A spanning tree heuristic for partitioning a graph into centered connected components

V. Gratta, I. Lari, J. Puerto, F. Ricca, A. Scozzari

Seville, December 15th 2014
1. p-Centered Partition Problem on graphs
 - Definition
 - Application: political districting

2. Problem on a tree T
 - Notation
 - Mathematical programming formulation
 - Solving

3. Future research

4. References
1. p-Centered Partition Problem on graphs
 - Definition
 - Application: political districting

2. Problem on a tree T
 - Notation
 - Mathematical programming formulation
 - Solving

3. Future research

4. References
1 p-Centered Partition Problem on graphs
 - Definition
 - Application: political districting

2 Problem on a tree T
 - Notation
 - Mathematical programming formulation
 - Solving

3 Future research

4 References
p-Centered Partition Problem [Apollonio et al. 2008]

p-centered connected partition

Given a graph $G=(V,E)$ and a subset S of vertices V called ”centers”, a p-centered partition is a partition into p connected components where each component contains exactly one center.

p-centered partition problem

In the general p-centered partition problem we want to find a p-centered partition of the graph optimizing a cost-based objective function.

Application: clustering, image processing, territorial districting, etc. . .
1 p-Centered Partition Problem on graphs
 • Definition
 • Application: political districting

2 Problem on a tree T
 • Notation
 • Mathematical programming formulation
 • Solving

3 Future research

4 References
Application: political districting [Ricca, Scozzari, Simeone, 2013]

Problem

Design a district map of the given territory, represented as a contiguity graph ([Simeone, 1978]), and subdividing it into a fixed number of districts in which the election is performed.
1 p-Centered Partition Problem on graphs
 • Definition
 • Application: political districting

2 Problem on a tree T
 • Notation
 • Mathematical programming formulation
 • Solving

3 Future research

4 References

p-CPP
Seville, December 15th 2014
8 of 38
1. **p-Centered Partition Problem on graphs**
 - Definition
 - Application: political districting

2. **Problem on a tree T**
 - Notation
 - Mathematical programming formulation
 - Solving

3. **Future research**

4. **References**
Notation

\[T = (V, E) \] tree. \(|V| = n \)
\[S \subseteq V \] centers. \(|S| = p < n \)
\[U = V \setminus S \] units
\[c : U \times S \rightarrow \mathbb{R} \] function that associates a cost \(c_{is} \geq 0 \) to each pair \((i, s), i \in U, s \in S\)

Problem

Find a p-centered partition of \(T \) that minimizes the maximum assignment cost of a unit \(i \in U \) to a center \(s \in S \).
1. p-Centered Partition Problem on graphs
 - Definition
 - Application: political districting

2. Problem on a tree T
 - Notation
 - Mathematical programming formulation
 - Solving

3. Future research

4. References
Mathematical programming formulation on T

Variables

\[y_{is} = \begin{cases}
1 & \text{if unit } i \text{ is assigned to center } s \\
0 & \text{otherwise}
\end{cases} \quad i \in U, s \in S \]
Mathematical programming formulation on T

Constraints

$j(i, s)$: vertex j that is adjacent to i in the unique path from i to s in T

$$y_{is} \leq y_{j(i,s)s} \quad \forall i \in U, s \in S, (i, s) \notin E$$
Mathematical programming formulation on T

Constraints

$j(i, s)$: vertex j that is adjacent to i in the unique path from i to s in T

\[y_{is} \leq y_{j(i,s)s} \quad \forall i \in U, s \in S, (i, s) \notin E \]
Mathematical programming formulation on T

Constraints

\[j(i, s) : \text{vertex } j \text{ that is adjacent to } i \text{ in the unique path from } i \text{ to } s \text{ in } T \]

\[y_{is} \leq y_{j(i,s)s} \quad \forall i \in U, s \in S, (i, s) \not\in E \]
Mathematical programming formulation on T

Constraints

$j(i, s)$: vertex j that is adjacent to i in the unique path from i to s in T

\[y_{is} \leq y_{j(i,s)s} \quad \forall i \in U, s \in S, (i, s) \notin E \]
Mathematical programming formulation on T

Constraints

$j(i, s) :$ vertex j that is adjacent to i in the unique path from i to s in T

$$y_{is} \leq y_{j(i,s)s} \quad \forall i \in U, s \in S, (i, s) \notin E$$
Mathematical programming formulation on T

Constraints

$j(i, s)$: vertex j that is adjacent to i in the unique path from i to s in T

$$y_{is} \leq y_{j(i,s)s} \quad \forall i \in U, s \in S, (i, s) \notin E$$
Mathematical programming formulation on T

Constraints

$$\sum_{s \in S} y_{is} = 1 \quad \forall i \in U$$

Each unit i must be assigned to exactly one center s.

Mathematical programming formulation on T

Constraints

$$\sum_{s \in S} y_{is} = 1 \quad \forall i \in U$$

Each unit i must be assigned to exactly one center s.

Objective function

$$\min \max \max_{s \in S} \max_{i \in U} c_{is} y_{is}$$

Minimize of the worst-case assigning cost.
Mathematical programming formulation on T

\[
\min_{s \in S} \max_{i \in U} \sum_{s \in S} y_{is} \quad \text{s.t.} \quad \sum_{s \in S} y_{is} = 1 \quad \forall i \in U
\]

\[
y_{is} \leq y_{j(i,s)} \quad \forall i \in U, s \in S, (i, s) \notin E
\]

\[
y_{is} \in \{0, 1\} \quad \forall i \in U, s \in S
\]
Mathematical programming formulation (Feasibility Problem)

Given a fixed value α, find, if exists, a p-centered partition of T such that
\[
\max_{s \in S} \max_{i \in U} c_{is}y_{is} \leq \alpha
\]

\[
y_{is} \leq y_{j(i,s)} \quad \forall i \in U, s \in S, (i, s) \notin E
\]

\[
\sum_{s \in S} y_{is} = 1 \quad \forall i \in U
\]

\[
y_{is} \in \{0, 1\} \quad \forall i \in U, s \in S
\]

\[
y_{is} = 0 \quad \text{if } c_{is} > \alpha, i \in U, s \in S
\]
Mathematical programming formulation (Relaxed Feasibility Problem)

Given a fixed value α, find, if exists, a p-centered partition of T such that
$$\max_{s \in S} \max_{i \in U} c_{is} y_{is} \leq \alpha$$

$$y_{is} \leq y_{j(i,s)} \quad \forall i \in U, s \in S, (i, s) \notin E$$

$$\sum_{s \in S} y_{is} = 1 \quad \forall i \in U$$

$$y_{is} \geq 0 \quad \forall i \in U, s \in S$$

$$y_{is} = 0 \quad \text{if} \ c_{is} > \alpha, i \in U, s \in S$$

This is a Linear Programming problem and his feasible polytope has integer vertices ([Lari, Puerto, Ricca, Scozzari, 2014]).
1. p-Centered Partition Problem on graphs
 - Definition
 - Application: political districting

2. Problem on a tree T
 - Notation
 - Mathematical programming formulation
 - Solving

3. Future research

4. References
Algorithm [Lari, Puerto, Ricca, Scozzari, 2014]

1. Sort the c_{is} values, $i \in U$, $s \in S$, in non-decreasing order
2. Apply a binary search to generate all the possible different values
 $\alpha = \min_{s \in S} \max_{i \in U} \max_{s \in S} c_{is} y_{is}$ of problem (1).
3. For each α solve the feasibility problem (3).
Algorithm [Lari, Puerto, Ricca, Scozzari, 2014]

1. Sort the c_{is} values, $i \in U, s \in S$, in non-decreasing order.
2. Apply a binary search to generate all the possible different values
 \[\alpha = \min_{s \in S} \max_{i \in U} c_{is} y_{is} \]
 of problem (1).
3. For each α solve the feasibility problem (3).

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>9</th>
<th>11</th>
<th>15</th>
<th>28</th>
<th>33</th>
<th>40</th>
<th>47</th>
<th>51</th>
<th>64</th>
<th>76</th>
<th>77</th>
<th>82</th>
<th>85</th>
<th>94</th>
</tr>
</thead>
</table>

\[\alpha \]
Algorithm

1. Sort the c_{is} values, $i \in U$, $s \in S$, in non-decreasing order
2. Apply a binary search to generate all the possible different values
 \[\alpha = \min_{s \in S} \max_{i \in U} c_{is} y_{is} \] of the problem (1).
3. For each α solve the feasibility problem (3).
Algorithm

1. Sort the c_{is} values, $i \in U$, $s \in S$, in non-decreasing order.
2. Apply a binary search to generate all the possible different values
 $\alpha = \min_{s \in S} \max_{i \in U} c_{is} y_{is}$ of the problem (1).
3. For each α solve the feasibility problem (3).

\[
\begin{array}{cccccccccccc}
2 & 9 & 11 & 15 & 28 & 33 & 40 & 47 & 51 & 64 & 76 & 77 & 82 & 85 & 94 \\
\end{array}
\]

\[
\begin{array}{cccccccccccc}
2 & 9 & 11 & 15 & 28 & 33 & 40 & 47 & 51 & 64 & 76 & 77 & 82 & 85 & 94 \\
\end{array}
\]

\[
\begin{array}{cccccccccccc}
2 & 9 & 11 & 15 & 28 & 33 & 40 & 47 & 51 & 64 & 76 & 77 & 82 & 85 & 94 \\
\end{array}
\]
Algorithm

1. Sort the c_{is} values, $i \in U$, $s \in S$, in non-decreasing order
2. Apply a binary search to generate all the possible different values
 \[\alpha = \min_s \max_i c_{is} y_{is} \] of the problem (1).
3. For each α solve the feasibility problem (3).
Algorithm

1. Sort the c_{is} values, $i \in U$, $s \in S$, in non-decreasing order
2. Apply a binary search to generate all the possible different values
 \[\alpha = \min_{s \in S} \max_{i \in U} c_{is} y_{is} \] of the problem (1).
3. For each α solve the feasibility problem (3).
1. **p-Centered Partition Problem on graphs**
 - Definition
 - Application: political districting

2. **Problem on a tree T**
 - Notation
 - Mathematical programming formulation
 - Solving

3. **Future research**

4. **References**
Problem on a graph

We know that the problem is NP-hard on general graphs, but we have a polynomial time algorithms for trees ([Lari, Puerto, Ricca, Scozzari, 2014]).

Idea

Exploit the exact algorithm on trees to solve heuristically the problem on general graphs, basing on the correspondence that exists between the optimal partition of a graph and that of one of its spanning trees. ([Maravalle e Simeone, 1995]).
Basic idea of the heuristic algorithm

1. Generate a spanning tree of G, $T = (V, E_T)$.
2. Apply to T the polynomial time algorithm for trees.
3. Modify locally T to obtain a new spanning tree of G, $T' \neq T$.
4. Update T with T' and go to 2.
Example

$$C = \begin{pmatrix}
6 & 13 \\
6 & 6 \\
9 & 10 \\
11 & 12 \\
5 & 4 \\
1 & 4 \\
14 & 8 \\
10 & 1 \\
5 & 4 \\
6 & 8 \\
4 & 7 \\
9 & 14 \\
8 & 8 \\
6 & 6 \\
2 & 1 \\
13 & 7 \\
7 & 6 \\
11 & 13
\end{pmatrix}$$
Example
Example
Example
Example
1. p-Centered Partition Problem on graphs
 - Definition
 - Application: political districting

2. Problem on a tree T
 - Notation
 - Mathematical programming formulation
 - Solving

3. Future research

4. References
References

I. Lari, J. Puerto, F. Ricca, A. Scozzari, 2014
Partitioning a graph into connected components with fixed centers and optimizing different criteria.
submitted to the scientific journal Networks.

F. Ricca, A. Scozzari, B. Simeone, 2011
Political districting: from classical models to recent approaches.

Polynomial Algorithms for Partitioning a Tree into Single-Center Subtrees to Minimize Flat Service Costs.
References

M. Maravalle, B. Simeone, 1995
A spanning tree heuristic for regional clustering.

B. Simeone, 1978
Optimal graph partitioning.
Atti giornate di lavoro AIRO, Urbino. pp 57–73, 1978;
THANK YOU