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Abstract

We study the connection between the Kadec-Klee property for local
convergence in measure (Hl), the Kadec-Klee property for global con-
vergence in measure (Hg) and the ∆2-condition for an Orlicz function
space LΦ(µ) equipped with either the Luxemburg norm ‖·‖Φ or the Or-
licz norm ‖ · ‖0Φ. Nominally, we prove that the following conditions are
equivalent for (LΦ(µ), ‖ · ‖Φ):(1) Φ satisfies the suitable ∆2-condition.
(2) LΦ(µ) ∈ Hl.(3) LΦ(µ) ∈ Hg. For (LΦ(µ), ‖ · ‖0Φ) we prove that Φ
satisfies the ∆2-condition at ∞ if LΦ(µ) ∈ Hg. However, an example
of an Orlicz space with the Orlicz norm is shown where LΦ(µ) ∈ Hg

but Φ does not satisfy the suitable ∆2-condition.

1 Introduction

If (E, ‖.‖E) is a normed linear space, then E is said to have the Kadec-Klee
property (E ∈ H) if and only if the sequential weak convergence on the
unit sphere coincides with the norm convergence. It is well known that the
classical Lp-spaces 1 < p < ∞ have the Kadec-Klee property (see[?],[?]).
Although the space L1[0, 1] fails to have the Kadec-Klee property, Riesz
showed that each sequence almost everywhere convergent on the unit sphere
of an Lp-spaces 1 ≤ p < ∞, is also norm-convergent.

Let E be a Banach function space over a measure space (Ω, Σ, µ). E
is said to have the Kadec-Klee property for global convergence in measure
(E ∈ Hg), if for all {xn} and x in the unit ball whenever xn → x globally in
measure on Ω then ‖xn−x‖ → 0. E is said to have the Kadec-Klee property
for local convergence in measure (E ∈ Hl), if for all {xn} and x in the unit
ball whenever xn → x locally in measure on Ω then ‖xn − x‖ → 0.

These properties were investigated in [?] and [?] for symmetric spaces
defined on any interval [0, α), 0 < α ≤ ∞ and on the interval [0, 1), respec-
tively.

In this paper we study the connection between the Kadec-Klee prop-
erty for local convergence in measure, the Kadec-Klee property for global
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convergence in measure and the ∆2-condition for an Orlicz function space
equipped with either the Luxemburg norm or the Orlicz norm

We start fixing some notation. In the following R,R+ and N will stand
for the sets of real numbers, nonnegative numbers and positive integers,
respectively. By Φ : R → [0,+∞] we shall denote an Orlicz function, i.e.,
Φ is convex, even, left continuous on the whole R+, Φ(0) = 0 and Φ is not
identically equal to zero. For any Orlicz function Φ we denote

aΦ := sup{u ≥ 0 : Φ(u) = 0}

cΦ := sup{u > 0 : Φ(u) < +∞}.
We shall say that an Orlicz function satisfies the ∆2-condition for all

u ∈ R ( at infinity) [at zero] if there are positive constans K ([and u0 with
0 < Φ(u0) < ∞]) such that Φ(2u) ≤ KΦ(u) holds for all u ∈ R (for every
|u| ≥ u0)[for every |u| ≤ u0 ]. Obviously Φ satisfies the ∆2-condition for all
u ∈ R if and only if satisfies the ∆2-condition at zero and at infinity.

For any Orlicz function Φ the statement Φ-satisfies the suitable ∆2-
condition means that:

Φ satisfies the ∆2-condition for all t if µ is nonatomic and infinite.
Φ satisfies the ∆2-condition at infinity if µ is nonatomic and finite.
Φ satisfies the ∆2-condition at 0 if µ is a counting measure .
In the following , L0(µ) will stand for the space of all (equivalence classes

of ) Σ-measurable real functions defined on Ω. For a given Orlicz function
Φ we define, on L0(µ), a convex functional (called a pseudomodular) by

IΦ(x) =
∫

Ω
Φ(x(t))dµ.

The Orlicz space LΦ(µ) is defined to be the set of all x ∈ L0(µ) such that
IΦ(λx) < ∞ for some λ > 0 depending on x. We endow LΦ(µ) with the
Luxemburg norm

‖x‖Φ = inf{λ > 0 : IΦ(
x

λ
) ≤ 1}

and with the Orlicz norm

‖x‖0
Φ = sup{

∫

Ω
|x(t)y(t)|dµ : y ∈ LΦ∗(µ), IΦ∗(y) ≤ 1},

where the function Φ∗is defined by the formula

Φ∗ = sup{uv − Φ(v) : v ≥ 0}

and called complementary to Φ in the sense of Young.
It is well known that if Φ is finitely valued and satisfies the condition

lim
x→∞

Φ(x)
x

= 0,
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then the Orlicz norm satisfies the Amemiya formula (see[?] )

‖x‖0
Φ = inf{1

k
(1 +

∫

Ω
Φ(kx)dµ) : k > 0}.

Moreover, there is a number k∗ attaining the infimun, so that

‖x‖0
Φ =

1
k∗

(1 +
∫

Ω
Φ(k∗x)dµ).

In [?], it is proved that Orlicz spaces generated by Orlicz functions satis-
fying the ∆2-condition have the Kadec-Klee property for local convergence
in measure. In this paper, we will study more deeply the relationship be-
tween the ∆2-condition and the Kadec-Klee property for local convergence
in measure or global convergence in measure for the Orlicz space LΦ(µ) with
either the Luxemburg or the Orlicz norm.

In the sequel we will need some results concerning to order continuous
Banach lattices. A Banach space E is said to be a Banach lattice if there
exists in E a partial order, ≤, such that if x, y ∈ E and |x| ≤ |y| then
‖x‖ ≤ ‖y‖. E is said to be order continuous if for all sequence {xn} in E+

such that xn ↘ 0 µ.a.e. we have ‖xn‖ → 0.
An easy proof of the following lemma, useful in the sequel, can be found

in [?].

Lemma 1.1 Let E be a Banach function lattice over a non-atomic σ-finite
measure. If xn → x then there exist y ∈ E+, (xnk

) ⊂ (xn) and εnk
⊂ R+

with εnk
↓ 0 sucht that |xnk

− x| ≤ εnk
y.

2 Luxemburg norm

Our first result is the following

Theorem 2.1 If E is a Banach function lattice and is not order continuous,
then E /∈ Hl.

Proof: If E is not order continuous, it is well known, see[?] that there
exist a sequence {xn} in E+ with ‖xn‖ = 1 and suppxn∩suppxm = ∅ (which
implies xn → 0 µ-a.e.) and a function x ∈ E+ such that xn ≤ x for any
n ∈ N .

Define

y =
∞∑

n=1

xn and yn = y − xn.

If we could show that yn → y weakly , or equivalently xn → 0 weakly,
we would deduce ‖yn‖ → ‖y‖ because 0 ≤ yn ≤ y.
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However for any nonnegative x∗ ∈ E∗ and for all k ∈ N we have

k∑

n=1

x∗(xn) = x∗(
k∑

n=1

xn) ≤ x∗(x),

whence it follows that
∑∞

n=1 x∗(xn) converges and so x∗(xn) → 0 as n →∞.
Since every x∗ ∈ E∗ can be written as a difference of two nonnegative
functionals , we have shown that xn → 0 weakly. Therefore ‖yn‖ → ‖y‖.

We also have that yn → y µ-a.e. However

‖y − yn‖ = ‖xn‖ = 1,

which means that E /∈ Hl.

Corollary 2.2 Let Φ be and arbitrary Orlicz function. Assume Φ does not
satisfy the suitable ∆2-condition. Then LΦ(µ) /∈ Hl.

Proof:
The proof follows from the fact that the space LΦ(µ) is an order contin-

uous Banach lattice if and only if Φ satisfies the suitable ∆2-condition (see
[?],[?] and[?] ).

If µ is a finite measure the Kadec-Klee property for local and global
convergence in measure are equivalent. So, we will restrict ourselves to
study the case of an infinite measure.

Theorem 2.3 Let Φ be and arbitrary Orlicz function , (Ω,Σ, µ) a nonato-
mic and infinite measure and (LΦ(µ), ‖.‖0) the Orlicz space endowed with
the Luxemburg norm. Assume aΦ > 0 and Φ satisfies the ∆2-condition at
∞. Then LΦ(µ) /∈ Hg.

Proof: Consider a sequence of measurable set {An} such that

µ(An) = 2−n.

Set A = ∪An.
Define

x = aΦχΩ\A and xn = aΦχΩ\A + bnχAn

where 1 = Φ(bn)µ(An). Such a sequence (bn) exists since Φ satisfies the ∆2

condition at ∞.
We first note that xn−x = bnχAn . Therefore xn → x globally in measure.
Now we are going to show that

‖x‖Φ = ‖xn‖Φ = 1.

We have

IΦ(x) ≤ IΦ(xn) = Φ(aΦ)µ(Ω \A) + Φ(bn)µ(An) = 1.
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Since Φ satisfies the ∆2-condition at ∞ this implies (see [?])

‖x‖Φ ≤ ‖xn‖Φ = 1. (1)

On the other hand for all λ > 1,

IΦ(λx) = Φ(λaΦ)µ(Ω \A) = +∞.

So ‖λx‖Φ ≥ 1 which implies ‖x‖Φ ≥ 1. Hence by (1) using we obtain

‖x‖Φ = ‖xn‖Φ = 1

In order to finish the proof we only need to prove that ‖x − xn‖Φ does
not converge to 0. But

IΦ(xn − x) = Φ(bn)µ(An) = 1

which implies ‖xn − x‖Φ = 1.

Theorem 2.4 Let Φ be and arbitrary Orlicz function, (Ω, Σ, µ) a nonato-
mic and infinite measure and (LΦ(µ), ‖.‖)Φ) the Orlicz space endowed with
the Luxemburg norm. Assume Φ does not satisfy the ∆2-condition at 0, Φ
vanishes only at zero and Φ satisfies the ∆2-condition at ∞. Then LΦ(µ) /∈
Hg.

Proof: Assume Φ does not satisfy the ∆2-condition at 0. Then, there
exists a sequence (un) of positive real numbers with un → 0 and such that

Φ((1 +
1
n

)un) > 2nΦ(un).

Divide Ω into two disjoint parts A and B such that µ(A) = +∞ and
µ(B) > 0.

Select a sequence (An) of pairwise disjoint measurable subsets of A such
that

Φ(un)µ(An) = 2−n−1.

Select a sequence (Bn), Bn ∈ Σ , Bn ⊂ B such that µ(Bn) → 0.
Consider bn > 0 satisfying

Φ(bn)µ(Bn) =
1
2

Define

xn =
∞∑

k=1

u2k−1χA2k−1
+ b2nχB2n and x =

∞∑

k=1

u2k−1χA2k−1
.

We first note that
xn − x = b2nχB2n → 0
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globally in measure.
Given λ > 1 there exists n0 ∈ N such that (1 + 1

n) < λ for all n > n0.
Thus

IΦ(λx) =
∞∑

k=1

Φ(λu2k−1)µ(A2k−1) ≥
∑

2k−1>n0

Φ((1+
1

2k − 1
)u2k−1)µ(A2k−1) = +∞.

So
‖x‖Φ ≥ 1 (2)

We observe now that

IΦ(x) ≤ IΦ(xn) =
∞∑

k=1

Φ(u2k−1)µ(A2k−1) + Φ(b2n)µ(B2n) = 1,

which with (2) give us
‖xn‖Φ = ‖x‖Φ = 1

In order to finish the proof we only need to prove that ‖x − xn‖Φ does
not converge to 0. But

IΦ(xn − x) = Φ(b2n)µ(B2n) =
1
2
.

Since Φ satisfies the ∆2-condition at ∞, there exists δ > 0 such that

‖xn − x‖Φ > δ > 0.

Theorem 2.5 Let Φ be and arbitrary Orlicz function , (Ω,Σ, µ) a nonato-
mic and infinite measure and (LΦ(µ), ‖.‖Φ) the Orlicz space endowed with
the Luxemburg norm. Assume Φ does not satisfy the ∆2-condition at ∞.
Then LΦ(µ) /∈ Hg.

Proof:
If we assume that Φ does not satisfy the ∆2-condition at infinity then

for all K ∈ R+ there exists un(K) ≥ n such that

Φ((1 +
1
n

)un(K)) > KΦ(un(K)).

Consider K = 2n+1. There exist un ≥ n such that

Φ((1 +
1
n

)un) > 2n+1Φ(un).

Let An ∈ Σ be such that

Φ(un)µ(An) = 2−n.
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Define

x =
∞∑

k=1

ukχAk
and xn =

∑

k 6=n

ukχAk

We first note that
xn − x = unχAn → 0

globally in measure.
We have

IΦ(xn) ≤ IΦ(x) =
∞∑

n=1

Φ(un)µ(An) = 1.

So ‖xn‖Φ ≤ ‖x‖Φ ≤ 1.
On the other hand, taking any λ > 1 it can be proved that

IΦ(λxn) = +∞

Thus ‖xn‖Φ = ‖x‖Φ = 1. To finish the proof it suffices to show that (xn)
does not converge to x in (Lφ(µ), ‖.‖0). However

IΦ((1 +
1
n

)(xn − x)) = Φ((1 +
1
n

)un)µ(An) > 2nΦ((1 +
1
n

un)µ(An) = 1.

Thus ‖xn − x‖Φ ≥ (1 + 1
n)

All the previous results can be summarize in the following theorem

Theorem 2.6 Let Φ and arbitrary Orlicz function and (LΦ(µ), ‖ · ‖Φ) the
Orlicz space endowed with the Luxemburg norm. The following statements
are equivalent

1. Φ satisfies the suitable ∆2-condition.

2. LΦ(µ) ∈ Hg

3. LΦ(µ) ∈ Hl

3 Orlicz Norm

As usual, L1 denotes the Lebesgue space of these x in L0 that

‖x‖1 =
∫

R+
|x(t)|dt < ∞

and L∞ denotes the space of m-essentially bounded functions in L0 equipped
with the norm

‖x‖ = ess sup |x(t)|.
Consider the following norms for L1 ∩ L∞ and L1 + L∞

‖x‖L1∩L∞ = sup(‖x‖1, ‖x‖∞)
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and
‖x‖L1+L∞ = inf(‖u‖1 + ‖v‖∞),

respectively, where the supremum and the infimum are taken over all u ∈ L1,
v ∈ L∞ such that u + v = x.

In [?] ,[?] it is proved that L1 ∩ L∞ = Lψ and L1 + L∞ = Lφ, where
ψ(u) = |u| for |u| ≤ 1, ψ(u) = ∞ for |u| > 1 and φ(u) = max(0, |u| − 1).
The functions ψ and φ are mutually complemented in the sense of Young.

It is well known that ‖x‖ψ = ‖x‖L1∩L∞ for any x ∈ Lψ (see[?]). More-
over, the spaces

(L1 ∩ L∞, ‖x‖L1∩L∞), (L1 + L∞, ‖x‖L1+L∞) and (Lψ, ‖.‖ψ), (Lφ, ‖.‖0
φ)

form two couples of dual spaces in the Kothe’s sense. Therefore

‖.‖0
φ = ‖x‖L1+L∞

for all x ∈ Lφ. Additionally, in [?] it is proved the Amemiya formula for the
norm in L1 + L∞.

For any x ∈ L0 the decreasing rearrangement of x is the function x∗

defined by
x∗(t) = inf{λ > 0 : dx(t) < λ}

where dx(t) is the distribution function defined by

dx(t) = µ({w ∈ Ω : |x(w)| > t}

For our purposes, it is worthwhile to note, see[?], that

(x1 + x2)∗(t1 + t2) ≤ x∗1(t1) + x∗2(t2)

and for all x ∈ L1 + L∞ the equality

‖x‖L1+L∞ =
∫ 1

0
x∗(t)dt

holds.
From Theorem 2.5 we know that (LΦ(µ), ‖ · ‖Φ) does not satisfy the

Kadec-Klee property for global convergence in measure if Φ does not satisfy
the ∆2-condition at ∞. However, this fact is not true when the Orlicz norm
is considered.

Theorem 3.1 The space (L1+L∞, ‖x‖L1+L∞) satifies the Kadec-Klee prop-
ertie for global convergence in measure (L1 + L∞ ∈ Hg).

Proof: Assume (xn) ⊂ L1 + L∞ , x ∈ L1 + L∞ , xn → x globally in
measure and ‖xn‖L1+L∞ = ‖x‖L1+L∞ = 1.
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Since xn → x globally in measure we have x∗n → x∗ µ-a.e. Thus

x∗nχ[0,1] → x∗χ[0,1]µ− a.e.

Bearing in mind that L1 ∈ Hl and ‖x∗nχ[0,1]‖L1 = ‖x∗χ[0,1]‖L1 = 1 we deduce

∫ 1

0
|x∗n(s)− x∗(s)|ds → 0.

By Lemma 1.1 there exists (x∗nk
) a subsequence of x∗n and y ≥ 0, y ∈

L1[0, 1] such that |x∗nk
(t)− x∗(t)| ≤ y(t)a.e. in [0, 1].

On the other hand

(xnk
− x)∗(t) ≤ x∗nk

(
t

2
) + x∗(

t

2
) ≤ 2x∗(

t

2
) + y(

t

2
).

Therefore, by applying the Lebesgue dominated convergence theorem we
obtain ∫ 1

0
(xnk

− x)∗(t)dt → 0

which is equivalent to
‖xnk

− x‖L1+L∞ → 0.

Thus, since for each subsequence of (xn − x) we we can extract a subse-
quence which converges in norm to 0, we have

‖xn − x‖L1+L∞ → 0

and the proof is concluded.
Our last result is the following

Theorem 3.2 If Φ does not satisfy the ∆2-condition at∞ and µ is nonatomic
then (LΦ(µ), ‖ · ‖0

Φ) /∈ Hg.

Proof: If µ is finite it is obvious , because in this case se we have

Hg ⇔ Hf ⇒ O.C. ⇒ ∆2(∞).

Assume that µ is nonatomic and infinite and Φ /∈ ∆2(∞). There exists
a sequence (un) of nonnegative real numbers such that un ↑ ∞ and

Φ(2un) > 2nΦ(un).

Take any nonnegative x ∈ LΦ with ‖x‖0
Φ = 1. Since Φ does not satisfies

the ∆2-condition at∞ we have limt→∞
Φ(t)

t = 0 and so the Amemiya formula
is satisfied.

There exists a sequence (An) in Σ with µ(An) = ∞ and such that

IΦ(2kxχAn) ≤ 2−n,
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where k ≥ 1 satisfies

‖x‖0
Φ =

1
k
(1 + IΦ(kx)).

Let Bn ⊂ An be such that

Φ(un)µ(Bn) = 2−n

and define
xn = x +

un

2k
χBn = xχΩ\Bn

+ (x +
un

2k
)χBn .

Since xn ≥ x ≥ 0, we have ‖xn‖0
Φ ≥ ‖x‖0

Φ = 1.
On the other hand

‖xn‖0
Φ = inf

ρ>0

1
ρ
(1 + IΦ(ρxn)) ≤

≤ 1
k
(1 + IΦ(kxn)) =

=
1
k
(1 + IΦ(kxχΩ\Bn

) + IΦ(kxχBn +
un

2
χBn) ≤

≤ 1 +
1
2
(IΦ(2kxχBn) + IΦ(unχBn)) ≤

≤ 1 +
1
2
(

1
2n

+
1
2n

) → 1

So ‖xn‖0
Φ → ‖x‖0

Φ. Furthemore xn → x globally in measure.
We are going to show that ‖xn−x‖0

Φ ≥ 1
4 and the proof will be concluded.

We have

IΦ(4k(xn − x)) = IΦ(2unχBn) = Φ(2un)µ(Bn)) > 1.

So ‖xn − x‖Φ ≥ 1
4k and since ‖xn − x‖0

Φ ≥ ‖xn − x‖Φ the proof is
concluded.

For the case of the Orlicz norm we summarize our results in the following
theorem.

Theorem 3.3 Let Φ and arbitrary Orlicz function, (LΦ(µ), ‖·‖0
Φ) the Orlicz

space endowed with the Orlicz norm and µ nonatomic. Then

1. Φ /∈ ∆2(∞) ⇒ LΦ /∈ Hg.

2. Φ needs not to vanish only at zero to have property Hg (L1 + L∞ as
an example).

We finish with an open question: Assume that Φ vanishes outside 0 and
Φ /∈ ∆2(∞). Is it true that (LΦ(µ), ‖ · ‖0

Φ) /∈ Hg.
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