

Universidad de Sevilla

Departamento de Física de la Materia Condensada Departamento de Física Aplicada I Grupo de Física No Lineal

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas

Jesús Cuevas Maraver

Directores: Dr. D. Juan Francisco Rodríguez Archilla Dr. D. Francisco Romero Romero

Sevilla, 20 de Febrero de 2003

Introducción

- Redes de osciladores: cristales, biomoléculas, arrays de uniones Josephson...
- Evidencias experimentales de localización de energía:
 - Origen en la no linealidad de las interacciones.
 - Origen en la no homogeneidad de la red (impurezas, aleaciones desordenadas, código genético).
- Transferencia de energía localizada.
 - Afectada por la no homogeneidad.

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas – p.1/56

- 1. Introducción. Localización en redes.
- Localización en redes anarmónicas homogéneas. Breathers. Estabilidad de las soluciones.
- 3. Localización en redes anarmónicas no homogéneas. Relación entre breathers y modos Anderson.
- 4. Transferencia de energía en redes anarmónicas. Interacción entre breathers móviles e impurezas.
- 5. Localización y transferencia de energía en modelos de ADN con interacción dipolar y curvatura.
- 6. Conclusiones.

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas - p.2/56

Redes de osciladores

Hamiltoniano en redes de tipo Klein–Gordon:

$$H = \sum_{\vec{n}} \left(\frac{1}{2} m_n \dot{\vec{u}}_{\vec{n}}^2 + V_{\vec{n}}(\vec{u}_{\vec{n}}) + C \sum_{\vec{m}} W_{\vec{n},\vec{m}}(\vec{u}_{\vec{n}},\vec{u}_{\vec{n}+\vec{m}}) \right)$$

- V: Potencial on-site (o de substrato).
- W: Potencial de interacción.

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas – p.3/56

Red armónica homogénea

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas – p.4/56

Red armónica no homogénea

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas – p.5/56

Red anarmónica homogénea

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas – p.6/56

Redes anarmónicas homogéneas

- Localización intrínseca (Takeno y Sievers, 1988).
- MacKay–Aubry (1994). Teorema de existencia de breathers y multibreathers.
 - Basado en el límite anti-continuo.
 - Soluciones exactas, periódicas y reversibles en el tiempo: $u_n(t) = z_n^o + 2\sum_k z_n^k \cos(k\omega_b t).$
 - Condiciones necesarias para la existencia:
 - Anarmonicidad del potencial on-site.
 - ▶ No resonancia con los fonones ($k\omega_b \neq \omega_{ph}, k = 1, 2, 3, ...$).
 - Sistema no lineal y discreto para la existencia de breathers.
- Métodos de cálculo (Marín y Aubry, 1996) en el espacio real y espacio de Fourier.

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas – p.7/56

Redes anarmónicas homogéneas

• Código $\sigma = \{\sigma_n\}$ para osciladores en el límite anti-continuo:

- $\sigma_n = 0$: Oscilador en reposo ($u_n(t) = 0$).
- $\sigma_n = +1$: $u_n(t=0) > 0$.
- $\sigma_n = -1$: $u_n(t=0) < 0$.
- $\sigma_n = k$: Oscilador con frecuencia $k\omega_b$.
- Tipos de breathers:
 - 1-site breather: 1 oscilador excitado.
 - n-site breather: n osciladores (adyacentes) excitados.
 - Phonobreather: todos los osciladores excitados.
 - n-site dark breather: n osciladores en reposo. Resto excitado.

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas – p.8/56

Tipos de potenciales

- Potencial ϕ^4 : $V(x) = \omega_0^2 x^2 / 2 + x^4 / 4$.
- Potencial blando ($\omega_{\rm b} < \omega_{\rm o}$):
 - Potencial cúbico: $V(x) = \omega_o^2 x^2/2 x^3/3$.
 - Potencial de Morse $V(x) = D(\exp(-bx) 1)^2$.

Ejemplos (potencial blando)

$$H = \sum_{n} \left(\frac{1}{2} \dot{u}_{n}^{2} + \frac{1}{2} (e^{-u_{n}} - 1)^{2} + C(u_{n} - u_{n-1})^{2} \right)$$

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas – p.10/56

Ejemplos (potencial duro)

$$H = \sum_{n} \left(\frac{1}{2} \dot{u}_{n}^{2} + \frac{1}{2} \omega_{o}^{2} u_{n}^{2} + \frac{1}{4} u_{n}^{4} + C(u_{n} - u_{n-1})^{2} \right)$$

Dark breather en fase

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas – p.12/56

Dark breather en zig-zag

$$H = \sum_{n} \left(\frac{1}{2} \dot{u}_{n}^{2} + \frac{1}{2} (e^{-u_{n}} - 1)^{2} + C(u_{n} - u_{n-1})^{2} \right)$$

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas – p.13/56

Estabilidad de las soluciones

Ecuaciones dinámicas de una perturbación $u_n \rightarrow u_n + \xi_n$:

$$\ddot{\xi}_n(t) + V''(u_n(t))\xi_n(t) - C\sum_i W''(u_{n+i}(t) - u_n(t))(\xi_{n+i}(t) - \xi_n(t)) + C\sum_i W''(u_n(t) - u_{n-i}(t))(\xi_n(t) - \xi_{n-i}(t)) = 0$$

$$\left[\begin{array}{c} \xi(T)\\ \dot{\xi}(T) \end{array}\right] = \mathcal{F}_o \left[\begin{array}{c} \xi(0)\\ \dot{\xi}(0) \end{array}\right]$$

- **9** λ , $1/\lambda$, λ^* , $1/\lambda^*$ son autovalores.
- Condición necesaria y suficiente de estabilidad lineal en sistemas Hamiltonianos: Todos los autovalores en la circunferencia unidad.

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas - p.14/56

Estabilidad de las soluciones

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas – p.15/56

Tipos de bifurcaciones

Armónica Subarmónica Oscilatoria

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas – p.16/56

Estabilidad de multibreathers

- 1-site breathers: estables para acoplos pequeños (MacKay y Aubry, 1994).
- Multibreathers:
 - Teoría de bandas (Aubry, 1997).
 - Teorema de Estabilidad de Multibreathers. [Archilla, Cuevas, Sánchez-Rey, Álvarez; Physica D (2003)].
 - Conjuga teoría de bandas de Aubry con la teoría de perturbaciones degenerada.
 - Extendido por el autor para potenciales asimétricos.
- Dark breathers:
 - Aplicación del teorema de estabilidad.
 - Resultados numéricos. [Álvarez, Archilla, Cuevas, Romero; New J. Phys. (2002)].

Teorema de Estabilidad (T.E.M.)

- Restricción al espacio de osciladores excitados en el límite anti-continuo.
- Diagonalización de la matriz *Q*: $Q_{nm} = \langle n|Q|m \rangle = \langle n|V'''(u(0,t))\frac{\partial u}{\partial C}(0,t) + J|m \rangle.$
- \checkmark J: matriz de acoplo.
- Autovalores de $Q \rightarrow \lambda_i$. $E_i = C\lambda_i$.
- La teoría de bandas establece para acoplos pequeños:
 - Potencial duro: Multibreather estable si $E_i > 0, \forall i$.
 - Potencial blando: Multibreather estable si $E_i < 0, \forall i$.
 - Si hay autovalores de distinto signo, el multibreather es inestable con independencia del potencial.

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas - p.18/56

Forma de la matriz Q

Matriz
$$Q$$
 definida por

•
$$Q_{nm} = J_{nm}, \quad n \neq m, \quad \sigma_n = \sigma_m \forall n, m$$

• $Q_{nm} = \sigma_n \sigma_m J_{nm}, \quad n \neq m, \quad \gamma = 1.$

$$Q_{nm} = \frac{1}{2} J_{nm} [(\sigma_n \sigma_m + 1) + \gamma (\sigma_n \sigma_m - 1)], \quad n \neq m.$$

$$Q_{nn} = -\sum_{m \neq n} Q_{nm}.$$

• Coeficiente de simetría
$$\gamma = -\frac{\int_{-T/2}^{T/2} \dot{u}^0(t) \, \dot{u}^0(t+T/2) \, dt}{\int_{-T/2}^{T/2} \dot{u}^0(t) \, \dot{u}^0(t) \, dt}$$

$$\mathbf{P} = \omega_{\rm b}$$
 para el potencial de Morse.

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas – p.19/56

Aplicación del T.E.M.

n-site breathers (Acoplo atractivo):

Patrón	Potencial blando Potencial du		
Fase	Inestable	Estable	
Zig-zag	Estable	Inestable	
Otro	Siempre Inest.	Siempre Inest.	

Phonobreathers (Acoplo atractivo):

	Extremos libres / fijos		C.c. periódicas	
Patrón	P. blando	P. duro	P. blando	P. duro
Fase	Inestable	Estable	Inestable	Estable
Zz (N par)	Estable	Inestable	Estable	Inestable
Zz (N impar)	Estable	Inestable	Inest. Paridad	Inest. Paridad

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas – p.20/56

Estabilidad de dark breathers

Aplicación del teorema de estabilidad (Acoplo atractivo):

	Extremos libres / fijos		C.c. periódicas	
Patrón	P. blando	P. duro	P. blando	P. duro
Fase	Inestable	Indefinido	Inestable	Estable
$Zz \ (\sigma_1 \neq \sigma_N)$	Indefinido	Inestable	Estable	Inestable
$Zz\left(\sigma_{1}=\sigma_{N}\right)$	Indefinido	Inestable	Inest. Paridad	Inest. Paridad

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas – p.21/56

Estabilidad de dark breathers

Resultados numéricos. Análisis de bandas en dark breathers en fase:

- Bifurcaciones subarmónicas y oscilatorias existen en sistemas infinitos.
- Sistemas disipativos:

 $\ddot{u}_n + \gamma \dot{u}_n + \frac{1}{2\pi} \sin(2\pi u_n) + C(2u_n - u_{n-1} - u_{n+1}) = F \sin(\omega_{\rm b} t).$

Estables para acoplos pequeños atractivos y repulsivos.

Relación breather-modo Anderson

- **D** Localización en redes anarmónicas homogéneas \rightarrow Breathers.
- ▲ Localización en redes armónicas desordenadas → Modos Anderson.
- **Solution** Conexión entre ambos modos localizados \rightarrow Aproximación AMM.

Localización Anderson

- Ausencia de difusión electrónica en presencia de un potencial aleatorio (Anderson, 1958): $H = -\nabla^2 + V_n$.
- Función de onda electrónica decae exponencialmente para un desorden suficientemente grande.
- Sistemas multidimensionales \rightarrow Mobility edges.
 Transición aislante–conductor (Mott *et al*, 1967).
- Resultados aplicables a dinámica reticular.

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas – p.24/56

Redes anarmónicas desordenadas

- Red armónica desordenada: Conductividad eléctrica y térmica nula.
- La evidencia experimental muestra la existencia de conductividad en redes desordenadas.
- Anarmonicidad y desorden pueden o bien competir destruyendo la localización o bien cooperar.
- Estudios de modos de vibración localizados en redes anarmónicas desordenadas:
 - Kopidakis y Aubry (1999).
 - Archilla, MacKay y Marín (1999). Aproximación AMM.

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas – p.25/56

Aproximación AMM

- Construcción de un camino cuasi–continuo entre breathers y modos Anderson a acción constante.
 - $V(x) = \omega_n^2 x^2/2 sx^3 \rightarrow$ Potencial blando asimétrico.
 - Parámetro s: s = 1 Límite anarmónico ordenado. s = 0 Límite armónico desordenado.
 - Implementación del desorden:

 $\omega_n = \omega_o (1 + \rho(s) (r_n/2)). \ \rho(s) = (1 - s^q) \operatorname{con} q > 0.$

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas - p.26/56

Bifurcaciones AMM (1d)

- Número de modos Anderson: N^d
- Número de multibreathers: $3^{dN} 1$.

Extensión de la aprox. AMM

Objetivos:

- Observar el comportamiento en dos dimensiones.
- Ampliar los resultados en una dimensión:
 - Distintas implementaciones del desorden.
 - Estudio de los modos Anderson de frecuencia máxima y mínima.
- Resultados:
 - Bifurcaciones 2d iguales a 1d. [Cuevas et al; J. Phys. A (2001)].
 - Conexión de modos Anderson de frecuencia máxima y mínima entre sí y un dark breather.
 - Desorden gaussiano → aumento del número de conexiones y bifurcaciones cuando aumenta el desorden.

Diagrama de bifurcación 1d

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas - p.29/56

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas – p.30/56

Breathers móviles

- Oscilación localizada que se desplaza por la red.
- Mecanismo de transferencia de energía.
- No son soluciones exactas de las ecuaciones dinámicas Emisión de radiación fonónica.
- No existen en sistemas continuos salvo con potenciales sine–Gordon.
- Conceptos útiles:
 - Masa efectiva: medida de la inercia del breather $\frac{1}{2}m^*v^2 = K$.
 - Centro de energía: medida de la posición del breather $X_E = \sum_n nE_n/E$.

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas – p.31/56

Puesta en movimiento

Condiciones para producir breathers móviles:

- Sistema cercano a un cambio de estabilidad.
- Existencia de modo localizado tal que una perturbación en su dirección produzca el movimiento → modo de pinning (Chen, Aubry, Tsironis; 1996).

Ejemplo de breather móvil

$$H = \sum_{n} \left(\frac{1}{2} \dot{u}_{n}^{2} + \frac{1}{2} (e^{-u_{n}} - 1)^{2} + C(u_{n} - u_{n-1})^{2} \right)$$

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas – p.33/56

Breathers móviles e impurezas

Hamiltoniano:

$$H = \sum_{n} \left(\frac{1}{2} m_n \dot{u}_n^2 + V_n(u_n) + \frac{1}{4} C_n [(u_n - u_{n-1})^2 + (u_n - u_{n-1})^2] \right)$$

•
$$V_n(u_n) = D_n(e^{-u} - 1)^2$$

$$D_n = D(1 + \alpha \delta_{n,0})$$

•
$$C_n = C(1 + \beta \delta_{n,0})$$

 $\square m_n = m(1 + \gamma \delta_{n,0})$

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas - p.34/56

Barrera

Excitación de impureza

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas – p.37/56

Atrapamiento

Modos de impureza

Ecuaciones dinámicas linealizadas:

$$m_n \ddot{u}_n + \omega_n^2 u_n + [C_n (2u_n - u_{u+1} - u_{u-1}) + (C_{n+1} + C_{n-1})u_n - C_{n+1} u_{n+1} - C_{n-1} u_{n-1}] = 0.$$

- Modos lineales de impureza: se introduce la solución de prueba $u_n(t) = u_o e^{i\omega_{\rm L}t} r^n$.
- Solución de prueba con inhomogeneidad en acoplo:

$$\begin{aligned} u_1(t) &= \lambda u_o e^{j\omega_{\rm L}t} \\ u_n(t) &= u_1 r^n e^{j\omega_{\rm L}t} \end{aligned}$$

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas – p.39/56

Soluciones estacionarias

MLI: $\omega_{\rm L}^2 = \omega_{\rm o}^2 + 2C + \operatorname{sgn}(\alpha)\sqrt{\alpha^2\omega_{\rm o}^4 + 4C^2}$

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas – p.40/56

Hipótesis de atrapamiento

- Condición necesaria para la existencia de atrapamiento:
 - 1. Debe existir un breather de impureza con los mismos parámetros del breather móvil.
 - 2. No puede existir un modo lineal de impureza con un patrón de vibración diferente al del breather de impureza.

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas – p.41/56

Inhomogeneidad en la masa

MLI:
$$\omega_{\rm L}^2 = \frac{\omega_{\rm o}^2 - \text{sgn}(\gamma) \sqrt{(\gamma)^2 \omega_{\rm o}^2 (\omega_{\rm o}^2 + 4C) + 4C^2}}{m(1 - (\gamma)^2)}$$

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas – p.42/56

Inhomogeneidad en el acoplo

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas – p.43/56

Impurezas en sistemas disipativos

$$\ddot{u}_n + \gamma \dot{u}_n + \frac{1}{2\pi} \sin(2\pi u_n) + C(2u_n - u_{n-1} - u_{n+1}) = F \sin(\omega_{\rm b} t)$$

Desaparición

BM en ADN con interacción dipolar

- Modelo de Peyrard–Bishop.
- Modelo de ADN con interacción dipolar en cadenas rectas.
- Modelo de ADN con curvatura.

Modelos de ADN

- Modelo de Peyrard–Bishop (1989):
 - Cadena plana.
 - Puentes de hidrógeno: Potencial de Morse.
 - Fuerzas de apilamiento o stacking: Potencial armónico.

Breathers en ADN

- Sólo movimientos transversales $\rightarrow u_n$: estiramientos respecto posición de equilibrio.
- Sistema equivalente a cadena de osciladores con potencial on-site de Morse.

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas – p.48/56

Valores de los parámetros

- Hamiltoniano: $H = \sum_{n} \left(\frac{1}{2}m\dot{u}_{n}^{2} + V(u_{n}) + \frac{1}{2}k(u_{n} u_{n-1})^{2} \right).$
- *m*: Masa de los nucleótidos (m=300 uma)
- Potencial de Morse: $V(u) = D(\exp(-bu) 1)^2$.
- D: Energía de disociación de los puentes de H. (D=0.04 eV).
- **b**: Longitud de enlace (b=4.45 Å⁻¹).
- **)** *k*: Constante elástica de stacking (k=0.01–10 eV/Å²).
- Breathers móviles: k>0.14 eV/Å².

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas – p.49/56

Interacción dipolar en ADN

Introducción de término de largo alcance: $H = H_{PB} + H_D$

$$H_D = \frac{1}{2} \sum_{n} \sum_{m \neq n} \frac{J}{|m|^3} u_{n+m} u_n$$

- Debido al momento dipolar finito de los puentes de hidrógeno.
- La geometría afecta a la interacción.
- Constante dipolar: $J = \frac{q^2}{4\pi\varepsilon_o d^3}$. d=3.4 Å. Distancia entre pares de bases.

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas – p.50/56

Existencia de breathers móviles

- $Iimite superior: resonancia con fonones: k_{max} = \omega_b^2 \frac{\omega_o^2}{4} + \frac{3}{8}\zeta(3)J.$
- Límite inferior: Bifurcaciones de estabilidad.
- Límite derecho: Bifurcaciones de extinción coinciden con estabilidad: Límite de movilidad de breathers: $M_L = A\omega_b^r$.
 - Parámetros del ADN: k>0.11 eV/Å²; J<0.30 eV/Å².

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas – p.51/56

Resultados de simulaciones

- Reducción del rango de existencia.
- \checkmark La movilidad disminuye con J.
- \checkmark El movimiento se hace más abrupto cuando aumenta J.

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas – p.52/56

Breathers en ADN curvado

No existe atrapamiento de breathers móviles. Existe un modo de impureza con patrón de vibración diferente.

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas – p.53/56

Breathers móviles en ADN curvado

- No se ajusta a una gaussiana.
- Deformación de la barrera con la curvatura.

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas – p.54/56

Breathers móviles en hélices α

Resultados análogos a ADN curvado. [Archilla, Gaididei, Christiansen, Cuevas; J. Phys. A (2002)].

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas – p.55/56

Conclusiones

- 1. Métodos de cálculo de breathers en el espacio de Fourier (Transformada de Fourier Discreta).
- 2. Recopilación de resultados sobre estabilidad. Teorema de Estabilidad de Multibreathers.
- 3. Estabilidad de dark breathers.
- 4. Conexión breathers-modos Anderson.
- 5. Interacción breathers móviles-impurezas. Hipótesis de atrapamiento.
- 6. Modelo de ADN con interacción dipolar.
- 7. Breathers estacionarios y móviles en modelo dipolar. La interacción dipolar dificulta la transmisión de energía.
- 8. Breathers móviles en ADN curvado. Breather móvil equivalente a partícula en barrera de potencial.

Localización y Transferencia de Energía en Redes Anarmónicas No Homogéneas - p.56/56