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THERMOCHEMICAL
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A thermochemical biorefinery is a 

facility, which processes biomass by 

means of pyrolysis and/or 

gasification to produce fuels, 

chemicals and services 

This thesis aims to propose new concepts of thermochemical 

biorefineries using DME as a platform chemical and to assess if they 

are feasible, profitable and sustainable 
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In 2009, the research activity of the Bioenergy Group (process 

design) was focused on the production of ethanol via 

thermochemical processing of biomass: 

DIRECT SYNTHESIS 

The study of the direct synthesis showed that the process is 

feasible. However, 

 (just) profitable and there is  

 a high risk, since large investment 400 M€ (500 MWth) 

 and market uncertainties 



Indirect synthesis of Ethanol 

 Objective: improve profitability 

INDIRECT SYNTHESIS 

 Search of alternative routes that overcome main limitation of direct 

synthesis: low selectivity to ethanol 

The screening of literature showed all routes use homogeneous 

catalysts and operate at high pressure (>50 bar) 

 Acetic acid esterification (Enerkem): complex 

 In process to be commercial (homogeneous catalyst) 

 DME hydrocarbonylation 

 Recently discovered (2009, Tsubaki) 

 Heterogeneous catalyst  
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Indirect synthesis of Ethanol 

CH3OCH3 
(DME)

CH3COOCH3 (methyl acetate)

CO

CH3OH

C2H5OH

H2

CO, H2
(syngas)

H2O

Eq. (1)

Eq. (4)

Eq. (15)

Eq. (12)

Platform chemical: DME 

Reaction steps:  

 syngas-to-methanol (commercial) 

 methanol-to-DME (commercial) 

 DME-to-ethanol (in progress) 

   two catalysts 

   220ºC, 15 bar 

 Methanol is converted into DME 
 

 GLOBAL REACTION: 

4 H2 + 2 CO  C2H5OH + H2O 

(same as in the direct route) 
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Indirect synthesis of Ethanol 

 Process design (i-Ethanol concept) Paper 2 

Methyl Acetate
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SYNTHESIS

PRODUCT 
SEPARATION

DME SYNTHESIS

CLEAN-UP & 
CONDITIONING

DME

Water

Methanol

Ethanol

Biomass

DME HYDROCARBONYLATION
PRODUCT 

SEPARATION

Main points in the design: 

• A large excess of CO is required (CO/DME = 10:1) 

• Selectivity near 100% 

• No water-ethanol mixture (energy saving) 

• Less syngas recycle, milder operating conditions 
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 Basis of modeling  (i-Ethanol concept) 

 Process simulator: Aspen Plus 

 500 MWth of poplar chips 

 i-CFB gasifier 

 Conditioning of raw syngas 

 steam reformer (SR) 

 Methanol synthesis 

 LPMEOHTM 

 DME synthesis 

methanol dehydration (Toyo) 

 DME hydrocarbonylation 

 data from literature (Tsubaki) 
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Indirect synthesis of Ethanol 
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Process flowchart of the i-Ethanol concept 

Paper 2 
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Both cases share the methodology and have been designed as 
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Indirect synthesis of Ethanol 

 

 
i-Ethanol Direct synthesis 

Biomass input (MWth, HHV) 500 500 

Feedstock price ($/d. tonne) 66 66 

Energy efficiency (%, HHV) 46 34 

Total capital investment (M$2010) 333 421 

Operating cost (k$/MWEthOH·year) 435 471 

Minimum selling price ($/L) 

[10% internal rate of return: IRR] 
0.56 0.71 

Data for the direct synthesis taken from BEGUS publications 

Paper 2 
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Indirect synthesis of Ethanol 

 The indirect synthesis has higher efficiency and higher 

profitability than direct synthesis 

 However, there is still a risk for the investment 

  In order to reduce it: diversification of revenue  

multiproduction 

  Regarding the DME hydrocarbonylation route there 

are potential co-products: DME, methyl acetate 

(high-value) 
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 Design and assessment of 12 concepts of thermochemical biorefineries 

Multiproduction plants using a platform chemical 

Co-products Uses Value €/GJ 

DME substitute of diesel, LPG; substitute of naphtha (chemical)  0.7 $/L 22 

Ethanol substitute of gasoline; production of chemicals (butanol, ethylene) 0.6 $/L 24 

Methyl Acetate solvent; production of plastics 1.7 $/L 65 

Hydrogen production of electricity; use in transport; refineries 1 $/kg 6 

Electricity - 5 c$/kWh - 

 Objective: confirm the potential of multiproduction plants  

 How? 

  Assessment of different configurations (concepts) 

regarding the mix of products and the conditioning of 

the syngas 

Paper 5 
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Multiproduction plants using a platform chemical 

Process flowchart of the concepts of thermochemical biorefinery 

 Description of the concepts 
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Paper 5 
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 Results and discussion 

Multiproduction plants using a platform chemical 

Paper 5 
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 Results and discussion 

Multiproduction plants using a platform chemical 
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 Results and discussion 

Multiproduction plants using a platform chemical 

Paper 5 
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Cases co-producing methyl acetate  

IRR of the concepts 
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 Conclusions 

 The concepts co-producing methyl acetate (high-value 

product) achieve the highest profitability  

 The energy efficiency of the concepts is similar to BTL/G 

processes (40%) 

 

 However, a sustainability assessment is necessary 

Multiproduction plants using a platform chemical 
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 Sustainability assessment in thermochemical biorefineries 

 The use of biomass does not necessarily involve sustainability 

 The co-production of products different to fuels requires new tools 

 Impact of sustainability on the profitability 

 The incorporation of BECCS (sale of CO2 credits) 

 Achievement of a larger saving than the required (sale of CO2 credits) 

 

 

 

 

Sustainability in multiproduction plants 

Assessment of sustainability (new methodology) and 

study of the potential impact on profitability 

(based on Directive 2009/28/EC) 
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 European methodology 

Sustainability in multiproduction plants 

Paper 7 

 E = eec + el + ep + etd + eu – esca – eccs – eccr – eee   

    (g CO2 equivalent / MJ of biofuel) 

 Allocation co-products (energy content):   

   Em = E’ + sum[xi·(etd,i + eu,i)] 

 Modification of sustainability methodology 

 The final use (eu,i) is relevant 

 Fuels have a net emission in their final use 

 Retention of carbon in chemicals   

 (assumed as 50% eq. CO2 content) 

  Extra saving 
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 European methodology 

Sustainability in multiproduction plants 

Paper 7 

 E = eec + el + ep + etd + eu – esca – eccs – eccr – eee   

    (g CO2 equivalent / MJ of biofuel) 

 Allocation co-products (energy content):   

   Em = E’ + sum[xi·(etd,i + eu,i)] 

 Modification of sustainability methodology 

 The final use (eu,i) is relevant 

 Fuels have a net emission in their final use 

 Retention of carbon in chemicals   

 (assumed as 50% eq. CO2 content) 

  Extra saving 

 Extra-avoided emissions: 44.3 t/h of equivalent CO2 

Example: TR-01 concept 

Emission factor (fossil) 83.8 

g CO2 equivalent per MJ of total products 

Limit of emissions (60% saving) 33.5 

Emissions cradle-to-grave 9.0 

Sequestration or retention of CO2 30.0 

Saving 125% 

Extra saving  

(w/o seq. or retention of CO2) 
24.5 

Extra saving 54.5 
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 Results: final use and extra saving 

Sustainability in multiproduction plants 
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Paper 7 
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 BECCS: results of incorporation to TR concepts 

 Cost of sequestration: 20 – 30 €/tonne 

 Conventional power plants: 100 – 200 €/tonne 

 All concepts have an extra saving of GHG emissions 

 Impact of sustainability on profitability 

 Sale of CO2 credits (extra-avoided emissions) 

 Co-feeding of fossil fuels (natural gas, coal) 

 

Sustainability in multiproduction plants 
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Co-feeding results in the largest profitability 

when CO2 credit < 20 €/tonne 

Sustainability in multiproduction plants 

Co-feeding of fossil fuels: SR-01 

Extra saving 25.2 g/MJ 

Co-feeding (coal) 49 MW 

Increment of IRR 10.44  11.24 % 
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 Conclusions 

 All concepts of thermochemical biorefinery using DME are 

sustainable (even using European regulation) 

 Chemicals are not combusted  retention of carbon 

 A saving larger than 100% could be achieved if chemicals are co-

produced and BECCS incorporated 

 The economic impact is positive due to the large GHG saving 

Sustainability in multiproduction plants 

Paper 7 
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 Up to now the results have shown that: 

  Multiproduction is interesting in order to reduce the risk 

(diversification of revenue) and enhances profitability 

 

  Hence, a review of other platform chemicals and indirect 

routes will result in new options for the assessment of 

multiproduction plants 

Thermochemical biorefineries with multiproduction 
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2
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 Methanol, DME and Ethanol 

 Methanol and DME are 

mostly equivalent 

 The routes are complex 

(several reaction steps) 

 MTG and MTO are 

commercial processes, 

although using fossil fuels 

Paper 1 
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 In 2012 I visited the Karlsruhe Institute of Technology 

Activities during the visit to KIT 

Paper 6 
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 As a result of this collaboration:  

Modeling and assessment of the production of synthetic gasoline, 

olefins and co-production of synthetic gasoline and ethylene 
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 In 2012 I visited the Karlsruhe Institute of Technology 

Activities during the visit to KIT 

Paper 6 

Paper 3 
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 As a result of this collaboration:  

Modeling and assessment of the production of synthetic gasoline, 

olefins and co-production of synthetic gasoline and ethylene 

 Assessment of the production of ethylene using DME and/or 

ethanol as a platform chemical  
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 In 2012 I visited the Karlsruhe Institute of Technology 

Activities during the visit to KIT 

Paper 6 

Paper 3 

 As a result of this collaboration:  

Modeling and assessment of the production of synthetic gasoline, 

olefins and co-production of synthetic gasoline and ethylene 

 Assessment of the production of ethylene using DME and/or 

ethanol as a platform chemical  

 Main differences with the previous work (BEGUS)  

 Different gasification technology (EF) 

 Different methodology and basis of design (e.g. 1175 MWth straw) 

 Hence, a comparison of the concepts is not possible 
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 Results 

 The production of synthetic gasoline and olefins (2 

concepts) are not competitive 

 Production of ethylene using ethanol as a platform chemical 

 Competitive for sugar cane ethanol (Brazil)  

 Competitive for ethanol via thermochemical processing 

(indirect synthesis)     

     Ethanol price 0.45 €/L 

 

Papers 3 and 6 

Activities during the visit to KIT 
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 20 concepts of  thermochemical biorefineries (designed and assessed) 
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Summary (thesis) 

 Most concepts use DME as a platform chemical (17); the rest 

ethanol (3) 

 Multiproduction plants (14) are designed with regarding 

different reforming technologies and different co-products 

 The list of co-products includes: 

Fuels (transportation, heating), commodities (low-value) and 

chemicals (high-value) 
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 Identification of chemical routes using a platform chemical 

 Technoeconomic assessment of the indirect synthesis of ethanol 

 Technoeconomic assessment of the production of ethylene 

 Conceptual design of multiproduction plants 

 Technoeconomic assessment of multiproduction plants using DME 

 Assessment of sustainability and economic impact 

 

Paper 1 

Paper 2 

Paper 3 

Paper 4 

Papers 5 and 6 

Paper 7 
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 Summary of the thesis (work done) 

Summary (thesis) 



 Ethanol can be produced via the DME hydrocarbonylation route:  

   cost-competitive and high efficient (0.56 $/L) 

 Multiproduction can reduce the risk of investment and improve 

profitability:        

   especially high-value chemicals (IRR > 20 %) 

 Co-production of chemicals largely reduces the GHG emissions 

   retention of carbon in final products 

 Extra saving in thermochemical biorefineries  enhances profitability 

    sale of CO2 credits or co-feeding 

 BECCS is competitive and enhances profitability   

   lower cost of sequestration (20-30 €/tonne) 
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Final Conclusions 



Further work 

Experimental research of DME hydrocarbonylation route: 

1.- Optimization of operating conditions 

2.- Design of reactor (e.g. regeneration of catalyst) 

 

Assessment of other routes using DME and others platform chemicals 

and the screening of other high-value chemicals (currently used in 

petrochemical industry) 
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