CHARACTERIZATION OF KADEC-KLEE PROPERTIES IN ORLICZ SPACE

T. Dominguez, H. Hudzick, G. López, B. Sims

May 17, 2005

Abstract

We study the connection between the Kadec-Klee property for local convergence in measure (H_l) , the Kadec-Klee property for global convergence in measure (H_g) and the Δ_2 -condition for an Orlicz function space $L^{\Phi}(\mu)$ equipped with either the Luxemburg norm $\|\cdot\|_{\Phi}$ or the Orlicz norm $\|\cdot\|_{\Phi}^{0}$. Nominally, we prove that the following conditions are equivalent for $(L^{\Phi}(\mu), \|\cdot\|_{\Phi})$:(1) Φ satisfies the suitable Δ_2 -condition. (2) $L^{\Phi}(\mu) \in H_l.(3)$ $L^{\Phi}(\mu) \in H_g$. For $(L^{\Phi}(\mu), \|\cdot\|_{\Phi}^{0})$ we prove that Φ satisfies the Δ_2 -condition at ∞ if $L^{\Phi}(\mu) \in H_g$. However, an example of an Orlicz space with the Orlicz norm is shown where $L^{\Phi}(\mu) \in H_g$ but Φ does not satisfy the suitable Δ_2 -condition.

1 Introduction

If $(E, \|.\|_E)$ is a normed linear space, then E is said to have the Kadec-Klee property $(E \in H)$ if and only if the sequential weak convergence on the unit sphere coincides with the norm convergence. It is well known that the classical L_p -spaces 1 have the Kadec-Klee property (see[?],[?]). $Although the space <math>L_1[0, 1]$ fails to have the Kadec-Klee property, Riesz showed that each sequence almost everywhere convergent on the unit sphere of an L_p -spaces $1 \leq p < \infty$, is also norm-convergent.

Let E be a Banach function space over a measure space (Ω, Σ, μ) . Eis said to have the Kadec-Klee property for global convergence in measure $(E \in H_g)$, if for all $\{x_n\}$ and x in the unit ball whenever $x_n \to x$ globally in measure on Ω then $||x_n - x|| \to 0$. E is said to have the Kadec-Klee property for local convergence in measure $(E \in H_l)$, if for all $\{x_n\}$ and x in the unit ball whenever $x_n \to x$ locally in measure on Ω then $||x_n - x|| \to 0$.

These properties were investigated in [?] and [?] for symmetric spaces defined on any interval $[0, \alpha), 0 < \alpha \leq \infty$ and on the interval [0, 1), respectively.

In this paper we study the connection between the Kadec-Klee property for local convergence in measure, the Kadec-Klee property for global convergence in measure and the Δ_2 -condition for an Orlicz function space equipped with either the Luxemburg norm or the Orlicz norm

We start fixing some notation. In the following R, R^+ and N will stand for the sets of real numbers, nonnegative numbers and positive integers, respectively. By $\Phi : R \to [0, +\infty]$ we shall denote an Orlicz function, i.e., Φ is convex, even, left continuous on the whole R^+ , $\Phi(0) = 0$ and Φ is not identically equal to zero. For any Orlicz function Φ we denote

$$a_{\Phi} := \sup\{u \ge 0 : \Phi(u) = 0\}$$

 $c_{\Phi} := \sup\{u > 0 : \Phi(u) < +\infty\}.$

We shall say that an Orlicz function satisfies the Δ_2 -condition for all $u \in R$ (at infinity) [at zero] if there are positive constans K ([and u_0 with $0 < \Phi(u_0) < \infty$]) such that $\Phi(2u) \le K\Phi(u)$ holds for all $u \in R$ (for every $|u| \ge u_0$)[for every $|u| \le u_0$]. Obviously Φ satisfies the Δ_2 -condition for all $u \in R$ if and only if satisfies the Δ_2 -condition at zero and at infinity.

For any Orlicz function Φ the statement Φ -satisfies the suitable Δ_2 condition means that:

 Φ satisfies the Δ_2 -condition for all t if μ is nonatomic and infinite.

 Φ satisfies the Δ_2 -condition at infinity if μ is nonatomic and finite.

 Φ satisfies the Δ_2 -condition at 0 if μ is a counting measure .

In the following, $L^0(\mu)$ will stand for the space of all (equivalence classes of) Σ -measurable real functions defined on Ω . For a given Orlicz function Φ we define, on $L^0(\mu)$, a convex functional (called a pseudomodular) by

$$I_{\Phi}(x) = \int_{\Omega} \Phi(x(t)) d\mu.$$

The Orlicz space $L^{\Phi}(\mu)$ is defined to be the set of all $x \in L^{0}(\mu)$ such that $I_{\Phi}(\lambda x) < \infty$ for some $\lambda > 0$ depending on x. We endow $L^{\Phi}(\mu)$ with the Luxemburg norm

$$\|x\|_{\Phi} = \inf\{\lambda > 0 : I_{\Phi}(\frac{x}{\lambda}) \le 1\}$$

and with the Orlicz norm

$$||x||_{\Phi}^{0} = \sup\{\int_{\Omega} |x(t)y(t)|d\mu : y \in L^{\Phi^{*}}(\mu), I_{\Phi^{*}}(y) \le 1\},\$$

where the function Φ^* is defined by the formula

$$\Phi^* = \sup\{uv - \Phi(v) : v \ge 0\}$$

and called complementary to Φ in the sense of Young.

It is well known that if Φ is finitely valued and satisfies the condition

$$\lim_{x \to \infty} \frac{\Phi(x)}{x} = 0,$$

then the Orlicz norm satisfies the Amemiya formula (see[?])

$$\|x\|_{\Phi}^{0} = \inf\{\frac{1}{k}(1 + \int_{\Omega} \Phi(kx)d\mu) : k > 0\}.$$

Moreover, there is a number k^* attaining the infimum, so that

$$\|x\|_{\Phi}^{0} = \frac{1}{k^{*}}(1 + \int_{\Omega} \Phi(k^{*}x)d\mu).$$

In [?], it is proved that Orlicz spaces generated by Orlicz functions satisfying the Δ_2 -condition have the Kadec-Klee property for local convergence in measure. In this paper, we will study more deeply the relationship between the Δ_2 -condition and the Kadec-Klee property for local convergence in measure or global convergence in measure for the Orlicz space $L^{\Phi}(\mu)$ with either the Luxemburg or the Orlicz norm.

In the sequel we will need some results concerning to order continuous Banach lattices. A Banach space E is said to be a Banach lattice if there exists in E a partial order, \leq , such that if $x, y \in E$ and $|x| \leq |y|$ then $||x|| \leq ||y||$. E is said to be order continuous if for all sequence $\{x_n\}$ in E^+ such that $x_n \searrow 0$ μ .a.e. we have $||x_n|| \to 0$.

An easy proof of the following lemma, useful in the sequel, can be found in [?].

Lemma 1.1 Let E be a Banach function lattice over a non-atomic σ -finite measure. If $x_n \to x$ then there exist $y \in E^+$, $(x_{n_k}) \subset (x_n)$ and $\varepsilon_{n_k} \subset R^+$ with $\varepsilon_{n_k} \downarrow 0$ such that $|x_{n_k} - x| \leq \varepsilon_{n_k} y$.

2 Luxemburg norm

Our first result is the following

Theorem 2.1 If E is a Banach function lattice and is not order continuous, then $E \notin H_l$.

Proof: If *E* is not order continuous, it is well known, see[?] that there exist a sequence $\{x_n\}$ in E^+ with $||x_n|| = 1$ and $\operatorname{supp} x_n \cap \operatorname{supp} x_m = \emptyset$ (which implies $x_n \to 0$ μ -a.e.) and a function $x \in E^+$ such that $x_n \leq x$ for any $n \in N$.

Define

$$y = \sum_{n=1}^{\infty} x_n$$
 and $y_n = y - x_n$.

If we could show that $y_n \to y$ weakly, or equivalently $x_n \to 0$ weakly, we would deduce $||y_n|| \to ||y||$ because $0 \le y_n \le y$.

However for any nonnegative $x^* \in E^*$ and for all $k \in N$ we have

$$\sum_{n=1}^{k} x^*(x_n) = x^*(\sum_{n=1}^{k} x_n) \le x^*(x),$$

whence it follows that $\sum_{n=1}^{\infty} x^*(x_n)$ converges and so $x^*(x_n) \to 0$ as $n \to \infty$. Since every $x^* \in E^*$ can be written as a difference of two nonnegative functionals, we have shown that $x_n \to 0$ weakly. Therefore $||y_n|| \to ||y||$.

We also have that $y_n \to y \mu$ -a.e. However

$$||y - y_n|| = ||x_n|| = 1,$$

which means that $E \notin H_l$.

Corollary 2.2 Let Φ be and arbitrary Orlicz function. Assume Φ does not satisfy the suitable Δ_2 -condition. Then $L^{\Phi}(\mu) \notin H_l$.

Proof:

The proof follows from the fact that the space $L^{\Phi}(\mu)$ is an order continuous Banach lattice if and only if Φ satisfies the suitable Δ_2 -condition (see [?], [?] and [?]).

If μ is a finite measure the Kadec-Klee property for local and global convergence in measure are equivalent. So, we will restrict ourselves to study the case of an infinite measure.

Theorem 2.3 Let Φ be and arbitrary Orlicz function, (Ω, Σ, μ) a nonatomic and infinite measure and $(L^{\Phi}(\mu), \|.\|_0)$ the Orlicz space endowed with the Luxemburg norm. Assume $a_{\Phi} > 0$ and Φ satisfies the Δ_2 -condition at ∞ . Then $L^{\Phi}(\mu) \notin H_g$.

Proof: Consider a sequence of measurable set $\{A_n\}$ such that

$$\mu(A_n) = 2^{-n}.$$

Set $A = \cup A_n$.

Define

$$x = a_{\Phi} \chi_{\Omega \setminus A}$$
 and $x_n = a_{\Phi} \chi_{\Omega \setminus A} + b_n \chi_{A_n}$

where $1 = \Phi(b_n)\mu(A_n)$. Such a sequence (b_n) exists since Φ satisfies the Δ_2 condition at ∞ .

We first note that $x_n - x = b_n \chi_{A_n}$. Therefore $x_n \to x$ globally in measure. Now we are going to show that

$$||x||_{\Phi} = ||x_n||_{\Phi} = 1.$$

We have

$$I_{\Phi}(x) \le I_{\Phi}(x_n) = \Phi(a_{\Phi})\mu(\Omega \setminus A) + \Phi(b_n)\mu(A_n) = 1.$$

Since Φ satisfies the Δ_2 -condition at ∞ this implies (see [?])

$$\|x\|_{\Phi} \le \|x_n\|_{\Phi} = 1. \tag{1}$$

On the other hand for all $\lambda > 1$,

$$I_{\Phi}(\lambda x) = \Phi(\lambda a_{\Phi})\mu(\Omega \setminus A) = +\infty.$$

So $\|\lambda x\|_{\Phi} \ge 1$ which implies $\|x\|_{\Phi} \ge 1$. Hence by (1) using we obtain

$$||x||_{\Phi} = ||x_n||_{\Phi} = 1$$

In order to finish the proof we only need to prove that $||x - x_n||_{\Phi}$ does not converge to 0. But

$$I_{\Phi}(x_n - x) = \Phi(b_n)\mu(A_n) = 1$$

which implies $||x_n - x||_{\Phi} = 1$.

Theorem 2.4 Let Φ be and arbitrary Orlicz function, (Ω, Σ, μ) a nonatomic and infinite measure and $(L^{\Phi}(\mu), \|.\|)_{\Phi})$ the Orlicz space endowed with the Luxemburg norm. Assume Φ does not satisfy the Δ_2 -condition at 0, Φ vanishes only at zero and Φ satisfies the Δ_2 -condition at ∞ . Then $L^{\Phi}(\mu) \notin$ H_g .

Proof: Assume Φ does not satisfy the Δ_2 -condition at 0. Then, there exists a sequence (u_n) of positive real numbers with $u_n \to 0$ and such that

$$\Phi((1+\frac{1}{n})u_n) > 2^n \Phi(u_n).$$

Divide Ω into two disjoint parts A and B such that $\mu(A) = +\infty$ and $\mu(B) > 0$.

Select a sequence (A_n) of pairwise disjoint measurable subsets of A such that

$$\Phi(u_n)\mu(A_n) = 2^{-n-1}.$$

Select a sequence (B_n) , $B_n \in \Sigma$, $B_n \subset B$ such that $\mu(B_n) \to 0$. Consider $b_n > 0$ satisfying

$$\Phi(b_n)\mu(B_n) = \frac{1}{2}$$

Define

$$x_n = \sum_{k=1}^{\infty} u_{2k-1} \chi_{A_{2k-1}} + b_{2n} \chi_{B_{2n}}$$
 and $x = \sum_{k=1}^{\infty} u_{2k-1} \chi_{A_{2k-1}}.$

We first note that

$$x_n - x = b_{2n}\chi_{B_{2n}} \to 0$$

globally in measure.

Given $\lambda > 1$ there exists $n_0 \in N$ such that $(1 + \frac{1}{n}) < \lambda$ for all $n > n_0$. Thus

$$I_{\Phi}(\lambda x) = \sum_{k=1}^{\infty} \Phi(\lambda u_{2k-1}) \mu(A_{2k-1}) \ge \sum_{2k-1 > n_0} \Phi((1 + \frac{1}{2k-1})u_{2k-1}) \mu(A_{2k-1}) = +\infty.$$

 So

$$\|x\|_{\Phi} \ge 1 \tag{2}$$

We observe now that

$$I_{\Phi}(x) \le I_{\Phi}(x_n) = \sum_{k=1}^{\infty} \Phi(u_{2k-1})\mu(A_{2k-1}) + \Phi(b_{2n})\mu(B_{2n}) = 1,$$

which with (2) give us

$$\|x_n\|_{\Phi} = \|x\|_{\Phi} = 1$$

In order to finish the proof we only need to prove that $||x - x_n||_{\Phi}$ does not converge to 0. But

$$I_{\Phi}(x_n - x) = \Phi(b_{2n})\mu(B_{2n}) = \frac{1}{2}.$$

Since Φ satisfies the Δ_2 -condition at ∞ , there exists $\delta > 0$ such that

$$||x_n - x||_\Phi > \delta > 0.$$

Theorem 2.5 Let Φ be and arbitrary Orlicz function, (Ω, Σ, μ) a nonatomic and infinite measure and $(L^{\Phi}(\mu), \|.\|_{\Phi})$ the Orlicz space endowed with the Luxemburg norm. Assume Φ does not satisfy the Δ_2 -condition at ∞ . Then $L^{\Phi}(\mu) \notin H_q$.

Proof:

If we assume that Φ does not satisfy the Δ_2 -condition at infinity then for all $K \in \mathbb{R}^+$ there exists $u_{n(K)} \ge n$ such that

$$\Phi((1+\frac{1}{n})u_{n(K)}) > K\Phi(u_{n(K)}).$$

Consider $K = 2^{n+1}$. There exist $u_n \ge n$ such that

$$\Phi((1+\frac{1}{n})u_n) > 2^{n+1}\Phi(u_n).$$

Let $A_n \in \Sigma$ be such that

$$\Phi(u_n)\mu(A_n) = 2^{-n}.$$

Define

$$x = \sum_{k=1}^{\infty} u_k \chi_{A_k}$$
 and $x_n = \sum_{k \neq n} u_k \chi_{A_k}$

We first note that

$$x_n - x = u_n \chi_{A_n} \to 0$$

globally in measure.

We have

$$I_{\Phi}(x_n) \le I_{\Phi}(x) = \sum_{n=1}^{\infty} \Phi(u_n)\mu(A_n) = 1.$$

So $||x_n||_{\Phi} \le ||x||_{\Phi} \le 1$.

On the other hand, taking any $\lambda > 1$ it can be proved that

$$I_{\Phi}(\lambda x_n) = +\infty$$

Thus $||x_n||_{\Phi} = ||x||_{\Phi} = 1$. To finish the proof it suffices to show that (x_n) does not converge to x in $(L^{\phi}(\mu), \|.\|_0)$. However

$$I_{\Phi}((1+\frac{1}{n})(x_n-x)) = \Phi((1+\frac{1}{n})u_n)\mu(A_n) > 2^n \Phi((1+\frac{1}{n}u_n)\mu(A_n) = 1.$$

Thus $||x_n - x||_{\Phi} \ge (1 + \frac{1}{n})$

All the previous results can be summarize in the following theorem

Theorem 2.6 Let Φ and arbitrary Orlicz function and $(L^{\Phi}(\mu), \|\cdot\|_{\Phi})$ the Orlicz space endowed with the Luxemburg norm. The following statements are equivalent

- 1. Φ satisfies the suitable Δ_2 -condition.
- 2. $L^{\Phi}(\mu) \in H_g$
- 3. $L^{\Phi}(\mu) \in H_l$

3 Orlicz Norm

As usual, L^1 denotes the Lebesgue space of these x in L^0 that

$$||x||_1 = \int_{R^+} |x(t)| dt < \infty$$

and L^∞ denotes the space of m-essentially bounded functions in L^0 equipped with the norm

$$||x|| = \operatorname{ess\,sup} |x(t)|.$$

Consider the following norms for $L^1 \cap L^\infty$ and $L^1 + L^\infty$

$$||x||_{L^1 \cap L^\infty} = \sup(||x||_1, ||x||_\infty)$$

$$||x||_{L^1 + L^\infty} = \inf(||u||_1 + ||v||_\infty),$$

respectively, where the supremum and the infimum are taken over all $u \in L^1$, $v \in L^\infty$ such that u + v = x.

In [?],[?] it is proved that $L^1 \cap L^{\infty} = L^{\psi}$ and $L^1 + L^{\infty} = L^{\phi}$, where $\psi(u) = |u|$ for $|u| \leq 1$, $\psi(u) = \infty$ for |u| > 1 and $\phi(u) = \max(0, |u| - 1)$. The functions ψ and ϕ are mutually complemented in the sense of Young.

It is well known that $||x||_{\psi} = ||x||_{L^1 \cap L^{\infty}}$ for any $x \in L^{\psi}$ (see[?]). Moreover, the spaces

$$(L^{1} \cap L^{\infty}, \|x\|_{L^{1} \cap L^{\infty}}), (L^{1} + L^{\infty}, \|x\|_{L^{1} + L^{\infty}}) \text{ and } (L^{\psi}, \|.\|_{\psi}), (L^{\phi}, \|.\|_{\phi}^{0})$$

form two couples of dual spaces in the Kothe's sense. Therefore

$$\|.\|_{\phi}^{0} = \|x\|_{L^{1} + L^{\infty}}$$

for all $x \in L^{\phi}$. Additionally, in [?] it is proved the Amemiya formula for the norm in $L^1 + L^{\infty}$.

For any $x \in L^0$ the decreasing rearrangement of x is the function x^* defined by

$$x^*(t) = \inf\{\lambda > 0 : d_x(t) < \lambda\}$$

where $d_x(t)$ is the distribution function defined by

$$d_x(t) = \mu(\{w \in \Omega : |x(w)| > t\}\)$$

For our purposes, it is worthwhile to note, see[?], that

$$(x_1 + x_2)^*(t_1 + t_2) \le x_1^*(t_1) + x_2^*(t_2)$$

and for all $x \in L^1 + L^\infty$ the equality

$$\|x\|_{L^1 + L^\infty} = \int_0^1 x^*(t) dt$$

holds.

From Theorem 2.5 we know that $(L^{\Phi}(\mu), \|\cdot\|_{\Phi})$ does not satisfy the Kadec-Klee property for global convergence in measure if Φ does not satisfy the Δ_2 -condition at ∞ . However, this fact is not true when the Orlicz norm is considered.

Theorem 3.1 The space $(L^1+L^{\infty}, ||x||_{L^1+L^{\infty}})$ satisfies the Kadec-Klee propertie for global convergence in measure $(L^1+L^{\infty} \in H_g)$.

Proof: Assume $(x_n) \subset L^1 + L^{\infty}$, $x \in L^1 + L^{\infty}$, $x_n \to x$ globally in measure and $||x_n||_{L^1+L^{\infty}} = ||x||_{L^1+L^{\infty}} = 1$.

Since $x_n \to x$ globally in measure we have $x_n^* \to x^* \mu$ -a.e. Thus

$$x_n^*\chi_{[0,1]} \to x^*\chi_{[0,1]}\mu$$
 – a.e.

Bearing in mind that $L^1 \in H_l$ and $||x_n^*\chi_{[0,1]}||_{L^1} = ||x^*\chi_{[0,1]}||_{L^1} = 1$ we deduce

$$\int_0^1 |x_n^*(s) - x^*(s)| ds \to 0.$$

By Lemma 1.1 there exists $(x_{n_k}^*)$ a subsequence of x_n^* and $y \ge 0, y \in L^1[0,1]$ such that $|x_{n_k}^*(t) - x^*(t)| \le y(t)$ a.e. in [0,1].

On the other hand

$$(x_{n_k} - x)^*(t) \le x_{n_k}^*(\frac{t}{2}) + x^*(\frac{t}{2}) \le 2x^*(\frac{t}{2}) + y(\frac{t}{2})$$

Therefore, by applying the Lebesgue dominated convergence theorem we obtain

$$\int_0^1 (x_{n_k} - x)^*(t) dt \to 0$$

which is equivalent to

$$||x_{n_k} - x||_{L^1 + L^\infty} \to 0.$$

Thus, since for each subsequence of $(x_n - x)$ we we can extract a subsequence which converges in norm to 0, we have

$$||x_n - x||_{L^1 + L^\infty} \to 0$$

and the proof is concluded.

Our last result is the following

Theorem 3.2 If Φ does not satisfy the Δ_2 -condition at ∞ and μ is nonatomic then $(L^{\Phi}(\mu), \|\cdot\|_{\Phi}^0) \notin H_q$.

Proof: If μ is finite it is obvious, because in this case se we have

$$H_g \Leftrightarrow H_f \Rightarrow O.C. \Rightarrow \Delta_2(\infty).$$

Assume that μ is nonatomic and infinite and $\Phi \notin \Delta_2(\infty)$. There exists a sequence (u_n) of nonnegative real numbers such that $u_n \uparrow \infty$ and

$$\Phi(2u_n) > 2^n \Phi(u_n).$$

Take any nonnegative $x \in L^{\Phi}$ with $||x||_{\Phi}^{0} = 1$. Since Φ does not satisfies the Δ_{2} -condition at ∞ we have $\lim_{t\to\infty} \frac{\Phi(t)}{t} = 0$ and so the Amemiya formula is satisfied.

There exists a sequence (A_n) in Σ with $\mu(A_n) = \infty$ and such that

$$I_{\Phi}(2kx\chi_{A_n}) \le 2^{-n},$$

where $k \ge 1$ satisfies

$$\|x\|_{\Phi}^{0} = \frac{1}{k}(1 + I_{\Phi}(kx)).$$

Let $B_n \subset A_n$ be such that

$$\Phi(u_n)\mu(B_n) = 2^{-n}$$

and define

$$x_n = x + \frac{u_n}{2k}\chi_{B_n} = x\chi_{\Omega\setminus B_n} + (x + \frac{u_n}{2k})\chi_{B_n}.$$

Since $x_n \ge x \ge 0$, we have $||x_n||_{\Phi}^0 \ge ||x||_{\Phi}^0 = 1$. On the other hand

$$\begin{aligned} x_n \|_{\Phi}^0 &= \inf_{\rho > 0} \frac{1}{\rho} (1 + I_{\Phi}(\rho x_n)) \leq \\ &\leq \frac{1}{k} (1 + I_{\Phi}(k x_n)) = \\ &= \frac{1}{k} (1 + I_{\Phi}(k x \chi_{\Omega \setminus B_n}) + I_{\Phi}(k x \chi_{B_n} + \frac{u_n}{2} \chi_{B_n}) \leq \\ &\leq 1 + \frac{1}{2} (I_{\Phi}(2k x \chi_{B_n}) + I_{\Phi}(u_n \chi_{B_n})) \leq \\ &\leq 1 + \frac{1}{2} (\frac{1}{2^n} + \frac{1}{2^n}) \to 1 \end{aligned}$$

So $||x_n||_{\Phi}^0 \to ||x||_{\Phi}^0$. Furthemore $x_n \to x$ globally in measure. We are going to show that $||x_n - x||_{\Phi}^0 \ge \frac{1}{4}$ and the proof will be concluded. We have

$$I_{\Phi}(4k(x_n - x)) = I_{\Phi}(2u_n\chi_{B_n}) = \Phi(2u_n)\mu(B_n)) > 1.$$

So $||x_n - x||_{\Phi} \geq \frac{1}{4k}$ and since $||x_n - x||_{\Phi}^0 \geq ||x_n - x||_{\Phi}$ the proof is concluded.

For the case of the Orlicz norm we summarize our results in the following theorem.

Theorem 3.3 Let Φ and arbitrary Orlicz function, $(L^{\Phi}(\mu), \|\cdot\|_{\Phi}^{0})$ the Orlicz space endowed with the Orlicz norm and μ nonatomic. Then

- 1. $\Phi \notin \Delta_2(\infty) \Rightarrow L^{\Phi} \notin H_a$.
- 2. Φ needs not to vanish only at zero to have property $H_g~(L^1+L^\infty$ as an example).

We finish with an open question: Assume that Φ vanishes outside 0 and $\Phi \notin \Delta_2(\infty)$. Is it true that $(L^{\Phi}(\mu), \|\cdot\|_{\Phi}^0) \notin H_g$.

References

- V.I. Chillin, P.G.Dodsds, A.A. Sedaev and F.A.Sukochev, Characterization of Kadec-Klee properties in symmetric spaces of measurable functions, Trans. Amer. Math. Soc. Vol. 348, (1996), 4895-4918.
- H. Hudzik, On some equivalent conditions in Musielaks- Orlicz spaces, Comment. Math. Prace Mat. 24, (1984), 57-64.
- [3] H. Hudzik, Intersections and algebraic sums of Musielaks- Orlicz spaces, Portugaliae Math. 40Vol. 3, (1993), 287-296.
- [4] H. Hudzik, On smallest and largest Orlicz spaces, Math. Nachr. 141, (1989), 109-115.
- [5] H. Hudzik , On the distance from the subspace of order continuous elements in $L^1 + L^{\infty}$, Functiones et Approximatio XXV, (1997), 157-163.
- [6] H. Hudzik and M. Mastylo, strongly extreme points in kothe-Bochner spaces, Rocky Mountain J. Math. 3Vol. 23, (1993), 899-909.
- [7] A. Kaminska, Flat Orlicz- Musielak sequence spaces, Bull. Acad. Polo. Sci. Math. 30Vol. 30, (1982), 347-352.
- [8] L.V. Kantarovic and G.P. Akilov, *Functional Analysis*, 2nd edition, Moscow (1978), in Russian.
- [9] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces II, Springe-Verlag, Berlin (1979).
- [10] A. Medzhitov and P. Sukochev, The property (H) in Orlicz spaces, Bull. Polish. Acad. Sci. Math. 40 (1992), 5-11.
- [11] M.M. Rao and Z.D. Ren, *Theory of Orlicz spaces*, Pure and Applied Mathematics, Marcel Dekker. New-York, 1991
- [12] F. Riesz, Sur la convergence en moyenne I, Acta Sci. Math. 4 1928/29, 58-64.
- [13] F. Riesz, Sur la convergence en moyenne II, Acta Sci. Math. 4 1928/29, 182-185.
- [14] B. Turett, Rotundity of Orlicz spaces, Indag. Math. 38, (1976), 462-469.