-Klee property for local
convergence in measure (H;), the Kadec-Klee property for global con-
vergence in measure (Hy) and the Ag-condition for an Orlicz function
space L® (1) equipped with either the Luxemburg norm ||-||¢ or the Or-
licz norm || - ||$. Nominally, we prove that the following conditions are
equivalent for (L®(u), || - ||s):(1) ® satisfies the suitable As-condition.
(2) L®(u) € H;.(3) L®(n) € Hy. For (L2 (u), || - ||%) we prove that ®
satisfies the Ap-condition at oo if L®(u) € H,. However, an example
of an Orlicz space with the Orlicz norm is shown where L®(u) € H,
but ® does not satisfy the suitable As-condition.

1 Introduction

If (E,|.||g) is a normed linear space, then E is said to have the Kadec-Klee
property (E € H) if and only if the sequential weak convergence on the
unit sphere coincides with the norm convergence. It is well known that the
classical Ly-spaces 1 < p < oo have the Kadec-Klee property (see[?],[?]).
Although the space L0, 1] fails to have the Kadec-Klee property, Riesz
showed that each sequence almost everywhere convergent on the unit sphere
of an L,-spaces 1 < p < o0, is also norm-convergent.

Let E be a Banach function space over a measure space (2,%,u). E
is said to have the Kadec-Klee property for global convergence in measure
(E € Hy), if for all {z,,} and x in the unit ball whenever z,, — z globally in
measure on € then ||z, —z| — 0. E is said to have the Kadec-Klee property
for local convergence in measure (E € H;), if for all {z,,} and z in the unit
ball whenever x,, — z locally in measure on  then ||z, — z|| — 0.

These properties were investigated in [?] and [?] for symmetric spaces
defined on any interval [0, @),0 < a < oo and on the interval [0, 1), respec-
tively.

In this paper we study the connection between the Kadec-Klee prop-
erty for local convergence in measure, the Kadec-Klee property for global



convergence in measure and the As-condition for an Orlicz function space
equipped with either the Luxemburg norm or the Orlicz norm

We start fixing some notation. In the following R, R™ and N will stand
for the sets of real numbers, nonnegative numbers and positive integers,
respectively. By ® : R — [0, +oc]| we shall denote an Orlicz function, i.e.,
® is convex, even, left continuous on the whole R*, ®(0) = 0 and @ is not
identically equal to zero. For any Orlicz function ® we denote

ag :=sup{u > 0: ®(u) =0}

cgp :=sup{u > 0: ®(u) < +o0}.

We shall say that an Orlicz function satisfies the As-condition for all
u € R ( at infinity) [at zero] if there are positive constans K ([and ug with
0 < ®(up) < o0]) such that ®(2u) < KP(u) holds for all u € R (for every
|u| > wp)[for every |u| < wug ]. Obviously ® satisfies the Ag-condition for all
u € R if and only if satisfies the As-condition at zero and at infinity.

For any Orlicz function ® the statement ®-satisfies the suitable Ao-
condition means that:

® satisfies the Ag-condition for all ¢ if p is nonatomic and infinite.

® satisfies the As-condition at infinity if u is nonatomic and finite.

® satisfies the Ag-condition at 0 if p is a counting measure .

In the following , L°(x) will stand for the space of all (equivalence classes
of ) ¥-measurable real functions defined on €. For a given Orlicz function
® we define, on L°(u1), a convex functional (called a pseudomodular) by

Ia(@) = [ ®(a(®)d

The Orlicz space L®(p) is defined to be the set of all € L°(u) such that
Is(Ax) < oo for some A > 0 depending on z. We endow L®(u) with the
Luxemburg norm

x

H.%'H.:p = inf{/\ >0: Icp( ) < 1}

>

and with the Orlicz norm
el = sup{ [ a(thy(t)|de sy € L* (1) Lor () < 1,
where the function ®*is defined by the formula
®* = sup{uv — ®(v) : v > 0}

and called complementary to ® in the sense of Young.
It is well known that if ® is finitely valued and satisfies the condition
®(z)

lim =0,
r—00
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then the Orlicz norm satisfies the Amemiya formula (see[?] )

/|9 = inf{%(l + /Q B(kz)dp) : k> 0}

Moreover, there is a number k£* attaining the infimun, so that

]' *
2l = (1 + [ @k a)dp).
Q

In [?7], it is proved that Orlicz spaces generated by Orlicz functions satis-
fying the As-condition have the Kadec-Klee property for local convergence
in measure. In this paper, we will study more deeply the relationship be-
tween the As-condition and the Kadec-Klee property for local convergence
in measure or global convergence in measure for the Orlicz space L® (1) with
either the Luxemburg or the Orlicz norm.

In the sequel we will need some results concerning to order continuous
Banach lattices. A Banach space E is said to be a Banach lattice if there
exists in E a partial order, <, such that if z,y € E and |z| < |y| then
|lz]| < ly||. E is said to be order continuous if for all sequence {z,} in E*
such that =, \, 0 p.a.e. we have ||z,| — 0.

An easy proof of the following lemma, useful in the sequel, can be found
in [?].

Lemma 1.1 Let E be a Banach function lattice over a non-atomic o-finite
measure. If x, — x then there exist y € E*, (zp,) C (zn) and &,, C RT
with ey, | 0 sucht that |z, — x| < e, y.

2 Luxemburg norm
Our first result is the following

Theorem 2.1 If F is a Banach function lattice and is not order continuous,
then E' ¢ H;.

Proof: If E is not order continuous, it is well known, see[?] that there
exist a sequence {z,,} in E* with ||z,| = 1 and suppz,Nsuppz,, = 0 (which
implies x,, — 0 p-a.e.) and a function z € ET such that x, < x for any
neN.

Define

00
yzzxn and Yy, =y — Tn.
n=1

If we could show that y, — y weakly , or equivalently x, — 0 weakly,
we would deduce ||y, || — ||y|| because 0 < y,, < y.



However for any nonnegative * € E* and for all kK € N we have
k k
S a* () = 253 @) < 2 (@),
n=1 n=1

whence it follows that Y >, x*(x,) converges and so z*(x,) — 0 as n — 0.

Since every z* € E* can be written as a difference of two nonnegative

functionals , we have shown that x,, — 0 weakly. Therefore ||y,| — [|y|l-
We also have that y, — y p-a.e. However

1y = yall = llznll =1,
which means that E ¢ H;.

Corollary 2.2 Let ® be and arbitrary Orlicz function. Assume ® does not
satisfy the suitable Ag-condition. Then L®(u) ¢ H;.

Proof:

The proof follows from the fact that the space L®(p) is an order contin-
uous Banach lattice if and only if ® satisfies the suitable Ag-condition (see
(7],[2] and[?] ).

If p is a finite measure the Kadec-Klee property for local and global
convergence in measure are equivalent. So, we will restrict ourselves to
study the case of an infinite measure.

Theorem 2.3 Let ® be and arbitrary Orlicz function , (2,%, 1) a nonato-
mic and infinite measure and (L®(u),||.|lo) the Orlicz space endowed with
the Luxemburg norm. Assume ag > 0 and © satisfies the Ao-condition at
oo. Then L®(p) ¢ H,.

Proof: Consider a sequence of measurable set {A,,} such that
w(An) =27".

Set A = UA,,.
Define
r=apxo\a and T, =asxo\a + baxa,

where 1 = ®(b,,)1(Ay). Such a sequence (by,) exists since ® satisfies the Ay
condition at oo.
We first note that x,—x = b, x4, . Therefore x,, — x globally in measure.
Now we are going to show that

[zlle = [[2nlle = 1.
We have

Ip(x) < Ip(a) = B(as)u(\ A) + (b, )u(Ay) = 1.



Since ® satisfies the Ag-condition at oo this implies (see [?])
[z]le < [lonlle = 1. (1)
On the other hand for all A > 1,
Is(\z) = ®(Nag)u(Q\ A) = +oo.
So |[[Az|l¢ > 1 which implies ||z||¢ > 1. Hence by (1) using we obtain
Jalle = llznllo = 1

In order to finish the proof we only need to prove that ||z — x,||¢ does
not converge to 0. But

which implies ||z, — z|¢ = 1.

Theorem 2.4 Let ® be and arbitrary Orlicz function, (Q,3, 1) a nonato-
mic and infinite measure and (L2 (i), ||.|)a) the Orlicz space endowed with
the Luxemburg norm. Assume ® does not satisfy the Aq-condition at 0, ¢
vanishes only at zero and ® satisfies the Ag-condition at co. Then L® (1) ¢
H,.

Proof: Assume ® does not satisfy the As-condition at 0. Then, there
exists a sequence (uy,) of positive real numbers with u,, — 0 and such that

B((1+ %)un) > 2B (uy).

Divide €2 into two disjoint parts A and B such that u(A) = 400 and
w(B) > 0.
Select a sequence (A,,) of pairwise disjoint measurable subsets of A such
that
(un)pu(Ay) =271

Select a sequence (B,,), B, € ¥, B,, C B such that u(B,) — 0.
Consider b, > 0 satisfying

Define

o x
Tn =) Usk—1XAgp_, + D2nXBy, a0d T =D Ugk_1XAy_,-
k=1 k=1

We first note that
Tp — T = anXan —0



globally in measure.
Given A > 1 there exists ng € N such that (1 + ) < X for all n > ny.
Thus

Ip(Ax) = Y @(Nuggp—1)p(Aze—1) > Y (L g Juzk—)p(Azp—1) = —I—oo.I
k=1 2k—1>ng
So
[z]le =1 (2)

We observe now that
Ip(z) < Ig(y) Z (ugn—1)p(Azk—1) + P(ban)u(Ba2n) = 1,

which with (2) give us
[znlle = [zl =1

In order to finish the proof we only need to prove that ||z — x,||¢ does
not converge to 0. But

Ta(irn —7) = ®(bon)(Ban) =

Since ® satisfies the As-condition at oo, there exists § > 0 such that
|xn — x|l >0 > 0.
Theorem 2.5 Let ® be and arbitrary Orlicz function , (2,3, u) a nonato-
mic and infinite measure and (L®(u), ||.||o) the Orlicz space endowed with
the Luxemburg norm. Assume ® does not satisfy the Ao-condition at co.

Then L*(pn) ¢ H,.

Proof:
If we assume that ® does not satisfy the As-condition at infinity then
for all K € RT there exists u,(x) > n such that

1
O((1+ ;)%(K)) > K®(up(xy)-
Consider K = 2"+, There exist u, > n such that
1
B((1 4 =up) > 2" D (uy,).
n

Let A,, € ¥ be such that

D (up)pu(Ay) =277



Define

(o)
xr = Z upXxa, and xp = Z URX Ay,
k=1 kAn

We first note that
‘/BTL_:I":UTLXAn _>0

globally in measure.
We have

Ip(zy) < Ip(z) = Z D(up)u(Ay) = 1.
n=1

So [[znlle < [lzfle < 1.
On the other hand, taking any A > 1 it can be proved that

Ip(A\xy) = +00

Thus ||zy|le = ||z||le = 1. To finish the proof it suffices to show that (x;,)
does not converge to = in (L?(p),||.]lo). However

Ia(1 4+ =) n = ) = B+ Dun)u(An) > 2°B((1 4+ u)(An) = 1

Thus ||z, — z|le > (1 + %)
All the previous results can be summarize in the following theorem

Theorem 2.6 Let ® and arbitrary Orlicz function and (L® (), | - |le) the
Orlicz space endowed with the Luxemburg norm. The following statements
are equivalent

1. © satisfies the suitable As-condition.
2. L®(u) € Hy
3. L®(u) € H,

3 Orlicz Norm

As usual, L' denotes the Lebesgue space of these x in L? that
Izl = [, lo(t)ldt < oc
R+

and L denotes the space of m-essentially bounded functions in L° equipped
with the norm
o]l = ess sup [z (2)].

Consider the following norms for L' N L> and L' + L™

2]l L1nzee = sup([lz]|1, 120



and

2]l L1 oo = inf([lufls + [|v]loo),
respectively, where the supremum and the infimum are taken over allu € L',
v € L* such that u +v = z.

In [?] ,[?] it is proved that L' N L>® = L¥ and L' + L™ = L%, where
Y(u) = |u| for Ju| < 1, ¥(u) = oo for |u| > 1 and ¢(u) = max(0,|u| — 1).
The functions ¥ and ¢ are mutually complemented in the sense of Young.

It is well known that ||z, = ||z 1qz for any @ € LY (see[?]). More-
over, the spaces

(L' 0L, flall g )s (B + L, [l g poe) and (L2, ), (£2,]119)
form two couples of dual spaces in the Kothe’s sense. Therefore

118 = lellpiy e

for all x € L?. Additionally, in [?] it is proved the Amemiya formula for the
norm in L' + L,
For any # € L° the decreasing rearrangement of x is the function x*
defined by
x*(t) = inf{\ > 0:dz(t) < \}

where d(t) is the distribution function defined by
dy(t) = p({w € Q- [x(w)| > t}
For our purposes, it is worthwhile to note, see[?], that
(1 4 32)" (t1 + t2) < 27(t1) + 25(t2)

and for all z € L' + L the equality

1
ez = [ o (B)at

holds.

From Theorem 2.5 we know that (L®(u),| - |[¢) does not satisfy the
Kadec-Klee property for global convergence in measure if ® does not satisfy
the As-condition at co. However, this fact is not true when the Orlicz norm
is considered.

Theorem 3.1 The space (L*+ L, ||z| 11 1~) satifies the Kadec-Klee prop-
ertie for global convergence in measure (L' + L>® € Hy).

Proof: Assume (x,) C L'+ L>® , z € L' + L> | 2, — x globally in
measure and |||/ 1o = ||z]| 1y pe = 1.



Since x, — x globally in measure we have z; — z* p-a.e. Thus

9071)([0,1] - fC*X[o,l]M —a.e.

Bearing in mind that L' € H; and ||z} x0,1ll1 = llz*x (0,11l 21 = 1 we deduce

1
/ |z (s) — x*(s)|ds — 0.
0

By Lemma 1.1 there exists (7}, ) a subsequence of x;, and y > 0, y €
L'[0,1] such that |z}, (£) —z*(t)| < y(t)a.e. in [0,1].
On the other hand

(o, = )" (8) < 25, () 27 (5) < 20°(5) + 9(5):

Therefore, by applying the Lebesgue dominated convergence theorem we
obtain

/%%%—w%mﬁﬁo
0

which is equivalent to
[#n), — @[ L11p0c — 0.

Thus, since for each subsequence of (x,, — ) we we can extract a subse-
quence which converges in norm to 0, we have

and the proof is concluded.
Our last result is the following

Theorem 3.2 If ® does not satisfy the As-condition at 0o and p is nonatomidl
then (L® (), || - |3) & H,-

Proof: If p is finite it is obvious , because in this case se we have
Hy & Hf = 0.C. = Ay(c0).

Assume that p is nonatomic and infinite and ® ¢ Ay(00). There exists
a sequence (u,) of nonnegative real numbers such that u, 1 oo and

O (2uy) > 2"P(up).

Take any nonnegative z € L? with ||z||3 = 1. Since ® does not satisfies
the As-condition at oo we have lim;_, o @ = 0 and so the Amemiya formula
is satisfied.

There exists a sequence (A4,) in ¥ with u(A4,) = co and such that

Is(2kxxa,) <277,



where k > 1 satisfies

el = 1 (1 + T (k).

Let B,, C A,, be such that
(I)(un)ﬂ(Bn) =2""

and define
Up, Unp,
Tp =T+ o XBn = TXO\B, + (z + %)XBW

Since x, > x > 0, we have ||xn||% > ||$||% =1.
On the other hand

1
lealle = inf 2(1+To(pzn)) <

< L+ Takn) =

1 Un
= —(1+ Is(kzxo\B,) + lo(kzXxB, + 5 XB,) <

i 2
1

< 1+ 5(_T<p(2k::c><3n) + Ip(unXB,)) <
1,1 1

So [|zn|l$ — ||z]|%. Furthemore z,, — x globally in measure.
We are going to show that ||z, —z|% > 1 and the proof will be concluded.
We have

Ip(4k(zy — ) = I6(2unxB, ) = P(2un)u(By)) > 1.

So [|zn, — z|lo > 4 and since ||z, — z||} > |zn — z[|o the proof is
concluded.

For the case of the Orlicz norm we summarize our results in the following
theorem.

Theorem 3.3 Let ® and arbitrary Orlicz function, (L% (i), ||-||$) the Orlicz
space endowed with the Orlicz norm and p nonatomic. Then

1. ® ¢ Ag(oo) = L® ¢ H,.

2. ® needs not to vanish only at zero to have property H, (L' + L as
an example).

We finish with an open question: Assume that ® vanishes outside 0 and
® ¢ Ay(c0). Is it true that (L®(u),| - 1|%) & H,.
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