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Abstract

Both the biological significance and the molecular mechanism of endoreduplication (END) have been debated

for a long time by cytogeneticists and researchers into cell cycle enzymology and dynamics alike. Mainly due to

the fact that a wide variety of agents have been reported as able to induce endoreduplication and the diversity of

cell types where it has been described, until now no clear or unique mechanism of induction of this phenomenon,

rare in animals but otherwise quite common in plants, has been proposed. DNA topoisomerase II (topo II), plays a

major role in mitotic chromosome segregation after DNA replication. The classical topo II poisons act by

stabilizing the enzyme in the so-called cleavable complex and result in DNA damage as well as END, while the

true catalytic inhibitors, which are not cleavable-complex-stabilizers, do induce END without concomitant DNA

and chromosome damage. Taking into account these observations on the induction of END by drugs that interfere

with topo II, together with our recently obtained evidence that the nature of DNA plays an important role for

chromosome segregation [Cortés, F., Pastor, N., Mateos, S., Domı́nguez, I., 2003. The nature of DNA plays a role

in chromosome segregation: endoreduplication in halogen-substituted chromosomes. DNA Repair 2, 719–726.], a

straightforward model is proposed in which the different mechanisms leading to induced END are considered.
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Introduction

Diplochromosomes are the visible mitotic manifestation of the striking and rare, although sometimes

spontaneous, phenomenon of endoreduplication (END). As first defined and coined by Levan and

Hauschka (1953), they are made up of four chromatids held together, instead of the normal two, as a

result of the occurrence of two successive rounds of DNA replication without intervening mitosis, i.e.

segregation of daughter chromatids (Cortés et al., 1987; Sumner, 1998). A rather common event in plants

(Sun et al., 1999), spontaneous END is a phenomenon more rarely observed in animals, being a

characteristic feature of specific tissues such as dipteran salivary glands (Weiss et al., 1998), in which a

series of successive ENDs leads to the development of polytene chromosomes (Fig. 1), and mammalian

liver (Lu et al., 1993; Sigal et al., 1999), tonsils (Takanari and Izutsu, 1981), and trophoblast giant cells

of the placenta (Bower, 1987; MacAuley et al., 1998; Zybina et al., 2000, 2001).

The rather uncommon observation of END among metazoa notwithstanding, it has been proposed that

the acquisition by tumor cells of high chromosome numbers may be due to END (Larizza and

Schirrmacher, 1984), pointing to a possible link between both END and tumorigenesis. Besides, a typical

response of liver cells to chemical damage potentially carcinogenic is an increased yield of

endoreduplicated hepatocytes (Sargent et al., 1994; Madra et al., 1995). Ionizing radiation, on the
Fig. 1. Chironomus thummi larval salivary gland polytene chromosomes. These giant chromosomes arise as a result of a number

of successive endoreduplication cycles without intervening mitosis. This phenomenon allows, through gene amplification, a

highly increased transcription of a series of genes which play fundamental roles in larval development as a whole.
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other hand, has also been reported as capable of inducing END in both human lymphocytes (Weber and

Hoegerman, 1980) and cultured Chinese hamster cells (Lücke-Huhle, 1983).

While the phenomenon of END has drawn a lot of attention from both cytogeneticists and those

involved in the investigation of the genetics and biochemistry of the cell cycle, no clear or unique

mechanism of induction of END has been proposed, due to the variety of agents able to induce it and the

various cell types where it has been described so far. As to the specific cell cycle stages sensitive to

induction of END by chemicals, the G2-mitosis period appears to be the most sensitive (Speit et al.,

1984; Giménez-Abián et al., 1995; Matsumoto and Ohta, 1992, 1995). Recently, it has been reported that

p21waf1/Cip1/Sdi1-induced growth arrest is associated with depletion of mitosis-control proteins, leading to

abnormal mitosis and END in recovering cells (Chang et al., 2000). This observation seems to be

consistent with the role of the cyclin-dependent kinase (CDK) inhibitor p21 as an integral part of cell

growth arrest associated with DNA damage that in turn often involves the triggering of END. One of the

essential proteins whose expression might be inhibited by p21 is likely to be topoisomerase (topo) II,

which as will be discussed in the present review, plays a central role in chromosome segregation. In

mammalian cells, the existence of a temporary G2 topo II-dependent checkpoint that regulates entry into

mitosis has been proposed (Downes et al., 1994). We will deal with the role played by topo II in

chromosome segregation in regard of the as yet poorly understood mechanism(s) leading to END. While

spontaneous END is a phenomenon that deserves a lot of interest, mainly as a process that results in a

highly increased transcription of different genes which play fundamental roles in development as a

whole, in the present work we will mainly focus on the data available on the induction of this

outstanding mechanism by chemicals in mammalian cells.
bClassicalQ inducers of endoreduplication

To begin with, it is important to make a distinction between true induction of END and some

instances in which the treatment merely stimulates already endoreduplicated cells that exist in organs

such as liver or plant root to go into mitosis and show up with their characteristic diplochromosomes at

metaphase. A clear example was our observation of previously endoreduplicated Allium cepa root

meristem cells, normally non-dividing, that entered mitosis after a short treatment with acetaldehyde

(Fig. 2) (Cortés et al., 1987).

A variety of agents either by disrupting cytoskeleton assembly, such as the spindle poisons colcemid,

colchicin or concanavalin A (Rizzoni and Palitti, 1973; Sutou, 1981), or damaging DNA (Sutou and

Tokuyama, 1974; Kusyk and Hsu, 1979; Huang et al., 1983; Lücke-Huhle, 1983) have been reported to

induce END to different degrees. The list of physical, and mainly chemical agents so far reported as able

to induce END in a variety of eukaryotic cells is rather long, so we will only discuss the most

representative ones (Table 1) according to their mode of action, mainly on DNA. Concerning physical

agents, ionizing radiation treatments such as X-ray (Sutou and Arai, 1975; Weber and Hoegerman, 1980)

and also a-radiation (Lücke-Huhle, 1983) have been found to induce END. DNA-damaging chemicals

of different nature, on the other hand, have been shown as able to induce END to different degrees. For

example, high frequencies of END in mammalian cell cultures from both mouse and Chinese hamster

ovary (CHO) were observed as a result of treatment with the intercalative bisbenzimide fluorochrome

33258 Hoechst and the anthracycline zorubicin (Kusyk and Hsu, 1979). Also treatment with the DNA

synthesis inhibitor aphidicolin was reported to lead to the observation of metaphases showing



Fig. 2. Allium cepa root tip metaphase cell showing the characteristic diplochromosomes after a treatment with acetaldehyde.

The short treatment time (2-h) rules out the possibility that acetaldehyde might have been the actual inducer of

endoreduplication. Instead, a likely explanation is that already endoreduplicated large cells present in the meristem were

induced to enter mitosis by acetaldehyde.
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diplochromosomes in Chinese hamster cells (Huang et al., 1983). Results from other investigations have

shown that the bifunctional alkylating agent mitomycin C, a DNA crosslinker, induces END in cultured

human lymphocytes (Takanari and Izutsu, 1981), while the radical-forming drug hydrazine is able to

induce it in Chinese hamster V79 cells (Speit et al., 1984). Trying to cut a long list short, sodium

arsenite, a unique human carcinogen that induces many types of cytogenetic alterations, such as sister

chromatid exchanges and chromosomal aberrations, has also been reported to induce END in CHO cells

(Kochhar et al., 1996) and human skin fibroblasts (Huang et al., 1995; Yih et al., 1997).

A different consideration seems to deserve those reports dealing with chemical agents that

interfere with cytoskeleton assembly, as mentioned above. The anti-tubulin alkaloid agent colchicine

was first reported to induce END in Chinese hamster embryonic cells (Rizzoni and Palitti, 1973;

Palitti et al., 1976). Also the T lymphocyte mitogen concanavalin A, a lectin reported as responsible

of cytoskeletal reorganization (Wu et al., 1998), has been shown as an END-inducer in the Don line

of Chinese hamster cells (Sutou, 1981). More recently, the spindle depolymerizing drugs colcemid

and nocodazole have been used to induce DNA END in primary human fibroblasts (Hixon et al.,

1998). Microtubule inhibitors Taxol and vincristine, on the other hand, have been also reported to

induce END in p21-deficient human tumor cells (Stewart et al., 1999a,b). Finally, the tubulin-

targeting natural drug dolastatin-10, a marine-derived anticancer agent, has been reported to induce

END (Pathak et al., 1998), in good agreement with that observed for other agents that interfere with

tubulin polymerization.
Topo II inhibitors and endoreduplication

As shown in yeast mutants defective in one or more topoisomerases, type I and type II enzymes, the

only topoisomerase that is essential for cell viability as a whole seems to be the type II enzyme (Nitiss,



Table 1

Inducers of endoreduplication

Agent Mechanism References

DNA damage/

modification

Cytoskeleton

disturbance

Topoisomerase

poisoning or

catalytic inhibition

Colcemid, colchicine � + � Rizzoni and Palitti, 1973

Concanavalin A � + � Sutou, 1981

Colcemid, nocodazole � + � Hixon et al., 1998

Taxol; vincristine � + � Stewart et al., 1999a,b

Dolastatin-10 � + � Pathak et al., 1998

33258 Hoechst; zorubicin + � � Kusyk and Hsu, 1979

Aphidicolin + � � Huang et al., 1983

Halogenated nucleosides + � � Cortés et al., 2003

Mitomycin C + � � Takanari and Izutsu, 1981

Hydrazine + � � Speit et al., 1984

Sodium arsenite + � � Kochhar et al., 1996;

Huang et al., 1995;

Yih et al., 1997

Sodium fluoride + � � Sutou, 1981

X-rays + ? � Sutou and Arai, 1975;

Weber and Hoegerman, 1980

a-radiation + ? � Lücke-Huhle, 1983

Amsacrine, adryamycin,

teniposide

� � + Zucker et al., 1991a

Merbarone � � + Kallio and Lahdetie, 1997a;

Chen and Beck, 1993a

Mitoxantrone, etoposide,

amsacrine

� � + Sumner, 1998

Amsacrine � � + Ferguson et al., 1996a

ICRF-193 � � + Pastor et al., 2002

An overview.
a Polyploidy reported. Possible endoreduplication not determined.
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1998), which is necessary to separate replicated chromosomes before cell division. Topoisomerase type

I, given its molecular mechanism breaking and rejoining just one DNA strand, is unable to fully separate

double stranded DNA molecules. Without topo II activity in vivo, as expected, fully replicated yeast

plasmids accumulate as unresolved catenated dimers (DiNardo et al., 1984). Concerning higher

eukaryotes, the unavailability of a similar tool, i.e. topo II mutants, has made it difficult to reach

conclusions on a similar mitotic role of the enzyme. An alternative approach, has been the use of topo II

bpoisonsQ , i.e. chemicals that cause DNA strand breaks through stabilization of topo II covalently bound

to DNA in the intermediate form so-called cleavable-complex (Liu, 1989), as well as true catalytic

inhibitors (Andoh and Ishida, 1998). The possible induction of polyploidy in its different manifestations

such as END (Ishida et al., 1994; Sumner, 1998) as an endpoint has been considered as a proof of the

prevention of decatenation of fully replicated chromosomes by topo II by the enzyme inhibitors, with the

subsequent failure to complete a normal segregation at mitosis.

Reports from studies carried out in Drosophila (Buchenau et al., 1993), amphibia (Shamu and

Murray, 1992) and mammals (Giménez-Abián et al., 1995; Sumner, 1995, 1998; Downes et al., 1991)
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have confirmed this major role of topo II in good agreement with the observations made in yeast

(Uemura et al., 1987). An observation that lends further support to the idea of the importance of the

enzyme for anaphase segregation in higher eukaryotes is that if topo II function is blocked after

chromosome condensation chromatids fail to separate, and the cells remain arrested at metaphase

(Uemura et al., 1987; Sumner, 1995, 1998; Uemura and Yanagida, 1986; Clarke et al., 1993). These

results seem to support the idea that the final step of decatenation of intertwined daughter molecules can

only be carried out by topo II. Levels of topo IIa mRNA peak in late S and G2/M several-fold (normally

over 10 times) over the amount detected in G1 cells. These high levels are in good agreement with the

idea of a requirement of topo IIa mainly during the final stages of DNA replication to facilitate

chromosome untangling, condensation and mitotic segregation. As mentioned earlier, drugs of different

chemical nature that interfere with topo II have been tested and reported to induce polyploidy and END

to different degrees (Zucker et al., 1991; Chen and Beck, 1993; Cummings et al., 1995; Sumner,

1995,1998; Ferguson et al., 1996; Kallio and Lahdetie, 1997), providing indirect evidence that the

enzyme is necessary for separation of sister chromatids.

Through the stabilization of covalent complexes between the enzyme and DNA known as cleavable

complexes, topo II bpoisonsQ do induce DNA double-strand breakage, mutations and eventually cell

death. Clinically important antitumor drugs targetting topo II and poisoning the enzyme are

anthracyclines, (e.g. adriamycin), epipodophyllotoxins, (e.g. etoposide and teniposide), anthracenedione,

(e.g. mitoxantrone), and aminoacridines, (e.g. m-AMSA) (Liu, 1989; Chen and Liu, 1994; Froehlich-

Ammon and Osheroff, 1995). More recently, a group of drugs of diverse chemical nature have been

reported as non-classical btrueQ catalytic inhibitors of mammalian DNA topo II. These compounds either

bind to DNA and alter the relationship DNA-topo II, or target the nuclear enzyme within the cell.

Through any of these mechanisms, there is a loss of topo II activity that in turn results in an interference

with various fundamental genetic processes such as replication and transcription as well as, more

specifically, chromosome dynamics. Some examples of these drugs include merbarone (Drake et al.,

1989), fostriecin (Boritzki et al., 1988), aclarubicin (Jensen et al., 1990), SN 22995 (Chen and Beck,

1993), suramin (Bojanowski et al., 1992), novobiocin (Utsumi et al., 1990), chloroquine (Jensen et al.,

1994) and the group of bisdioxopiperazines (ICRF-154, ICRF-193 etc.) (Ishida et al., 1991; Tanabe et

al., 1991) although these latter have been recently questioned as to their possible behavior as topo II

poisons (Jensen et al., 2000; Huang et al., 2001). Anyway, while the exact manner by which they inhibit

the nuclear enzyme and their mechanism of toxicity are as yet poorly understood (Andoh and Ishida,

1998), contrasting with topo II poisons, these drugs lack in general the ability to stabilize the cleavable

complex.

Using topo II poisons such as etoposide, to study END, presents the negative aspect that high doses

have to be used to hinder enzyme function, leading to undesirable cytotoxic effects and induction of

DNA and chromosome damage with subsequent G2 delay (Lock and Ross, 1990; Sumner, 1992; Chen

and Beck, 1995). Taking into account this setback, the use of topo II catalytic inhibitors instead turns out

to be the immediate alternative, provided that they do not cause DNA and chromosome damage, in order

to determine the relative importance of the enzyme in promoting chromosome segregation at the

metaphase/anaphase transition (Sumner, 1998). The above mentioned drawbacks notwithstanding, either

END induced by topo II poisons as assessed by the presence of diplochromosomes at metaphase

(Sumner, 1998) or, in most instances, a doubling of DNA content of postmitotic nuclei, without a direct

observation of diplochromosomes (Zucker et al., 1991; Sumner, 1995; Cummings et al., 1995; Ferguson

et al., 1996) has been reported. It is also worth mentioning here that down-regulation of topo IIa gene
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expression in etoposide selected clonal cell lines has also been shown to be associated with an enhanced

spontaneous polyploidization (Melixetian et al., 2000).

When it comes to topo II catalytic inhibitor-induced polyploidization and END, despite their foreseen

usefulness and advantages versus drugs that poison the enzyme, somehow surprisingly the reports are

rather scarce. Exposure of human leukemic CEM cells to merbarone and SN22995, reported as catalytic

inhibitors (Andoh and Ishida, 1998), first resulted in accumulation in G2 but then cells escaped the G2

block to proceed into mitosis. Nevertheless, failure to divide eventually led to re-replication, and the

cells accumulated at the 8C DNA stage (Chen and Beck, 1993). Unfortunately however, the possible

appearance of endoreduplicated cells in next mitosis was not assessed. Inactivation of topo II by

merbarone also resulted in polyploidy in male mouse meiotic cells (Kallio and Lahdetie, 1997).

Since Andoh et al. (Andoh et al., 1993; Ishida et al., 1994) did pioneer work with ICRF-193, first

considered a catalytic non-cleavable-complex-forming-type topo II inhibitor (Ishida et al., 1991), and

observed an accumulation of polyploid cells, the class of the bisdioxopiperazines (ICRF-154, ICRF-187,

ICRF-193 etc) has been the more frequently studied as to their effects on chromosome segregation

(Morita et al., 1994). While formation of polyploid nuclei as a consequence of failure of chromosome

segregation in the presence of ICRF-193 was also reported in HeLa cells (Haraguchi et al., 1997), similar

observations on END resulting in large highly polyploid cells have been recently obtained in human

leukemia cells treated with dexrazoxane (ICRF-187) (Hasinoff et al., 2001).

The consideration of bisdioxopiperazines as pure catalytic inhibitors of DNA topo II however, has

been recently challenged (Jensen et al., 2000; Huang et al., 2001; Hajji et al., 2003), with even

controversial reports on their possible poisoning mechanism (Hajji et al., 2003), we have reported on

a high yield of END as a consequence of ICRF-193 treatment in Chinese hamster ovary cells at

concentrations shown as efficiently inhibiting topo II catalytic activity (Pastor et al., 2002). An

interesting observation was that the EM9 mutant cell line, which is defective in the repair of both

DNA single- and double-strand breaks as compared to its parental AA8 cell line (Thompson et al.,

1982), has shown to be particularly sensitive to induction of END by ICRF-193. A consistent

feature of EM9 previously reported by us (Cortés et al., 1993) is its elevated spontaneous yield of

metaphases showing diplochromosomes as a result of END, not observed in the parental AA8 cell

line. In good agreement with these observations, we have recently found that aclarubicin, another

reported topo II catalytic inhibitor (Jensen et al., 1990; Andoh and Ishida, 1998), is also an efficient

inducer of END (unpublished data).
Changes in the nature of DNA lead to endoreduplication

As stated above, it is widely accepted that topo II plays a major role in segregating replicated daughter

chromatids before anaphase. Concerning the relationship between DNA nucleotide sequence and topo II,

though it is generally agreed upon that the former plays a role in enzyme function, the rules that

determine the nucleic acid specificity of topo II are as yet far from being completely elucidated. It has

been reported that topo II cleaves DNA at preferred sequences within its recognition/binding sites, but

there is no report on high specificity (Sander et al., 1987; Spitzner and Muller, 1988; Lee et al., 1989;

Pommier et al., 1991).

In order to study the sequence specificity of double-strand DNA cleavage by Drosophila topo II, the

frequencies of the nucleotides and dinucleotides in the region near the site of phosphodiester bond
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breakage was analyzed (Sander and Hsieh, 1985) and revealed a nonrandom distribution. The consensus

sequence derived was 5VGT.A/TAY decrease ATT.AT..G3V where a dot means no preferred nucleotide,

and Y stands for pyrimidine (Sander and Hsieh, 1985). On the other hand, DNase I footprint analysis has

revealed that Drosophila topo II can protect a region in both strands of the duplex DNA, with the

cleavage site located near the center of the protected region (Lee et al., 1989), and it has been proposed

that the strong DNA cleavage sites of Drosophila topo II (Sander and Hsieh, 1985) likely correspond to

specific DNA-binding sites of the enzyme (Sander et al., 1987; Spitzner et al., 1990).

Using a transcription assay (Thomsen et al., 1990) the interaction between topo II from calf thymus

and DNA was also characterized. The conclusion was that topo II binds to a region of DNA located

symmetrically around the enzyme-mediated cleavage site.

We have recently found that END is readily induced in AA8 Chinese hamster cells treated for two

consecutive cell cycles with different halogenated nucleosides, namely 5-chlorodeoxyuridine (CldU),

5-iododeoxyuridine (IdU), and 5-bromodeoxyuridine (BrdU) (Fig. 3). Interestingly however, treatment

for just one cell cycle did not lead to a similar increase in END (Cortés et al., 2003). The frequency of

endoreduplicated cells was highest for CldU, intermediate for IdU and lowest for BrdU. Besides, the

frequency of cells showing diplochromosomes paralleled the relative percentage established

concerning the halogenated pyrimidine:deoxythymidine incorporation into DNA. Although the

observation that treatment of the cells for one cell cycle with CldU did not result in END seems

to indicate otherwise, we considered the unlikely hypothesis of a possible direct interaction between

the exogenous halogenated nucleoside and topo II. As expected, we did not find any loss of

decatenating activity of topo II that in turn might have hampered proper chromosome segregation

(Cortés et al., 2003).

While the possible involvement of other proteins cannot be ruled out at present, our observations

seem to favor the likely hypothesis that the nature of DNA might play a role for the recognition/binding

of topo II and its subsequent cleavage of the fully replicated molecule for chromosome segregation. It

has been reported that eukaryotic topo II preferentially cleaves alternating purine-pyrimidine repeats

within the consensus sequence, and additionally, GT, AC and AT repeats were better substrates for
Fig. 3. Third mitosis (M3) CldU-substituted diplochromosomes showing the differential Giemsa staining indicative that

analogue substitution into DNA has taken place for two consecutive rounds of DNA replication, followed by an additional S-

period in absence of CldU (the crucial one during which endoreduplication took place).
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cleavage than GC repeats (Spitzner and Muller, 1988; Thomsen et al., 1990). Furthermore, the

distribution of DNA cleavage sites induced by topo II in the presence or absence of enzyme poisons

were mapped in the simian virus 40 genome and the finding was that strong sites tended to occur within

A/T runs such as those that have been associated with binding to the nuclear scaffold (Pommier et al.,

1991).

A likely conclusion is that our results support the idea that the presence of anomalous bases such as

halogenated pyrimidines in DNA results in a defective function of topo II in chromosome segregation

that eventually leads to aberrant mitosis and the subsequent END (Pastor et al., 2002). Our recent

observation that treatment with the analogue 5-azadeoxycytidine (5-aza-dC), well known to induce

strong and permanent demethylation of DNA also results in END in CHO cells (unpublished results)

seems to lend further support to the hypothesis that changes in the nature of DNA might be important to

determine chromosome segregation. When this process fails, END mechanism(s) should be triggered.

Besides, the observation that analogue (CldU etc) incorporation for only one S period, i.e. only in

nascent DNA, does not result in END, contrasting with the increased yield of END when incorporation

takes place for two consecutive rounds of replication, seems to point to the apparent relative importance

of template DNA for chromosome segregation to proceed normally.
A straightforward model

Taking into account the high complexity of molecular events going on during cell division, thinking

on topo II as the unique responsible for chromosome segregation at mitosis is really a too simplistic idea.

A number of processes such as ubiquitin-dependent proteolysis, protein dephosphorylation, an unknown

function by the TPR repeat proteins, chromosome transport by microtubule-based motor proteins and

DNA topological change by topo II are all necessary to ensure a proper progression from metaphase to

anaphase. Besides, chromosome condensation, mitotic kinetochore function and spindle formation

require a larger number of proteins, which are also prerequisites for successful sister chromatid

separation (Yanagida, 1995). On the other hand, even though, as stated above, topo II seems to play a

central role, even for centromere and kinetochore function (Ouspenski and Brinkley, 1993; Rattner et al.,

1996; Strissel et al., 1996), separation of sister chromatids in mitosis seems to require, to different extent,

the concourse of a number of gene products.

This latter consideration notwithstanding, taking into account the evidence gathered in the present

review on the variety of agents so far reported as inducers of END as well as the overwhelming body of

data on the importance of the nuclear enzyme topo II for chromosome segregation, a temptative model of

induced END is presented here (Fig. 4). We consider three main mechanisms/categories of agents

capable of inducing END or, more properly speaking, able to switch on a cell cycle signal that eventually

leads to the triggering of an endocycle. It has recently been proposed, for the sake of simplicity, that such

a signal requires nothing more elaborate than a loss of M-phase CDK activity and oscillations in the

activity of S-phase CDK (Larkins et al., 2001).

As shown in Fig. 4, a first group should include those agents that, as colchicines and Colcemid,

interfere with cytoskeleton assembly (microtubule inhibitors etc). The block of mitosis at metaphase that

results in this case might, as stated above, switch on a new replication cycle (endocycle) without

anaphase segregation. The results at the chromosome level (diplochromosomes) should be visible in the

next mitosis (endomitosis).



Fig. 4. Proposed comprehensive model of the different possible mechanisms leading to induced endoreduplication. In the left of

the diagram, the normal process of chromosome segregation, with proper function of both topo II and the spindle apparatus is

shown. In spite of a correct performance of topo II, a first mechanism responsible for the eventual triggering of

endoreduplication should be that induced by agents that impede cytoskeleton assembly and, in turn, anaphase migration (1).

Failure in topo II, as for example due to poisoning or catalytic inhibition of the enzyme ends up with both sister chromatids

entangled in such a way that, even though the spindle apparatus is operative, the outcome is aberrant mitosis without anaphase

(2). A third situation might be when modifications in DNA, either by physical or chemical damage, or as a consequence of

incorporation of base analogues in the molecule, hinder recognition and/or binding by topo II , which again results in a block of

mitosis (3). Regardless of the mechanism, cancellation of anaphase is likely to switch on cell cycle bemergencyQ signals

involving CDKs that lead to endoreduplication.
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Agents that inhibit the enzyme topo II can be considered, according to our model, to belong to a

second broad category that includes both the enzyme poisons (etoposide, amsacrine, adriamycin etc) and

catalytic inhibitors (merbarone, aclarubicin, ICRF-193 etc) (Fig. 4). In a whole sense, regardless of the

important differences among them as to their mechanisms of interaction with topo II, the final outcome
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should be that the enzyme cannot carry out proper separation of entangled fully replicated DNA before

mitosis. Again this situation might result in a suspension of anaphase and maybe switching on cell cycle

bemergencyQ signals leading to END.

Finally, important modifications in the nucleotide sequence and/or topology of DNA are likely to

result in a failure of topo II in its binding to DNA, which in turn leads to a defective chromosome

segregation, with the consequences already described as to trigger END. This latter mechanism provides

a likely explanation for the reported effectiveness of physical and chemical agents that damage DNA to

induce END. Our recent observations that halogen-substitution into DNA also results in END (Cortés et

al., 2003) also seem to lend further support to this latter hypothetical mechanism.
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