

A Short Review on 2nd Generation Processes to Produce Ethanol from Biomass

P. Haro^a, P. Ollero^a, A.L. Villanueva Perales^a, C. Reyes Valle^b

^a Bioenergy Group, Escuela Superior de Ingenieros, University of Seville

^bAdvanced Technology Center for Renewable Energies (CTAER)

20th European Biomass Conference and Exhibition

Outline

20th European Biomass Conference and Exhibition

Biochemical pathway

Strengths:

- Simple process (in comparison)
- Non-thermal treatment
- Widely investigated

Weaknesses:

- Price of enzymes (enzymatic hydrolysis)
- Need of genetic improvements
- Conversion of lignin

Bio-thermochemical pathway

Strengths:

- High specificity to ethanol production
- Independent of mild changes of H₂/CO ratio
- Poison-tolerant (S)

Weaknesses:

- Mass transfer limitation
- Exhaustive control of pH and T
- Duality of acetogenesis/solvatogenesis cycles

Thermochemical pathway

Strengths:

- Ethanol recovery (higher ethanol concentration)
- Use of industrial catalysts and processes

Weaknesses:

- Catalyst (selective, process conditions, ...)
- Valorization of sub-products

20th European Biomass Conference and Exhibition

Thermochemical pathway

DIRECT ROUTES

* Villanueva Perales AL, Reyes Valle C, Ollero P, Gómez-Barea A. Technoeconomic assessment of ethanol production via thermochemical conversion of biomass by entrained flow gasification. Energy 2011;36:4097e108.

- Heterogeneous catalyst
 - FT-modified
 - MeOH-modified
 - Mo (<u>S₂Mo</u>)
 - <u>Rh</u>

- Low ethanol yield
- High subproduct formation (CO₂, CH₄, methanol, ...)

Little improvements are expected in the future

Thermochemical pathway

INDIRECT ROUTES

- Started in the 80's (withdrawn, but recently recovered)
 - Homogeneous catalyst (similar to acetic acid production)
 - Heterogeneous catalyst (new processes)
 - Need of intermediate(s) \rightarrow Complex routes
 - Lower by-product formation, higher ethanol yields

An old field with promising future

Indirect routes

20th European Biomass Conference and Exhibition

Indirect routes

20th European Biomass Conference and Exhibition

Indirect routes

 Thermochemical processing, e.g. biomass gasification **Methanol homologation SYNGAS** Acetic acid hydrogenation Methanol synthesis (well-known process) $CO + 2H_2 \rightarrow CH_3OH$ MeOH Acetic acid esterification Acid carbonylation of methanol & Acetic acid esterification $2 CH_3OH + CO \rightarrow CH_3COOCH_3 + H_2O$ MeOAc $CH_3COOH + CH_3OH \rightarrow CH_3COOCH_3 + H_2O$ **DME hydrocarbonylation** • Hydrogenation of methyl acetate $CH_3COOCH_3 + 2H_2 \rightarrow C_2H_5OH + CH_3OH$ Acetic anhydride route **EtOH** Heterogeneous catalyst, mild pressure, selective reaction Near to be commercial Enerkem Inc. **Ethylene hydration** (2-3 pre-commercial plants in USA and Canada)

20th European Biomass Conference and Exhibition

Indirect routes

• Thermochemical processing, e.g. biomass gasification **Methanol homologation SYNGAS** Acetic acid hydrogenation Methanol synthesis (well-known process) $CO + 2 H_2 \rightarrow CH_3OH$ MeOH Acetic acid esterification Methanol dehydration (commercial) $2 CH_3OH \rightarrow CH_3OCH_3 + H_2O$ DME **DME hydrocarbonylation** DME hydrocarbonylation (in development) $CH_3OCH_3 + CO + 2H_2 \rightarrow C_2H_5OH + CH_3OH$ Acetic anhydride route Carbonylation: H-Mordenite; Hydrogenation: Cu-ZnO **EtOH** • High selective reaction operating at 200-250°C and 15 bar **Ethylene hydration** * Haro et al., Technoeconomic assessment of lignocellulosic ethanol production via dimethyl ether hydrocarbonylation, Energy 2012. doi: 10.1016/j.energy.2012.05.004

20th European Biomass Conference and Exhibition

Indirect routes

20th European Biomass Conference and Exhibition

Indirect routes

20th European Biomass Conference and Exhibition

Thermochemical Biorefineries

- Integrated processes to transform biomass into equivalent products than produced in conventional fossil refineries
- A multi-product assessment (DME hydrocarbonylation) shows that ethanol can be produced at competitive prices*

* Haro et al., Thermochemical biorefinery based on dimethyl ether as intermediate: Technoeconomic assessment. Submitted for publication, 2012.

Conclusions/Perspectives

- Up to date no 2nd Generation process has demonstrated a costcompetitive ethanol production
- Biochemical pathway is overcome (lignin conversion)
- Bio-thermochemical pathway need further research
- Direct routes have a limited improvement
- Indirect routes have a high potential for medium term (Enerkem, DME hydrocarbonylation)
- Indirect routes fit perfectly in the thermochemical biorefinery concept

Thank you for your attention

20th European Biomass Conference and Exhibition